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ABSTRACT

Many data sources on the Internet contain math information within
them, and math is used throughout daily life while being impor-
tant for avenues of study and industry. Understanding math en-
ables better problem solving, pattern comprehension, quantifying
relationships, and making predictions of the future. Unfortunately,
less people have proficiency in math in recent times. To make the
situation worse, it is difficult to locate sources of relevant math
information, particularly when the searcher has little familiarity
with the subject area. Having Math Information Retrieval (IR) sys-
tems would help facilitate searches for math information and as-
sist learners with understanding math concepts. Sadly, extract-
ing mathematical notation in graphical representations into a stan-
dardized text-based format is a non-trivial task, since it is required
to detect unique symbols and spatial arrangements of mathemati-
cal characters, as well as formula positioning in documents. Fail-
ure to correctly detecting and recognizing visual math formulas
and their notation produce errors that alter the entire meaning of
the resulting formulas, or simply do not have the speed needed
for a real-time Math IR system. To address these problems, we
have developed a combined FCOS and Image2Latex framework to
detect and extract math formulas from images and translate them
accurately into LaTeX in a reasonable time frame.
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1 INTRODUCTION

Math is used in many parts of daily life, such as scheduling, cook-
ing, finances, measurements, and organization, and many fields of
study as well as industry utilize it. Indeed, math is considered a
universal language because it conveys quantitative properties and
values as well as how processes work, and exposure to math en-
ables a greater capacity for problem solving, pattern comprehen-
sion, quantifying relationships, and making predictions of the fu-
ture. There are many sources of information which contain math
information, both offline and on the Internet. Wikipedia, Math
Stack Exchange, scientific documents, textbooks and manuals all
contain math interspersed with the rest of the text. In many cases,
math information is stored in a textual format and typically in
some form of math markup language, such as LaTeX, MathML,
OpenMath, or OMDoc. Another common medium that math in-
formation is stored in are images or scanned documents, such as
photos or PDFs.

Sad to say, math proficiency levels for people around the world,
particularly in the United States, have dropped in recent years. In
the United States, the national average math proficiency in public
schools is 38% from 2023-24 [28]. According to the National Assess-
ment of Academic Progress, 12" graders in the US are considered
to be proficient in math if they have a score of 176 or higher, but the
grade average in 2019 was 150 [22, 23]. To make matters worse, it
is difficult for people to locate viable sources of math information
to either learn how to do math or familiarize themselves with an
area of study or research which involves math, especially if they
are not familiar with the subject. Such people would benefit from
having systems in place which facilitate searching and translation
of sources of math information. The area of study in Math infor-
mation retrieval (IR) appears to be the answer to the problem.

Math Information Retrieval (IR) systems are a relatively new
field of study, in which the systems involved organize, store, re-
trieve, and evaluate math information from document repositories.
These systems are useful for ordinary users, as well as experts, in
math or related fields to find relevant information and aid them in
increasing their understanding of math concepts. In order to build
arobust Math IR system, designers are expected to generate mean-
ingful rankings on math information and recommend documents
retrieved for math queries. Being able to extract math notation
from images would be beneficial, since many sources of math in-
formation are in a visual storage medium, whether that be a PDF
or image, or in a physical document, which would benefit from
being able to be converted from a physical to digital format to be
more accessible to Math IR systems and people online [24]. Con-
verting math equation (ME) images into textual format, however,
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is not a simple task. This is because natural language text is ar-
ranged in relatively easy to parse lines, with symbols aligned in a
single dimension, while math notation can appear both inline with
surround text or isolated from the rest of a document or image. To
further complicate matters, the same ME symbol can be used for
multiple purposes. For instance, the *’ in “a - b” could be refer-
ring to algebraic multiplication, matrix multiplication, or concate-
nation, and f o g can refer to the Hadamard product with matrix
multiplication or for function composition. Subscripts and super-
scripts alter the sizes and location of the symbols involved, and ME
symbols such as this are arranged in two spatial dimensions, i.e.,
horizontal and vertical, rather than one dimension. All of these fac-
tors are critical for accurately extracting a ME with the intended
meaning. Even when math formulas are correctly extracted from
images, most existing methods for ME extraction designed with
accuracy in mind rather than speed, with ScanSSD-XYc being the
only method that addresses speed at all when it comes to ME ex-
traction systems [7]. This is problematic because Math IR systems
require both reasonable accuracy and real time speeds to be useful
in real world contexts.

To address the problem mentioned above, we aim to create a
model that is capable of detecting and recognizing math formu-
las in images and converting them into a usable text-based format
with high efficiency and accuracy to be usable for any Math IR sys-
tem [8, 34]. For the proposed model, we specifically focus on ex-
tracting MEs from images of printed scientific documents, as this
is one of the most commonly existing and used mediums for ME
information stored on the Internet. To detect MEs in images, a
fully convolutional one-stage object detection (FCOS) model [29]
is adapted for identifying math formulas in images, creating labels,
and performing bounding box regression [30]. To recognize and
return MEs in the resulting bounding boxes as text, an encoder-
decoder architecture, called Image2Latex, is utilized to convert the
images into LaTeX markup language for use in other applications,
since LaTeX is a commonly used markup language that is used to
produce scientific papers, is fairly compact when it comes to repre-
senting math formulas, and already has existing open-source meth-
ods that can convert LaTeX to other markup languages, which is
good to use for Math IR systems [6, 26, 33].

2 RELATED WORK

While math expression detection and recognition (MEDR) are a
relatively new field of study, there has been related work in these
fields going back over a decade, and focuses mostly on extraction
from PDFs and images, and on extracting printed or handwrit-
ten MEs [16]. While there have been methods created to process
ME documents with non-machine learning (ML) techniques, ML
is used more frequently in recent times, with Support Vector Ma-
chines (SVM), K-Nearest Neighbor (KNN), Convolutional Neural
Network (CNN), and Long Short-Term Memory (LSTM) being the
most commonly used techniques [6, 11, 18].

Previous work which relates to ME detection typically utilizes
some form of CNN,; as this enables storing feature information and
scanning for features which indicate ME locations. There are sev-
eral variants of this particular method. For instance, the ScanSSD
and ScanSSD-Xyc slide windows over images using a CNN to select
ME bounding boxes [7, 20]. Another method uses segmentation to
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separate text from the rest of the document, and then applies a
SVM to determine if the segmented line is a ME, and the authors
of [5] classify MEs as inline or isolated. Moreover, Phong, et al.
[27] segment the text before running a CNN for feature extraction,
while Ohyama et al. [25] and Madisetty et al. [19] pair a U-Net
with a CNN and a Conditional Random Field (CRF) with a Recur-
rent Neural Network (RNN), respectively to detect the region of a
formula. Almost all of these approaches rely on using CNNs for
the task of ME detection. The detection model adapted by us, how-
ever, is Fully Convolutional One-stage Object Detection (FCOS),
which is a one-shot object detection that utilizes a Resnet-based
back bone combined with a Feature Pyramid Network to detect an-
chor free objects. All of these parts enable the network to perform
with a good balance of speed and accuracy, which would make
FCOS ideal to use for Math IR systems [35]. At present, there is no
current method which implements FCOS to detect math formulas.
Adapting this model, we provide a viable method for ME detection
that offers both precise results and efficient performance.

As for ME recognition, existing approaches typically use con-
ventional OCR with SVMs for classification [21]. Most methods
that were introduced later utilize some form of encoder-decoder
architecture, usually with a LSTM variant or attention included
[32, 33]. Some of the more recent methods use visual transformers
(ViT) as well [36]. The persistent use of encoder-decoder archi-
tectures for this problem indicates that this approach is effective
for this problem, and is one of the currently existing methods that
can be configured to convert images to text, something which is
needed for ME recognition. The majority of these methods have
some form of recurrence or attention in place to enable keeping
track of sequential and spatial data, due to the importance of con-
text for recognizing ME text in images [16].

Our model for ME recognition is based on the Image2Latex
encoder-decoder model [10]. We have implemented a recurrence
neural network and soft attention mechanism to recognize spatial
information and ME symbol ordering to achieve precise results
using math equations detected by FCOS. Since encoder-decoder
models in general going through a single pass through the model,
and this particular method uses beam search in the decoder to find
the optimal output sentence, the Image2Latex model retains good
speed as well as accuracy, which is beneficial to Math IR systems.

3 THE PROPOSED MATH EQUATION
DETECTOR AND RECOGNIZER

In this section, we present the design of our math equation detector
and recognizer.

3.1 The FCOS Math Equation Detector

Our ME detection model utilizes a Fully Convolutional One-stage
Object Detection (FCOS) framework to identify different kinds of
MEs and form bounding boxes around them. This model take
images of printed documents, locate MEs within them, and form
bounding boxes around them while identifying them as embedded
formulas, which are surrounded by text, or isolated formulas, i.e.,
formulas that are separated from the rest of the text, as well as if
they are split across multiple lines or pages. While FCOS has not
been used for detecting math equations before, a related method
called Faster R-CNN has been used for extracting MEs from images
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Figure 1: The network architecture of FCOS, where C3, C4, and C5 denote the feature maps of the backbone network and P3
to P7 are the feature levels used for the final prediction. H X W is the height and width of feature maps. ‘/s’ (s = 8, 16, ..., 128)
is the downsampling ratio of the feature maps at the level to the input image [29]

previously, so there is a precedent for using it as object detectors
for Math IR systems. FCOS in particular is both faster than most
methods we have come across while also being lightweight, rela-
tively new with iterated additions that provide improvements to
performance, and having high accuracy [13]. While this method
does not translate MEs in images into some form of markup lan-
guage, it is capable of locating them and identifying whether the
formula is separate from the rest of the text or split across lines.
Doing so makes it easier for those formulas to be extracted later
and used by ME recognition methods. The purpose of FCOS is to
extract MEs of different types from images with high accuracy and
speed so that it is a reliable approach to use as part of the overall
Math IR model that can operate in real time.

In terms of function, FCOS is an anchor-free object detector
which solves object detection problems in a per-pixel prediction
fashion, similar to segmentation. This method is primarily based
off of Fully Convolutional Networks (FCN) for semantic segmen-
tation. The model architecture has three sections as shown in Fig-
ure 1, the backbone, feature pyramid, and head.

Feature maps extracted by the backbone are fed into the Fea-
ture Pyramid Network (FPN) at different levels of scale, and the
different layers feed into each other from smallest to largest [17].
This enables robustness to scale variance and also allows choos-
ing plausible object locations at a smaller scale before narrowing
down on locations on a larger scale, which is more efficient. The
FCOS model is using Resnet50, a Convolutional Neural Network
(CNN) utilizing residual layers for the feature extraction backbone.
Resnet is a kind of DNN architecture which contains skip connec-
tions which link back from later layers to earlier ones, which en-
ables gradients to flow through them, something which is helpful,
since it prevents vanishing or exploding gradients that could cause
the network to fail [12]. The output of the FPN then go to a head
network. The head network has two main branches, one being
used for classification to predict class confidence and center-ness

of the bounding, and the other for regression to predict bounding
boxes [4]. The input is encoded as an image, as well as associated
classes for MEs and bounding boxes within those images, while the
output of training is the losses and the output of inference is pre-
dicted ME class types and bounding for the images passed through.
There are three loss functions used for the head, namely classifica-
tion loss uses focal loss, center-ness loss uses binary cross-entropy
error (BCE) loss, and regression loss uses IoU loss.

3.2 The Image2Latex Math Equation Recognizer

In order to perform ME recognition, an existing encoder-decoder
model, called Image2Latex, was implemented. This model is a
Seq2Seq model which utilizes an encoder-decoder architecture with
soft attention to translate math formula images into LaTeX markup
language!, as shown in Figure 2.

As shown in Figure 2, the encoder uses a CNN network that
extracts features from the images and encodes them with spatial
information, doing batch normalization so that the network runs
faster with more stability. The decoder is a RNN which is composed
of stacked bidirectional long short-term memory (BiLSTM) blocks
integrated with a soft attention mechanism. This will operate as a
language model so that the feature and spatial information in the
encoder output will be translated into a LaTeX sequence. Since all
parts of a ME influence the meaning and arrangement of the entire
ME, and MEs can end up being rather large, a mechanism to keep
track of and compare features to each other, such as attention or
recurrence, is needed for this particular problem [1]. Making pre-
dictions using an encoder-decoder architecture only necessitates
passing the input through the network once, so the ME recogni-
tion model will run fairly fast. Using a full-on transformer model,
which is a more recent method, can produce more accurate results,

!Many of the more recent methods for doing ME recognition rely on some form of
encoder-decoder architecture, since such a framework is effective for the purpose of
converting images to text.
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but transformers require more data to train properly and are com-
putationally costly, which are not practical for Math IR [14].

4 SOURCES OF DATA USED FOR ME
DETECTION AND RECOGNITION (MEDR)

For our MEDR model, the focus is specifically on images of printed
documents, since most of the math information readily available is
stored in some form of document, whether it be a scientific paper
or a textbook or in Wikipedia. Being able to convert document im-
ages containing MEs into text helps extracting math information
in documents. As shown in Figure 3, when MEs stored in PDFs are
copied and pasted in MS Word documents, the ME ends up being
converted to a one-dimensional line of text comprised of the sym-
bols in the ME that is not in the correct order. Moreover, subscripts
and superscripts are lost and the converted formula changes the
meaning of the original ME as shown in Figure 3.

‘f{x]:a0+§[aﬂcosm‘rx[.+bnsinnnxL}wn:l‘

PDF text pasted into MS Word

Image
PDF converted to MS Word

3 nix _mmx ‘
f(x)=ay+ Z (u,, cnsT+ b"smT)
n=1

nx . nax
I(x) =ap + (a" msT +b, !IHT)

PDF

Text

Figure 3: Math formula in a PDF document pasted in Mi-
crosoft Word and converted to Microsoft Word

For converting PDFs into Microsoft Word documents directly,
the original ME ends up being converted to an image within the file
with some of the math symbols left around the edge of the image
as text (see Figure 3 for an example). Neither of these results is
fully comprehensible by human or computer standards. As such,
in the case of MEs that are stored in a textual document format that
has difficulty being converted to different mediums (e.g., PDFs), it
may end up being more efficient to render them as an image (e.g.,
snipping tool, screenshot, photo, document conversion, etc.) and
then convert those images to a math markup language, such as
LaTeX, using our MEDR model.
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The next theorem states that determining whether two
DFAs recognize the same language is decidable. Let
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To prove the theorem, we use Theorem 4. We construct
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L(C) = @ iff L(4) = L(B).

(a) Original page

(b) Highlighted bounding boxes

Figure 4: MEs in an IBEM page where inline (displayed, re-
spectively) MEs are underlined (in boxes, respectively)

Since our MEDR model is expected to detect and recognize MEs
within printed document images, the IBEM dataset was used for
training the FCOS model for ME detection, as this dataset contains
whole document images in scientific papers with bounding boxes
and formulas defined, which more closely matches the kind of doc-
uments which are used as input into Math IR systems (see Figure 4
for a sample).

The IBEM dataset contains 160,000 formulas across 600 docu-
ments, with the labels containing bounding boxes, equivalent La-
TeX formula text, as well as whether an ME is isolated, embedded,
or split across lines or pages [3]. The IBEM dataset is one of the
largest publicly available document image datasets available, and
is composed of open-source papers from the 2003 KDD Cup [9].
All of the document page images are located in a single directory,
the labels for those pages are stored in a JSON file, and there are al-
ready train, test, and validation sets defined as lists of page images
to be used for these different partitions. While there are places
where embedded formulas are split across lines or pages, isolated
images do not have an instance where they are split. Based on
this information, four classes were defined for ME detection on the
IBEM dataset: background, isolated, embedded, and embedded_split.
Before using this dataset, the partitions are modified to only in-
clude image references in the original partition list in which both
the image and the associated annotations actually exist.

ME recognition models normally require having images of MEs
with associated ME text passed in as the input, rather than a doc-
ument image with MEs within them. The IBEM dataset can be
adapted for this purpose, but there are already datasets that exist
which contain numerous ME images and have equivalent markup
language transcripts, particularly the im2latex series of datasets,
which was created for use in OpenAl’s image to LaTeX system
[6]. The im2latex series of datasets is comprised of ME images and
equivalent LaTeX markup transcripts (see Figure 5 for a sample).

m==) \hat{\omega_ {\bar{s} | 2}"{\phantom{\mu|A} 1} =0.

Figure 5: A sample from the im2latex-100k dataset with a
ME image extracted with a bounding box and an equivalent
LaTeX transcript

This series of datasets contains over 100,000 ME images and
LaTeX transcripts per dataset, extracted from open-source docu-
ments in the 2003 KDD cup [9]. As these datasets have specifi-
cally been created with image to LaTeX models in mind, and are
commonly used for ME recognition, these datasets were used for
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phase, taking in document images as input and getting LaTeX MEs as output for the combined model. For training, document
images, bounding boxes, and class labels from the IBEM dataset are passed through the FCOS model, while ME images and

LaTeX transcripts are through the Image2Latex model

training the Image2Latex model for this problem, specifically the
im2latex-100k and im2latex-230k datasets [6]. These datasets con-
tain approximately 100k and 230k ME images and LaTeX transcripts
respectively, and are arranged so that there is a single image repos-
itory, a JSON file which contains the vocabulary used for the La-
TeX formulas, and separate CSV files for partitions to be used for
training, testing, and validation. The reason we have chosen these
two datasets is that the Image2Latex model is already setup to be
able to use the 100k dataset that is commonly used for ME recog-
nition training, and the 230k dataset is the most recent and largest
dataset in the im2latex series, which provides more data for our
MEDR model to learn from.

The target for training is 100 epochs for the ME detection and
ME recognition models, but if a model starts overfitting or if the
loss starts leveling out, then no more training is needed. The train-
ing and prediction process for these models is shown in Figure 6.

The optimizer which was used for the ME detection phase was
Adam with a set learning rate, since Adam is an effective optimizer
that is commonly used and works well for a wide variety of prob-
lems [15]. For the ME recognition phase Adam with weight decay
(AdamW) is the optimizer used [10]. Training is done on a NVIDIA
A100-SXM4-80GB GPU for both models.

5 PERFORMANCE MEASURES

For ME detection, precision, recall, and mean average precision
(mAP) are used as the error metrics. Bilingual evaluation under-
study (BLEU), edit distance, and exact match for both the textual
math formulas and their resulting images are applied to measure
recognition effectiveness [34]. While there are not any currently
existing benchmarks for printed ME detection and recognition,
particularly in terms of MEs rather than math symbols, the per-
formance measures can be compared against some of the other
models performing similar tasks, as many of them use the same
or similar metrics with their models [27, 32]. Frames per second
(FPS) is used to measure the speed of the models.

Defining real time speed in a computer vision context, however,
is something which varies depending on the situation. Typically,

having real time speed is defined as an algorithm processing input
at the same rate of the source supplying the images. For camera
and video processing, this is usually around 30 frames per second
(FPS), but for doing text detection, when training on the ICDAR
2015 dataset an FPS rate of 8.9 was considered better than most
state-of-the-art results, with 13.2 being the highest FPS a model
achieved [31]. The images in the ICDAR 2015 dataset are 720 pix-
els wide and 1280 pixels high. In comparison, images in the IBEM
dataset are 1447 pixels wide and 2048 pixels high, 3.22 times the
size of images in the ICDAR 2015 dataset. Since most ME detec-
tion methods focus on increasing accuracy, there are little to no
recorded efficiency measurements in terms of speed that can be
found. However, while natural language text detection is not the
same as ME detection, the tasks are similar enough to be used as
a feasible target and benchmark in terms of speed. Assuming that
the speed of processing images is proportional to the image size,
an equivalent real world speed using ME detection on the IBEM
dataset would be approximately 2.76 FPS, with an FPS of 4.10 be-
ing considered state-of-the-art. For ME recognition, on the ICDAR
2013 dataset having a speed of 20 FPS is considered state of the art,
with the next best state of the art result topping out at 5.66 FPS [2].
As such, an FPS of 5.66 is used as a benchmark for a real time speed
with a ME recognition model. It is the prediction speed which is
used to assess whether the model is fast enough to run on real-
world systems rather than the training speed, as training can be
done offline, but prediction is done in sync with user input.

6 EXPERIMENTAL RESULTS

After training the FCOS and Image2Latex models, these models
are capable of learning from the data and return viable results. As
seen in Figure 7, the mAP values started out low, then spiked up
and plateaued almost immediately, with a similar outcome with
the mean interpolated precision and mean interpolated recall. In the
same time frame, the loss started out larger with a high rate of
change and then started to level out around epoch 30 with a loss
of around 0.65, which demonstrates that the model was able to
learn during the training phase.
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Figure 7: Graphs depicting the training loss, mAP, mean interpolated precision, and mean interpolated recall scores over 100

epochs

Higher precision means that an algorithm retrieves more results
that are relevant than non-relevant ones, and high recall indicates
that an algorithm extracts a higher proportion of the relevant re-
sults. However, there is a tradeoff between precision and recall, so
raising one usually lowers the other. Since mAP computes the av-
erage precision, which measures the area under the precision-recall
curve, it is influenced by both precision and recall. For the valida-
tion metrics when training, the precision values get higher over
time, while the recall values shrink, which is reflected in the mAP
graph depicted in Figure 7. It makes sense that the precision values
get higher over time, since the model would have learned from the
training set over time to return more accurate results. The fact that
the recall gets lower may simply reflect the tradeoff between preci-
sion and recall, and specifically may be indicating that the longer
the model trains the tendency is for the model to select more spe-
cific prediction, which would return less ME predictions overall,
but those predictions would be more precise. Table 1 shows that at
the interpolated precision and recall at 1, 5, and 10, respectively,
the precision is over 0.9, which indicates greater than 90% preci-
sion, while recall is around 10% to 15% for the first 10 predictions.
The reason that the recall is so low is that there is a large num-
ber of correct ME equations to retrieve and only a limited number
are returned, but the high precision and the fact that the precision
and recall are higher with more results returned indicate that this

model performs well for ME detection, as it reliably returns accu-
rate predictions over multiple images.

Table 1: Interpolated precision and recall for FCOS for the
first retrieved ME prediction, the first five predictions, and
the first 10 predictions

|Measures || @1 | @5 | @10 |
0.9056 | 0.9894 | 0.9941 |
0.0920 | 0.1202 | 0.1678 |

Precision
Recall

6.1 Performance Using the im2latex-100k
Dataset

Some observations can be made about the results as depicted in Fig-
ures 8a and 8b, which show some of the predictions made for ME
bounding boxes and classifications on the IBEM dataset with the
ME detection model. The predictions on the images in Figure 8a
are all correct, whereas the image prediction in Figure 8b is mostly
correct, but is missing one of the isolated images and misclassi-
fies one of the embedded split MEs as just an embedded ME. This
pattern continues with the rest of the predictions generated by the
model, with all or almost all of the bounding boxes and ME classifi-
cation being correct with just a few missing or misclassified. Most
of these misclassifications seem to occur with the embedded split
class, so more accurate classification could be achieved by taking
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out that class altogether and adding those MEs to the embedded
class. If split MEs do need to be identified, then their locations in
the document images can be used as an indicator. Part of the rea-
son that not all of the MEs are being returned may also be that
the threshold used for counting a detected ME as valid may be too
strict, so it is possible the model would detect a greater number of
correct MEs, though changing the threshold to be too low may also
enable invalid detections to be returned as predictions more often.

For ME recognition, after training on the im2latex-100k dataset
for 200 epochs, the model did not perform as well as the FCOS
model did. Table 2 shows the results of passing the im2latex-100k
test set through the Image2Latex model. BLEU returned approx-
imately 17%, and the percentage of exact matches returned was
0.6%. This means that there were almost no MEs which were re-
turned that was the exact same as the ground truth MEs. Edit dis-
tance performed a bit better, only needing about 2 edits on average
to change the ME predictions into the ground truth MEs. Having
a loss score of 1.6256 is not terrible, but it is not good either. While
the ME recognition model was able to learn some things from the
training set, it likely was not enough data for the model to learn
effectively for this task.

Table 2: Various performance measures for passing
im2latex-100k through the Image2Latex model

| Measures | Scores || Measures | Scores |
BLEU 0.1703 || Edit Distance | 1.7033
Exact Match | 0.0060 || Loss 1.6256

6.2 Improved Performance Using the im2]latex-
230k Dataset

Some of the prediction problems which the Image2Latex model
encountered are depicted in Figure 9a. The predicted ME images
were rendered from the LaTeX transcript predictions. The first pre-
dicted ME is mostly correct, having most of the same symbols, but
is missing some of the symbol’s present in the ground truth, such
as the closing bracket that is either missing or mis-written as other
letter symbols. For the second prediction, the first half of the pre-
dicted ME was correct, but after the equal sign, the same symbol is
repeated over and over again. These problems result from not see-
ing enough training examples to account for the MEs being passed
through the network. There have been cases previously where ME
recognition models were not able to process MEs which are longer
than the MEs being used in the training set, so this may be a result
of the recurrence or attention mechanisms.

Training Image2Latex on the im2latex-230k dataset, however,
had very different results as shown in Table 3. The results, as
shown in the table, are significantly better than when trained on
the im2latex-100k dataset as shown in Table 2. BLEU returned
approximately 75% correspondence to the outputs, and the per-
centage of exact matches returned was 11%. While there are still
around 90% MEs generated that are not completely correct, this is
significantly better than barely any of them matching, as shown in
Table 2. Edit distance using the im2latex-230k dataset performed
a significantly better than im2latex-100k, only taking about 0.2 ed-
its on average to change the ME predictions into the ground truth
MEs. Having a loss score of 0.3 is actually really good. The signif-
icantly enhanced result is due to the fact that the model was set
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Table 3: Various performance measures for passing
im2latex-230k through the Image2Latex model

| Measures | Scores || Measures | Scores |
BLEU 0.7454 || Edit Distance | 0.2189
Exact Match | 0.1090 || Loss 0.3006

to stop training when the training loss stopped decreasing. It is
also possible the model is overfitting to the training data, in which
case training for less time would have been better for performance.
Despite this, the model does have solid performance for ME recog-
nition, generating MEs which are completely match the ground
truth values or are close, as shown in Figure 9b, though there are
still a few cases where characters end up in a loop.

6.3 Processing Speed

In terms of proceeding speed, Table 4 shows that the ME detection
model with FCOS runs at around 6 FPS during the prediction phase,
and Image2Latex achieves around 10 FPS. As stated previously, an
FPS of 2.76 is a good real time speed for image text detection, and
5.66 FPS is a favorable real time speed for text recognition. FCOS
with Image2LaTeX runs significantly faster than these speeds. As
such, the MEDR model meets the design goal of operation at real
time speeds, and performs significantly faster in terms of general
text detection and recognition.

Table 4: Approximate FPS for the ME detection and ME
recognition models for the prediction phase

| Model | Processing Speed || Model
| FCOS | ~6.007 FPS

| Processing Speed |
~10.097 FPS |

| | Image2Latex |

7 CONCLUSION

The novel use of FCOS for ME detection turned out producing ME
predictions with ideal speed and accuracy. For ME recognition, the
Image2Latex model ended up producing admirable results in terms
of accuracy and speed, even if it does not outperform current state
of the art. Using these two models together yields a system capa-
ble of converting images containing MEs and translating the MEs
directly to LaTeX markup. Using more data samples for training re-
sulted in better predictions. Since the MEDR model produces good
results at real time speeds, especially with the detection portion,
this model is valuable in Math IR methods and other platforms.
Being able to reliably extract MEs from images would allow
more specified math results obtained in regards to math source
searches and give greater access to relevant math information for
use of both math learners and experts alike. There are a lot of
sources of math information that are either in scanned documents,
physical documents, or contained in images, and if these sources are
unable to be converted into a text-based format, conventional Math
IR systems will not be able to utilize these information sources. Ne-
glecting to take into account visual sources of math information
with Math IR systems would leave out many viable sources of in-
formation that ordinary users and experts can learn from or are di-
rectly relevant to what they are working on. As such, being able to
convert these sources of information to a viable format would give
users access to more information to learn from and provide more
documents for Math IR systems to utilize to help provide users
with more relevant information to what they are searching for.
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Figure 8: Two samples from the results of training on the FCOS model for 100 epochs and generating predicted ME bounding
boxes from document images passed through the model. The images in Figure 8a have all of the bounding boxes and ME class
labels correctly identified, whereas the prediction in Figure 8b has failed to locate one of the isolated MEs in the center and
only located one half of the split ME near the bottom of the page, which are shown in the dashed bounding boxes
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Figure 9: Two examples of ground truth ME images and LaTeX transcripts from the im2]latex-100k and im2latex-230k datasets,
respectively and the prediction errors made on those same ME images
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