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ABSTRACT

Many data sources on the Internet containmath informationwithin

them, and math is used throughout daily life while being impor-

tant for avenues of study and industry. Understanding math en-

ables be�er problem solving, pa�ern comprehension, quantifying

relationships, and making predictions of the future. Unfortunately,

less people have proficiency in math in recent times. To make the

situation worse, it is difficult to locate sources of relevant math

information, particularly when the searcher has li�le familiarity

with the subject area. Having Math Information Retrieval (IR) sys-

tems would help facilitate searches for math information and as-

sist learners with understanding math concepts. Sadly, extract-

ing mathematical notation in graphical representations into a stan-

dardized text-based format is a non-trivial task, since it is required

to detect unique symbols and spatial arrangements of mathemati-

cal characters, as well as formula positioning in documents. Fail-

ure to correctly detecting and recognizing visual math formulas

and their notation produce errors that alter the entire meaning of

the resulting formulas, or simply do not have the speed needed

for a real-time Math IR system. To address these problems, we

have developed a combined FCOS and Image2Latex framework to

detect and extract math formulas from images and translate them

accurately into LaTeX in a reasonable time frame.
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1 INTRODUCTION

Math is used in many parts of daily life, such as scheduling, cook-

ing, finances, measurements, and organization, and many fields of

study as well as industry utilize it. Indeed, math is considered a

universal language because it conveys quantitative properties and

values as well as how processes work, and exposure to math en-

ables a greater capacity for problem solving, pa�ern comprehen-

sion, quantifying relationships, and making predictions of the fu-

ture. �ere are many sources of information which contain math

information, both offline and on the Internet. Wikipedia, Math

Stack Exchange, scientific documents, textbooks and manuals all

contain math interspersed with the rest of the text. In many cases,

math information is stored in a textual format and typically in

some form of math markup language, such as LaTeX, MathML,

OpenMath, or OMDoc. Another common medium that math in-

formation is stored in are images or scanned documents, such as

photos or PDFs.

Sad to say, math proficiency levels for people around the world,

particularly in the United States, have dropped in recent years. In

the United States, the national average math proficiency in public

schools is 38% from 2023-24 [28]. According to the National Assess-

ment of Academic Progress, 12Cℎ graders in the US are considered

to be proficient inmath if they have a score of 176 or higher, but the

grade average in 2019 was 150 [22, 23]. To make ma�ers worse, it

is difficult for people to locate viable sources of math information

to either learn how to do math or familiarize themselves with an

area of study or research which involves math, especially if they

are not familiar with the subject. Such people would benefit from

having systems in place which facilitate searching and translation

of sources of math information. �e area of study in Math infor-

mation retrieval (IR) appears to be the answer to the problem.

Math Information Retrieval (IR) systems are a relatively new

field of study, in which the systems involved organize, store, re-

trieve, and evaluate math information from document repositories.

�ese systems are useful for ordinary users, as well as experts, in

math or related fields to find relevant information and aid them in

increasing their understanding of math concepts. In order to build

a robust Math IR system, designers are expected to generate mean-

ingful rankings on math information and recommend documents

retrieved for math queries. Being able to extract math notation

from images would be beneficial, since many sources of math in-

formation are in a visual storage medium, whether that be a PDF

or image, or in a physical document, which would benefit from

being able to be converted from a physical to digital format to be

more accessible to Math IR systems and people online [24]. Con-

verting math equation (ME) images into textual format, however,
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is not a simple task. �is is because natural language text is ar-

ranged in relatively easy to parse lines, with symbols aligned in a

single dimension, while math notation can appear both inline with

surround text or isolated from the rest of a document or image. To

further complicate ma�ers, the same ME symbol can be used for

multiple purposes. For instance, the ‘·’ in “0 · 1” could be refer-

ring to algebraic multiplication, matrix multiplication, or concate-

nation, and 5 ◦ 6 can refer to the Hadamard product with matrix

multiplication or for function composition. Subscripts and super-

scripts alter the sizes and location of the symbols involved, and ME

symbols such as this are arranged in two spatial dimensions, i.e.,

horizontal and vertical, rather than one dimension. All of these fac-

tors are critical for accurately extracting a ME with the intended

meaning. Even when math formulas are correctly extracted from

images, most existing methods for ME extraction designed with

accuracy in mind rather than speed, with ScanSSD-XYc being the

only method that addresses speed at all when it comes to ME ex-

traction systems [7]. �is is problematic because Math IR systems

require both reasonable accuracy and real time speeds to be useful

in real world contexts.

To address the problem mentioned above, we aim to create a

model that is capable of detecting and recognizing math formu-

las in images and converting them into a usable text-based format

with high efficiency and accuracy to be usable for any Math IR sys-

tem [8, 34]. For the proposed model, we specifically focus on ex-

tracting MEs from images of printed scientific documents, as this

is one of the most commonly existing and used mediums for ME

information stored on the Internet. To detect MEs in images, a

fully convolutional one-stage object detection (FCOS) model [29]

is adapted for identifying math formulas in images, creating labels,

and performing bounding box regression [30]. To recognize and

return MEs in the resulting bounding boxes as text, an encoder-

decoder architecture, called �<0642!0C4G , is utilized to convert the

images into LaTeX markup language for use in other applications,

since LaTeX is a commonly used markup language that is used to

produce scientific papers, is fairly compact when it comes to repre-

senting math formulas, and already has existing open-sourcemeth-

ods that can convert LaTeX to other markup languages, which is

good to use for Math IR systems [6, 26, 33].

2 RELATED WORK

While math expression detection and recognition (MEDR) are a

relatively new field of study, there has been related work in these

fields going back over a decade, and focuses mostly on extraction

from PDFs and images, and on extracting printed or handwrit-

ten MEs [16]. While there have been methods created to process

ME documents with non-machine learning (ML) techniques, ML

is used more frequently in recent times, with Support Vector Ma-

chines (SVM), K-Nearest Neighbor (KNN), Convolutional Neural

Network (CNN), and Long Short-Term Memory (LSTM) being the

most commonly used techniques [6, 11, 18].

Previous work which relates to ME detection typically utilizes

some form of CNN, as this enables storing feature information and

scanning for features which indicate ME locations. �ere are sev-

eral variants of this particular method. For instance, the ScanSSD

and ScanSSD-Xyc slidewindows over images using a CNN to select

ME bounding boxes [7, 20]. Another method uses segmentation to

separate text from the rest of the document, and then applies a

SVM to determine if the segmented line is a ME, and the authors

of [5] classify MEs as inline or isolated. Moreover, Phong, et al.

[27] segment the text before running a CNN for feature extraction,

while Ohyama et al. [25] and Madise�y et al. [19] pair a U-Net

with a CNN and a Conditional Random Field (CRF) with a Recur-

rent Neural Network (RNN), respectively to detect the region of a

formula. Almost all of these approaches rely on using CNNs for

the task of ME detection. �e detection model adapted by us, how-

ever, is Fully Convolutional One-stage Object Detection (FCOS),

which is a one-shot object detection that utilizes a Resnet-based

back bone combined with a Feature Pyramid Network to detect an-

chor free objects. All of these parts enable the network to perform

with a good balance of speed and accuracy, which would make

FCOS ideal to use for Math IR systems [35]. At present, there is no

current method which implements FCOS to detect math formulas.

Adapting this model, we provide a viable method for ME detection

that offers both precise results and efficient performance.

As for ME recognition, existing approaches typically use con-

ventional OCR with SVMs for classification [21]. Most methods

that were introduced later utilize some form of encoder-decoder

architecture, usually with a LSTM variant or a�ention included

[32, 33]. Some of the more recent methods use visual transformers

(ViT) as well [36]. �e persistent use of encoder-decoder archi-

tectures for this problem indicates that this approach is effective

for this problem, and is one of the currently existing methods that

can be configured to convert images to text, something which is

needed for ME recognition. �e majority of these methods have

some form of recurrence or a�ention in place to enable keeping

track of sequential and spatial data, due to the importance of con-

text for recognizing ME text in images [16].

Our model for ME recognition is based on the �<0642!0C4G

encoder-decoder model [10]. We have implemented a recurrence

neural network and so� a�ention mechanism to recognize spatial

information and ME symbol ordering to achieve precise results

using math equations detected by FCOS. Since encoder-decoder

models in general going through a single pass through the model,

and this particular method uses beam search in the decoder to find

the optimal output sentence, the Image2Latex model retains good

speed as well as accuracy, which is beneficial to Math IR systems.

3 THE PROPOSED MATH EQUATION
DETECTOR AND RECOGNIZER

In this section, we present the design of ourmath equation detector

and recognizer.

3.1 �e FCOS Math Equation Detector

Our ME detection model utilizes a Fully Convolutional One-stage

Object Detection (FCOS) framework to identify different kinds of

MEs and form bounding boxes around them. �is model take

images of printed documents, locate MEs within them, and form

bounding boxes around them while identifying them as embedded

formulas, which are surrounded by text, or isolated formulas, i.e.,

formulas that are separated from the rest of the text, as well as if

they are split across multiple lines or pages. While FCOS has not

been used for detecting math equations before, a related method

called Faster R-CNN has been used for extractingMEs from images
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Figure 1: �e network architecture of FCOS, where C3, C4, and C5 denote the feature maps of the backbone network and P3

to P7 are the feature levels used for the final prediction. � ×, is the height and width of feature maps. ‘/s’ (B = 8, 16, . . ., 128)

is the downsampling ratio of the feature maps at the level to the input image [29]

previously, so there is a precedent for using it as object detectors

for Math IR systems. FCOS in particular is both faster than most

methods we have come across while also being lightweight, rela-

tively new with iterated additions that provide improvements to

performance, and having high accuracy [13]. While this method

does not translate MEs in images into some form of markup lan-

guage, it is capable of locating them and identifying whether the

formula is separate from the rest of the text or split across lines.

Doing so makes it easier for those formulas to be extracted later

and used by ME recognition methods. �e purpose of FCOS is to

extract MEs of different types from images with high accuracy and

speed so that it is a reliable approach to use as part of the overall

Math IR model that can operate in real time.

In terms of function, FCOS is an anchor-free object detector

which solves object detection problems in a per-pixel prediction

fashion, similar to segmentation. �is method is primarily based

off of Fully Convolutional Networks (FCN) for semantic segmen-

tation. �e model architecture has three sections as shown in Fig-

ure 1, the backbone, feature pyramid, and head.

Feature maps extracted by the backbone are fed into the Fea-

ture Pyramid Network (FPN) at different levels of scale, and the

different layers feed into each other from smallest to largest [17].

�is enables robustness to scale variance and also allows choos-

ing plausible object locations at a smaller scale before narrowing

down on locations on a larger scale, which is more efficient. �e

FCOS model is using Resnet50, a Convolutional Neural Network

(CNN) utilizing residual layers for the feature extraction backbone.

Resnet is a kind of DNN architecture which contains skip connec-

tions which link back from later layers to earlier ones, which en-

ables gradients to flow through them, something which is helpful,

since it prevents vanishing or exploding gradients that could cause

the network to fail [12]. �e output of the FPN then go to a head

network. �e head network has two main branches, one being

used for classification to predict class confidence and center-ness

of the bounding, and the other for regression to predict bounding

boxes [4]. �e input is encoded as an image, as well as associated

classes forMEs and bounding boxeswithin those images, while the

output of training is the losses and the output of inference is pre-

dictedME class types and bounding for the images passed through.

�ere are three loss functions used for the head, namely classifica-

tion loss uses focal loss, center-ness loss uses binary cross-entropy

error (BCE) loss, and regression loss uses IoU loss.

3.2 �e Image2Latex Math Equation Recognizer

In order to perform ME recognition, an existing encoder-decoder

model, called �<0642!0C4G , was implemented. �is model is a

Seq2Seqmodelwhich utilizes an encoder-decoder architecturewith

so� a�ention to translate math formula images into LaTeXmarkup

language1, as shown in Figure 2.

As shown in Figure 2, the encoder uses a CNN network that

extracts features from the images and encodes them with spatial

information, doing batch normalization so that the network runs

faster withmore stability. �e decoder is a RNNwhich is composed

of stacked bidirectional long short-term memory (BiLSTM) blocks

integrated with a so� a�ention mechanism. �is will operate as a

language model so that the feature and spatial information in the

encoder output will be translated into a LaTeX sequence. Since all

parts of a ME influence the meaning and arrangement of the entire

ME, and MEs can end up being rather large, a mechanism to keep

track of and compare features to each other, such as a�ention or

recurrence, is needed for this particular problem [1]. Making pre-

dictions using an encoder-decoder architecture only necessitates

passing the input through the network once, so the ME recogni-

tion model will run fairly fast. Using a full-on transformer model,

which is a more recent method, can produce more accurate results,

1Many of the more recent methods for doing ME recognition rely on some form of
encoder-decoder architecture, since such a framework is effective for the purpose of
converting images to text.
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Convolutional Encoder                                                           RNN Encoder

Figure 2: �e network architecture of �<0642!0C4G , which is

composed of a convolutional encoder and RNN decoder

but transformers require more data to train properly and are com-

putationally costly, which are not practical for Math IR [14].

4 SOURCES OF DATA USED FOR ME
DETECTION AND RECOGNITION (MEDR)

For ourMEDRmodel, the focus is specifically on images of printed

documents, since most of the math information readily available is

stored in some form of document, whether it be a scientific paper

or a textbook or in Wikipedia. Being able to convert document im-

ages containing MEs into text helps extracting math information

in documents. As shown in Figure 3, when MEs stored in PDFs are

copied and pasted in MS Word documents, the ME ends up being

converted to a one-dimensional line of text comprised of the sym-

bols in the ME that is not in the correct order. Moreover, subscripts

and superscripts are lost and the converted formula changes the

meaning of the original ME as shown in Figure 3.

PDF text pasted into MS Word

Image

Text

PDF converted to MS Word

PDF

Figure 3: Math formula in a PDF document pasted in Mi-

croso� Word and converted to Microso� Word

For converting PDFs into Microso� Word documents directly,

the original ME ends up being converted to an imagewithin the file

with some of the math symbols le� around the edge of the image

as text (see Figure 3 for an example). Neither of these results is

fully comprehensible by human or computer standards. As such,

in the case of MEs that are stored in a textual document format that

has difficulty being converted to different mediums (e.g., PDFs), it

may end up being more efficient to render them as an image (e.g.,

snipping tool, screenshot, photo, document conversion, etc.) and

then convert those images to a math markup language, such as

LaTeX, using our MEDR model.

(a) Original page                                                     (b) Highlighted bounding boxes

The next theorem states that determining whether two
DFAs recognize the same language is decidable. Let

The next theorem states that determining whether two
DFAs recognize the same language is decidable. Let

This expression is sometimes called by symmetric
difference, i.e., L A L B L L( ) ∩ ( ) = (B) ∩ (A). The
symmetric difference is useful here because

( ) =L C Φ iff ( ) = ( ).L A L B

This expression is sometimes called by symmetric
difference, i.e., L A L B L L( ) ∩ ( ) = (B) ∩ (A). The
symmetric difference is useful here because ( )L C
= Φ iff ( ) = ( ).L A L B

To prove the theorem, we use Theorem 4. We construct
a new DFA from and , where accepts only thoseC A B C
strings that are accepted by either or but not by both.A B
Thus, if and recognize the same language, willA B C
accept nothing. The language of isC

To prove the theorem, we use Theorem 4. We construct
a new DFA from and , where accepts only thoseC A B C
strings that are accepted by either or but not by both.A B
Thus, if and recognize the same language, willA B C
accept nothing. The language of isC

EQDFA = { <A, B> | A and B are DFAs and L(A) = L(B) }EQDFA = { <A, B> | A and B are DFAs and L(A) = L(B) }

L(C) = ( L(A) n L(B) ) U (L(A) n L(B) )L(C) = ( L(A) n L(B) ) U (L(A) n L(B) )

__________

Figure 4: MEs in an IBEM page where inline (displayed, re-

spectively) MEs are underlined (in boxes, respectively)

Since our MEDRmodel is expected to detect and recognize MEs

within printed document images, the IBEM dataset was used for

training the FCOS model for ME detection, as this dataset contains

whole document images in scientific papers with bounding boxes

and formulas defined, which more closely matches the kind of doc-

uments which are used as input into Math IR systems (see Figure 4

for a sample).

�e IBEM dataset contains 160,000 formulas across 600 docu-

ments, with the labels containing bounding boxes, equivalent La-

TeX formula text, as well as whether an ME is isolated, embedded,

or split across lines or pages [3]. �e IBEM dataset is one of the

largest publicly available document image datasets available, and

is composed of open-source papers from the 2003 KDD Cup [9].

All of the document page images are located in a single directory,

the labels for those pages are stored in a JSON file, and there are al-

ready train, test, and validation sets defined as lists of page images

to be used for these different partitions. While there are places

where embedded formulas are split across lines or pages, isolated

images do not have an instance where they are split. Based on

this information, four classes were defined for ME detection on the

IBEM dataset: background, isolated, embedded, and embedded split.

Before using this dataset, the partitions are modified to only in-

clude image references in the original partition list in which both

the image and the associated annotations actually exist.

ME recognition models normally require having images of MEs

with associated ME text passed in as the input, rather than a doc-

ument image with MEs within them. �e IBEM dataset can be

adapted for this purpose, but there are already datasets that exist

which contain numerous ME images and have equivalent markup

language transcripts, particularly the im2latex series of datasets,

which was created for use in OpenAI’s image to LaTeX system

[6]. �e 8<2;0C4G series of datasets is comprised of ME images and

equivalent LaTeX markup transcripts (see Figure 5 for a sample).

\hat{\omega_{\bar{s} | 2}^{\phantom{\mu | A } = 0.} 1

Figure 5: A sample from the im2latex-100k dataset with a

ME image extracted with a bounding box and an equivalent

LaTeX transcript

�is series of datasets contains over 100,000 ME images and

LaTeX transcripts per dataset, extracted from open-source docu-

ments in the 2003 KDD cup [9]. As these datasets have specifi-

cally been created with image to LaTeX models in mind, and are

commonly used for ME recognition, these datasets were used for



FCOS and Encoder-Decoder for Visual Math Formula Detection and Recognition ICMIP 2024, April 20–22, 2024, Osaka, Japan

Figure 6: �e inputs and outputs of the FCOS and Image2Latex models and how they feed into each other in the prediction

phase, taking in document images as input and getting LaTeXMEs as output for the combined model. For training, document

images, bounding boxes, and class labels from the IBEM dataset are passed through the FCOS model, while ME images and

LaTeX transcripts are through the Image2Latex model

training the Image2Latex model for this problem, specifically the

im2latex-100k and im2latex-230k datasets [6]. �ese datasets con-

tain approximately 100k and 230kME images and LaTeX transcripts

respectively, and are arranged so that there is a single image repos-

itory, a JSON file which contains the vocabulary used for the La-

TeX formulas, and separate CSV files for partitions to be used for

training, testing, and validation. �e reason we have chosen these

two datasets is that the Image2Latex model is already setup to be

able to use the 100k dataset that is commonly used for ME recog-

nition training, and the 230k dataset is the most recent and largest

dataset in the im2latex series, which provides more data for our

MEDR model to learn from.

�e target for training is 100 epochs for the ME detection and

ME recognition models, but if a model starts overfi�ing or if the

loss starts leveling out, then no more training is needed. �e train-

ing and prediction process for these models is shown in Figure 6.

�e optimizer which was used for the ME detection phase was

�30<with a set learning rate, since Adam is an effective optimizer

that is commonly used and works well for a wide variety of prob-

lems [15]. For the ME recognition phase Adam with weight decay

(AdamW) is the optimizer used [10]. Training is done on a NVIDIA

A100-SXM4-80GB GPU for both models.

5 PERFORMANCE MEASURES

For ME detection, precision, recall, and mean average precision

(<�% ) are used as the error metrics. Bilingual evaluation under-

study (�!�* ), edit distance, and exact match for both the textual

math formulas and their resulting images are applied to measure

recognition effectiveness [34]. While there are not any currently

existing benchmarks for printed ME detection and recognition,

particularly in terms of MEs rather than math symbols, the per-

formance measures can be compared against some of the other

models performing similar tasks, as many of them use the same

or similar metrics with their models [27, 32]. Frames per second

(�%() is used to measure the speed of the models.

Defining real time speed in a computer vision context, however,

is something which varies depending on the situation. Typically,

having real time speed is defined as an algorithm processing input

at the same rate of the source supplying the images. For camera

and video processing, this is usually around 30 frames per second

(FPS), but for doing text detection, when training on the ICDAR

2015 dataset an FPS rate of 8.9 was considered be�er than most

state-of-the-art results, with 13.2 being the highest FPS a model

achieved [31]. �e images in the ICDAR 2015 dataset are 720 pix-

els wide and 1280 pixels high. In comparison, images in the IBEM

dataset are 1447 pixels wide and 2048 pixels high, 3.22 times the

size of images in the ICDAR 2015 dataset. Since most ME detec-

tion methods focus on increasing accuracy, there are li�le to no

recorded efficiency measurements in terms of speed that can be

found. However, while natural language text detection is not the

same as ME detection, the tasks are similar enough to be used as

a feasible target and benchmark in terms of speed. Assuming that

the speed of processing images is proportional to the image size,

an equivalent real world speed using ME detection on the IBEM

dataset would be approximately 2.76 FPS, with an FPS of 4.10 be-

ing considered state-of-the-art. For ME recognition, on the ICDAR

2013 dataset having a speed of 20 FPS is considered state of the art,

with the next best state of the art result topping out at 5.66 FPS [2].

As such, an FPS of 5.66 is used as a benchmark for a real time speed

with a ME recognition model. It is the prediction speed which is

used to assess whether the model is fast enough to run on real-

world systems rather than the training speed, as training can be

done offline, but prediction is done in sync with user input.

6 EXPERIMENTAL RESULTS

A�er training the FCOS and Image2Latex models, these models

are capable of learning from the data and return viable results. As

seen in Figure 7, the <�% values started out low, then spiked up

and plateaued almost immediately, with a similar outcome with

themean interpolated precision and mean interpolated recall. In the

same time frame, the ;>BB started out larger with a high rate of

change and then started to level out around epoch 30 with a ;>BB

of around 0.65, which demonstrates that the model was able to

learn during the training phase.
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Figure 7: Graphs depicting the training loss, mAP, mean interpolated precision, and mean interpolated recall scores over 100

epochs

Higher precisionmeans that an algorithm retrieves more results

that are relevant than non-relevant ones, and high recall indicates

that an algorithm extracts a higher proportion of the relevant re-

sults. However, there is a tradeoff between precision and recall, so

raising one usually lowers the other. Since<�% computes the av-

erage precision, which measures the area under the precision-recall

curve, it is influenced by both precision and recall. For the valida-

tion metrics when training, the precision values get higher over

time, while the recall values shrink, which is reflected in the mAP

graph depicted in Figure 7. It makes sense that the precision values

get higher over time, since the model would have learned from the

training set over time to return more accurate results. �e fact that

the recall gets lower may simply reflect the tradeoff between preci-

sion and recall, and specifically may be indicating that the longer

the model trains the tendency is for the model to select more spe-

cific prediction, which would return less ME predictions overall,

but those predictions would be more precise. Table 1 shows that at

the interpolated precision and recall at 1, 5, and 10, respectively,

the precision is over 0.9, which indicates greater than 90% preci-

sion, while recall is around 10% to 15% for the first 10 predictions.

�e reason that the recall is so low is that there is a large num-

ber of correct ME equations to retrieve and only a limited number

are returned, but the high precision and the fact that the precision

and recall are higher with more results returned indicate that this

model performs well for ME detection, as it reliably returns accu-

rate predictions over multiple images.

Table 1: Interpolated precision and recall for FCOS for the

first retrieved ME prediction, the first five predictions, and

the first 10 predictions

Measures @1 @5 @10

Precision 0.9056 0.9894 0.9941

Recall 0.0920 0.1202 0.1678

6.1 Performance Using the im2latex-100k
Dataset

Some observations can bemade about the results as depicted in Fig-

ures 8a and 8b, which show some of the predictions made for ME

bounding boxes and classifications on the IBEM dataset with the

ME detection model. �e predictions on the images in Figure 8a

are all correct, whereas the image prediction in Figure 8b is mostly

correct, but is missing one of the isolated images and misclassi-

fies one of the 4<143343 B?;8C MEs as just an embedded ME. �is

pa�ern continues with the rest of the predictions generated by the

model, with all or almost all of the bounding boxes and ME classifi-

cation being correct with just a few missing or misclassified. Most

of these misclassifications seem to occur with the 4<143343 B?;8C

class, so more accurate classification could be achieved by taking
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out that class altogether and adding those MEs to the 4<143343

class. If split MEs do need to be identified, then their locations in

the document images can be used as an indicator. Part of the rea-

son that not all of the MEs are being returned may also be that

the threshold used for counting a detected ME as valid may be too

strict, so it is possible the model would detect a greater number of

correct MEs, though changing the threshold to be too lowmay also

enable invalid detections to be returned as predictions more o�en.

For ME recognition, a�er training on the im2latex-100k dataset

for 200 epochs, the model did not perform as well as the FCOS

model did. Table 2 shows the results of passing the im2latex-100k

test set through the Image2Latex model. BLEU returned approx-

imately 17%, and the percentage of exact matches returned was

0.6%. �is means that there were almost no MEs which were re-

turned that was the exact same as the ground truth MEs. Edit dis-

tance performed a bit be�er, only needing about 2 edits on average

to change the ME predictions into the ground truth MEs. Having

a loss score of 1.6256 is not terrible, but it is not good either. While

the ME recognition model was able to learn some things from the

training set, it likely was not enough data for the model to learn

effectively for this task.

Table 2: Various performance measures for passing

im2latex-100k through the Image2Latex model

Measures Scores Measures Scores

BLEU 0.1703 Edit Distance 1.7033

Exact Match 0.0060 Loss 1.6256

6.2 Improved Performance Using the im2latex-
230k Dataset

Some of the prediction problems which the Image2Latex model

encountered are depicted in Figure 9a. �e predicted ME images

were rendered from the LaTeX transcript predictions. �e first pre-

dicted ME is mostly correct, having most of the same symbols, but

is missing some of the symbol’s present in the ground truth, such

as the closing bracket that is either missing or mis-wri�en as other

le�er symbols. For the second prediction, the first half of the pre-

dicted ME was correct, but a�er the equal sign, the same symbol is

repeated over and over again. �ese problems result from not see-

ing enough training examples to account for the MEs being passed

through the network. �ere have been cases previously where ME

recognition models were not able to process MEs which are longer

than the MEs being used in the training set, so this may be a result

of the recurrence or a�ention mechanisms.

Training Image2Latex on the im2latex-230k dataset, however,

had very different results as shown in Table 3. �e results, as

shown in the table, are significantly be�er than when trained on

the im2latex-100k dataset as shown in Table 2. BLEU returned

approximately 75% correspondence to the outputs, and the per-

centage of exact matches returned was 11%. While there are still

around 90% MEs generated that are not completely correct, this is

significantly be�er than barely any of them matching, as shown in

Table 2. Edit distance using the im2latex-230k dataset performed

a significantly be�er than im2latex-100k, only taking about 0.2 ed-

its on average to change the ME predictions into the ground truth

MEs. Having a loss score of 0.3 is actually really good. �e signif-

icantly enhanced result is due to the fact that the model was set

Table 3: Various performance measures for passing

im2latex-230k through the Image2Latex model

Measures Scores Measures Scores

BLEU 0.7454 Edit Distance 0.2189

Exact Match 0.1090 Loss 0.3006

to stop training when the training loss stopped decreasing. It is

also possible the model is overfi�ing to the training data, in which

case training for less time would have been be�er for performance.

Despite this, the model does have solid performance for ME recog-

nition, generating MEs which are completely match the ground

truth values or are close, as shown in Figure 9b, though there are

still a few cases where characters end up in a loop.

6.3 Processing Speed

In terms of proceeding speed, Table 4 shows that the ME detection

modelwith FCOS runs at around 6 FPS during the prediction phase,

and Image2Latex achieves around 10 FPS. As stated previously, an

FPS of 2.76 is a good real time speed for image text detection, and

5.66 FPS is a favorable real time speed for text recognition. FCOS

with Image2LaTeX runs significantly faster than these speeds. As

such, the MEDR model meets the design goal of operation at real

time speeds, and performs significantly faster in terms of general

text detection and recognition.

Table 4: Approximate FPS for the ME detection and ME

recognition models for the prediction phase

Model Processing Speed Model Processing Speed

FCOS ∼6.007 FPS Image2Latex ∼10.097 FPS

7 CONCLUSION

�e novel use of FCOS for ME detection turned out producing ME

predictions with ideal speed and accuracy. For ME recognition, the

Image2Latex model ended up producing admirable results in terms

of accuracy and speed, even if it does not outperform current state

of the art. Using these two models together yields a system capa-

ble of converting images containing MEs and translating the MEs

directly to LaTeXmarkup. Using more data samples for training re-

sulted in be�er predictions. Since the MEDR model produces good

results at real time speeds, especially with the detection portion,

this model is valuable in Math IR methods and other platforms.

Being able to reliably extract MEs from images would allow

more specified math results obtained in regards to math source

searches and give greater access to relevant math information for

use of both math learners and experts alike. �ere are a lot of

sources of math information that are either in scanned documents,

physical documents, or contained in images, and if these sources are

unable to be converted into a text-based format, conventional Math

IR systems will not be able to utilize these information sources. Ne-

glecting to take into account visual sources of math information

with Math IR systems would leave out many viable sources of in-

formation that ordinary users and experts can learn from or are di-

rectly relevant to what they are working on. As such, being able to

convert these sources of information to a viable format would give

users access to more information to learn from and provide more

documents for Math IR systems to utilize to help provide users

with more relevant information to what they are searching for.



ICMIP 2024, April 20–22, 2024, Osaka, Japan Wheelwright and Ng

(a) Fully-corrected Predictions (b) Partially-corrected Predictions

Figure 8: Two samples from the results of training on the FCOS model for 100 epochs and generating predicted ME bounding

boxes from document images passed through the model. �e images in Figure 8a have all of the bounding boxes and ME class

labels correctly identified, whereas the prediction in Figure 8b has failed to locate one of the isolated MEs in the center and

only located one half of the split ME near the bottom of the page, which are shown in the dashed bounding boxes

(a) ME images and LaTex transcripts from im2latex-100k (b) ME images and LaTex transcripts from im2latex-230k

Figure 9: Two examples of ground truthME images and LaTeX transcripts from the im2latex-100k and im2latex-230k datasets,

respectively and the prediction errors made on those same ME images
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