Using Online Data Sources to Make Query Suggestions for Children

Pera Maria Soledad a and Ng Yiu-Kai b,*

a Department of Computer Science, Boise State University, Boise, Idaho 83725, U.S.A.
E-mail: solepera@boisestate.edu

b Computer Science Department, Brigham Young University, Provo, Utah 84602, U.S.A.
E-mail: ng@compsci.byu.edu

Abstract. Existing popular web search engines have been widely used for retrieving information of interests by their users and offer query suggestions (QS) to assist them in exploring the wealth of information online. These search tools, however, are designed without any specific group of users in mind and thus are not tailored towards the specific needs of children, which can diminish their usability and design objectives when they are employed by children. Given the increasing use of the Web for educational and entertainment purposes by children, there is an urgent need to help them search the Web effectively. In this paper, we present a QS module, denoted CQS, which assists children in finding appropriate query keywords to capture their information needs by (i) analyzing content written for/by children, (ii) examining phrases and other metadata extracted from reputable (children’s) websites, and (iii) using a supervised learning approach to rank suggestions that are appealing to children. CQS offers suggestions with vocabulary that can be comprehended by children and with topics of interest to them. We conducted a number of empirical studies using keyword queries initiated by children, besides gathering feedback on the usefulness of CQS-generated suggestions through crowdsourcing. The performance evaluation of CQS revealed the effectiveness of the methodology of CQS. In addition, it demonstrated that CQS-generated suggestions were preferred over suggestions provided by Bing and Yahoo! and at least as comparable to queries suggested by Google.

Keywords: Query suggestion, children, backpropagation, phrase generation, probabilistic models

1. Introduction

Children regularly use search engines as the starting point in their quest for online information [29]. Unfortunately, their search experiences can be negatively influenced by their lack of skill in formulating adequate search queries. While query suggestion (QS) modules designed for widely-used search engines facilitate query creation for a general audience, they were never designed from a child’s perspective. (The query suggestions generated by known web search engines for two sample queries created by Utah’s elementary school children, as shown in Table 4, illustrate that suggestions made by known search engines do not necessarily target children’s interests and/or information needs.) A survey conducted by McAfee, a software security company, in 2013 shows that children spend an average of 6.5 hours a day online1, making them active web users. Furthermore, as reported by Gossen [12], the percentage of children who use the Internet “increases with age from 21% by six years old to 98% by thirteen years old,” that explains why Google plans to create a children version of its search engine2. With the growth of this segment of Internet users, there is a demand for the design and develop-

2http://www.usatoday.com/story/tech/2014/12/03/google-products-revamped-for-under-13-crowd/19803447/
moment of QS modules specifically tailored towards children.

Query suggestions made by existing general-purpose QS modules may require advanced reading level on complex topics which children have difficulty understanding and appreciating them [5]. The discrepancies between children’s and adults’ search behaviors/interests were further verified by the study conducted by Bilal & Kirby [4] and another one by Torres et al. [27] who analyzed AOL query logs and the DMOZ kids/teens directory and have identified significant differences between the set of commonly-created queries for a general audience and queries that seek information on children’s content, such as average length of queries (3.2 words for children versus 2.5 for regular users). Even though search engines designed specially for children, such as Safesearchkids.com, Kidsclick.org, and Kidrex.org, exist, majority of them are not equipped with a QS module. To aid children with their quest for information that satisfy their needs, we have developed CQS, a QS module that offers query suggestions for children who are individuals of age up to twelve-year old. CQS is the result of the study conducted to analyze the validity of exploiting resources explicitly targeting children (from content written to and for children, to hierarchy of categories that captures concepts/themes of interest to children) to create suggestions that are diverse, free from adult-based bias, and appealing to children. These suggestions capture the intended information needs of children.

Existing query recommendation/transformation techniques attempt to improve a submitted keyword query through word replacements, insertions, and deletions [7]. CQS, on the other hand, minimizes the effort required by a child in specifying his/her search intent by providing query recommendations, which are N-gram suggestions, that yield the suffix to the user’s initial keyword query. Note that suggestions made by CQS for a child’s query Q, which include Q as prefix, follow the common design methodology of existing web search engines, such as Google, Yahoo!, and Bing. Instead of reformulating Q, all of these popular engines offer suggestions by appending keywords to the end of Q. The same applies to children search engines, including Kidzsearch.com, a leading kids’ safe search engine.

CQS relies on bigrams extracted from multiple reputable websites (as discussed in Section 3) that include content written for or by children, and is different from existing QS modules targeting children [28, 29] which rely on tags assigned by adults to describe children/teenager’s websites for making query suggestions. CQS also considers bigrams extracted from Simple.Wikipedia.com, denoted SimpWiki, which is a small, evolving archived collection of documents written in basic English. SimpWiki targets young readers and adults learning English as a second language. Based on the content, which includes simple vocabulary and is written so that children can understand, CQS can suggest meaningful and useful phrases as queries to children.

2. Related Work

Query Suggestion in itself is a non-trivial task for web search engine designers, since it requires disambiguating user’s search intent using very few query keywords, i.e., 2.8 words on the average [14]. If a QS module is designed for addressing children’s information needs, as opposed to a general, i.e., more mature, audience, then it has to analyze children’s search intents and behaviors, which are different from those of adults [9]. In fact, children struggle with limited vocabulary to pose their queries to search engines and have difficulty in issuing appropriate search keywords [8].

While research on QS systems targeting children is limited, research work on QS systems for a general audience is rich and well-documented. Existing QS approaches for a general audience [23] either adopt probabilistic methodologies, examine query logs, apply strategies based on random walks, consider concepts/categories, i.e., subject areas of interest, or rely on ontologies, to name a few.

In suggesting queries for young audiences, Torres et al. [28] introduce a QS module based on tags created at Delicious.com. The team constructs a bipartite graph using tags and their corresponding URLs, and suggests queries as a result of a random walk on the bipartite graph that is biased towards children’s content. Later research [29] presents further enhancements based on topical and language modeling fea-

1 An earlier version of CQS, which includes the initial design and assessment of CQS, was published in [26].

2 We examined hundreds of suggestions made by Google, Yahoo!, and Bing, and all of them were generated by a completion-based approach.
tures, such as topic-sensitive Page Rank and children-related vocabulary distribution, to more effectively suggest queries for children. Similar to the approaches described above, CQS does not rely on query logs to generate suggestions. CQS, however, differs from these QS modules for children, since, instead of using a bipartite graph, CQS considers diverse features that aim to precisely capture children’s intents. More importantly, CQS relies on content written for/by children to suggest queries as opposed to relying on tags that are often provided by adults and may be poorly defined due to the lack of quality control on user tags and thus can be inherently noisy [7].

Eickhoff et al. [10] present a two-step query expansion strategy for children. Given a query Q, it retrieves top-n results in response to Q from various search engines and uses tags assigned to each retrieved web page at Delicious as keywords to expand Q. In addition, the name of high-level semantic categories (inferred from Wikipedia and the DMOZ.org taxonomy) associated with these tags are treated as expansion terms as well, which are non-stop keywords that can be preceded by a sequence of connection words. While CQS generates cohesive phrases to guide users in formulating queries that capture their information needs, the approach in [10] simply provides tag-related terms to add to the given query to locate children-related content.

To improve children’s web searches, Gyllstrom et al. [13] develop a link-based algorithm which finds web pages for children. The algorithm suggests web pages that include simple vocabulary terms using SimpWiki. While CQS is not designed to search for web pages for children, we share a similar design methodology, i.e., providing simple suggestions that are suitable for kids. Inspired by using SimpWiki, we also extract some of the keywords for suggestions from SimpWiki.

Karimi et al. [17] also focus on facilitating information discovery tasks for children by offering query suggestions. Similar to their proposed strategy, CQS also considers specific children vocabulary and popularity of terms among children texts. However, the QS strategy in [17] depends on Ubersuggest to identify candidate suggestions, which limits the type of suggestions that can be generated. CQS, on the other hand, relies on n-grams to generate suggestions on-the-fly.

Vidinly and Ozcan [30] adopt a query-log based strategy to provide QS for K-12 students. Their approach examines query logs to identify potentials suggestions, which are then re-ranked based on a score computed by aggregating information pertaining to educational features, grade similarity, log session information, and path frequency algorithms. CQS, unlike its counterpart presented on [30] is not constrained by the existence of query logs created by children.

An initial assessment on children search engines that specifically target children was conducted by us. A number of these search engines do not offer query suggestions, which include Cyber Sleuth Kids7 and Dib Dab Doo8. Even though children engines such as Kidzsearch9, Safe Search Kids10 and Sweet Search11 offer query suggestions, these search engines are not necessarily tailored towards children. For example, consider the query “school” posted on the Kidzsearch engine. In response to the query, suggestions made by Kidzsearch include school uniform debate and school uniform statistics, neither of which is of particular interest to children.

Instead of considering simple bigram and n-gram phrases for query suggestions as CQS does, Yuefeng et al. [20] and Zhong et al. [31] apply text mining approaches to identify useful features and discover effective patterns in text documents, respectively. Relevance features are extracted from text documents in [20] using both positive and negative patterns, whereas effective patterns are mined from text documents in [31] by discovering specificities of patterns based on term distributions in the extracted patterns. Both of these approaches can be adopted by CQS for phrase construction during the children query suggestion process. The tradeoff between using simple n-gram frequencies adopted by CQS instead of discovering text patterns is that the former is simple and yet effective to accomplish the task of suggesting children queries.

\(^5\)A connection word [2] is either a preposition, a conjunction, or an article, which is treated as a stopword and is not counted as words in a suggestion but is retained to capture the precise meaning of a suggestion.

6 Ubersuggest.org
7 http://cybersleuth-kids.com/
8 http://www.dibdabdo.com/
9 http://www.kidzsearch.com/
10 http://www.safesearchkids.com
11 http://www.sweetsearch.com/
whereas the latter is more sophisticated but requires the adoption of more complicated text mining techniques.

3. Our Query Suggestion Methodology

Using bigrams extracted from readerviewskids.com, dogonews.com, stonesoup.com, timeforkids, and cmli-brary.org, etc. which are children’s websites, and well-established probabilistic/information retrieval models, CQS identifies each candidate suggestion for a user query \(Q \) and the closest categories to which \(Q \) belong. Table 1 shows the list of categories defined at well-known children’s websites and considered by CQS, which include stonesoup.com, dogonews.com, and kids.nationalgeographic.com. All the websites, from where various types of information extracted by CQS for generating query suggestions, are shown in Table 2.

For each candidate suggestion \(CS \), CQS computes its ranking score using a backpropagation (BP) model as presented in [21] on a number of features that capture the (i) likelihood of \(CS \), which identifies the search intent of an individual user based on the pre-defined category \(c \) to which \(Q \) belongs, (ii) \(N \)-gram frequency of \(CS \) based on the co-occurrence of bigrams in children’s documents in \(c \), (iii) vocabulary support of \(CS \), which is a suitability (i.e., kid-friendliness) measure of the keywords in \(CS \) for children, (iv) simplicity of phrase keywords in \(CS \), which determines the comprehensiveness of keywords in \(CS \) for children, (v) distribution of phrase keywords in children’s documents, which measures the likelihood of generating \(CS \) from documents addressing children content belonged, (vi) locality of \(CS \), which computes the degree of co-occurrence of bigrams in \(CS \) that are also in children’s documents and reflects the degree of cohesiveness of keywords in \(CS \), and (vii) children’s subject headings, which denote concepts, events, or names employed by librarians to categorize and index children’s books according to their themes. Phrases with top-ranked scores, which are simple and easy to read and better capture topics of interest to children, are offered as suggestions for \(Q \).

The overall process in making query suggestions by CQS for any child’s query is shown in Figure 1.

3.1. Candidate Suggestions

To determine the candidate suggestions for query \(Q \) with \(m \) (\(\geq 1 \)) words, i.e., terms, CQS examines the frequency of occurrence of words that follow the last word \(t_m \) in \(Q \) in a category \(c \). CQS identifies the frequencies of the top-five most frequently-occurred \(t_{m+1} \) words following \(t_m \), denoted \(f(t_m, t_{m+1}) \), in \(c \). For each one of the top-five words \(t_{m+1} \) in \(c \), CQS considers the next top-five \(f(t_{m+1}, t_{m+2}) \) frequency values and so on to determine candidate suggestions in different categories for \(Q \). Given that suggestions including seldom-occurring words are less likely to make it to the top ranking positions among the suggestions for \(Q \), CQS considers only the top-five most frequent words. In doing so, CQS speeds up its processing time without affecting its accuracy, a fact that has been empirically verified and discussed in [25].

To obtain the frequency distribution of bigrams that are used in generating candidate suggestions, CQS examines the consecutive word occurrences in the 82,000 documents belonged to the 16 categories extracted from children’s websites (see Table 2). Using word occurrences, CQS considers \(f(t_m, t_{m+1}) \) and creates phrases as suffixes of \(Q \), which yield candidate suggestions for \(Q \).

3.2. Category Likelihood

Given a query \(Q \), CQS computes the likelihood of keyword(s) in \(Q \) matching the contents of different categories. To determine the category likelihood of \(Q \), CQS employs the multinomial model, along with the well-known Bayes’ rule\(^{12}\), to compare the probability distribution of terms in different categories using the \(m \) (\(\geq 1 \)) terms in \(Q \) as shown below.

\[
P(c|Q) = \frac{\prod_{i=1}^{m} P(k_i|c)P(c)}{\sum_{c \in C} \prod_{i=1}^{m} P(k_i|C = c)P(C = c)}
\]

where \(C \) is the set of 16 pre-defined categories considered by CQS. \(P(c) \) is the probability of observing \(c \in C \), which is the ratio of documents in \(c \) to the total number of documents used to train the multinomial model, and \(P(k_i|c) \) is the probability that the \(i^{th} \) term in \(Q \) is observed in \(c \) as determined using the multinomial model defined below.

\[
P(k|c) = \frac{t_{k.c} + 1}{|c| + |V|}
\]

\(^{12}\)A detailed description on how to apply the popular Baye’s rule for category likelihood’s estimations can be found in [7].
Table 1
Categories defined and used by CQS based on information available at children websites, such as Dogonews.com and Kids.nationalgeographic.com

<table>
<thead>
<tr>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Adventure</td>
</tr>
<tr>
<td>(2) Animals</td>
</tr>
<tr>
<td>(3) Books</td>
</tr>
<tr>
<td>(4) Comedy</td>
</tr>
<tr>
<td>(5) Did You Know</td>
</tr>
<tr>
<td>(6) Education</td>
</tr>
<tr>
<td>(7) Entertainment</td>
</tr>
<tr>
<td>(8) Health</td>
</tr>
<tr>
<td>(9) History</td>
</tr>
<tr>
<td>(10) Music</td>
</tr>
<tr>
<td>(11) Nature</td>
</tr>
<tr>
<td>(12) Science</td>
</tr>
<tr>
<td>(13) Space</td>
</tr>
<tr>
<td>(14) Sports</td>
</tr>
<tr>
<td>(15) Video</td>
</tr>
<tr>
<td>(16) World</td>
</tr>
</tbody>
</table>

Table 2
Websites used by CQS for generating query suggestions for children

<table>
<thead>
<tr>
<th>Website</th>
<th>URL</th>
<th>Data Used by CQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spaghetti Book Club</td>
<td>www.spaghettibookclub.org/</td>
<td>Training phrases for BP</td>
</tr>
<tr>
<td>Mother Daughter & Son Book Reviews</td>
<td>motherdaughterbookreviews.com/</td>
<td>Training phrases for BP</td>
</tr>
<tr>
<td>American Literature: The Children’s Library</td>
<td>americanliterature.com/childrens-library</td>
<td>Bigrams</td>
</tr>
<tr>
<td>Reader Views: reviews, by kids, for kids</td>
<td>readerviewskids.com/reviews-by-age/</td>
<td>Bigrams</td>
</tr>
<tr>
<td>Dogo news: Fodder for young minds</td>
<td>www.dogonews.com/</td>
<td>Bigrams, Categories info. & likelihood, Naïve Bayes (NB) feature (kid class)</td>
</tr>
<tr>
<td>Time for Kids</td>
<td>timeforkids.com</td>
<td>Bigrams, NB feature (kid class)</td>
</tr>
<tr>
<td>Kidworld</td>
<td>www2.bconnex.net/~kidworld/</td>
<td>Bigrams, NB feature (kid class)</td>
</tr>
<tr>
<td>National Geographic: Kids</td>
<td>kids.nationalgeographic.com/kids/</td>
<td>Bigrams, Categories info., NB feature (kid class)</td>
</tr>
<tr>
<td>Simple English Wikipedia</td>
<td>Simple.Wikipedia.org</td>
<td>Bigrams, Phrase simplicity</td>
</tr>
<tr>
<td>Stone Soup: The Magazine by Young Writers and Artists</td>
<td>www.stonesoup.com/archive/stories</td>
<td>Bigrams, Categories info., Category likelihood, NB feature (kid class)</td>
</tr>
<tr>
<td>BookHive: Your Guide To Children’s Literature</td>
<td>www.cmlibrary.org/bookhive/books/</td>
<td>Bigrams, Categories info., Category likelihood</td>
</tr>
<tr>
<td>Reading Rockets</td>
<td>www.readingrockets.org/article/22366</td>
<td>Children’s vocabulary</td>
</tr>
<tr>
<td>BigIQkids</td>
<td>bigiqkids.com/SpellingVocabulary/Lessons/wordlist/SpellingFirstGrade.shtml</td>
<td>Children’s vocabulary</td>
</tr>
<tr>
<td>The Game Gal</td>
<td>http://www.thegamegal.com/printables/</td>
<td>Children’s vocabulary</td>
</tr>
<tr>
<td>Children’s Library</td>
<td>archive.org/details/iacul</td>
<td>NB feature (kid class)</td>
</tr>
<tr>
<td>Free Kids Books</td>
<td>freekidsbooks.org/</td>
<td>Bigrams</td>
</tr>
<tr>
<td>Mighty Books</td>
<td>mightybooks.com/</td>
<td>Category likelihood</td>
</tr>
<tr>
<td>Poetry for Kids</td>
<td>www.poetry4Kids.com</td>
<td>Bigrams</td>
</tr>
<tr>
<td>Gutenberg - Children’s Fiction</td>
<td>gutenberg.org/wiki/Children’s_Literature_(Bookshelf)</td>
<td>Bigrams</td>
</tr>
<tr>
<td>Randomly Selected 10,900 Wiki Documents</td>
<td>www.wikipedia.org/</td>
<td>NB feature (generic class)</td>
</tr>
</tbody>
</table>

where \(|c|\) is the number of non-stop, stemmed keywords in the training documents of \(c\), and \(|V|\) is the number of distinct non-stop, stemmed keywords in the 41,847 training documents extracted from children’s websites, and \(t_{fk,c}\) is the frequency of occurrence of term \(k\) in \(c\). Each candidate suggestion \(CS\) generated from \(c\) is assigned a category likelihood value of \(P(c|Q)\) which determines the likelihood of \(CS\) being from \(c\).

CQS treats the likelihood value computed in Equation 1 as one of the measures to determine the significance of \(CS\) and computes the category likelihood score of \(CS\) with respect to \(c\), denoted \(CL(CS,c)\), as

\[
CL(CS,c) = P(c|Q).
\]

If the probability of keywords in \(Q\) belonged to category \(c\) is high, then a candidate suggestion originated from \(c\) is treated as a more promising suggestion for \(Q\). CQS offers diverse query suggestions by considering various categories to which a given ambiguous query\(^{13}\) can be interpreted, which occur often.

\(^{13}\) A query is ambiguous if it has several possible meanings or interpretations. For example, the user who creates the keyword query
Candidate suggestions with recommended keywords in the same category as the original keyword in a given query are given preference by CQS.

3.3. Bigram and N-gram Frequencies

CQS relies on frequency distribution of bigrams within categorized documents to provide statistics of consecutive term occurrences in different categories, i.e., categories shown in Table 1. Recall that we define a term as a non-stopword keyword, which can be preceded by a sequence of connection words. For example, if a user enters the query keyword “information,” a suggestion “information about animals” makes more sense than the suggestion “information animals,” since in the latter case the relationship between the two keywords is missing. To obtain the frequency distribution of bigrams, CQS examines the consecutive term occurrences in the aforementioned 82,000 children’s documents (including SimpWiki documents), which are distributed across 16 categories.

We consider bigram frequency distribution of terms so that searching for related terms to a user query becomes more efficient than examining the frequencies of occurrence of sequences of more than two terms which increases the database size [2] for the document collection and significantly impacts the search time for terms related to a given query.

For a given query Q with the only keyword A, CQS generates candidate suggestions for Q by considering phrases, which are N-grams that includes A, such as ABC and $ABCD$ in which AB, BC, and CD are bigrams belonging to documents of the same category c. In generating phrases, CQS first considers all the frequent bigrams with the leading A. Based on the statistical data as to the frequency of occurrence of words B that follow A, and words that follow B, and so on, CQS concatenates the bigrams such that the 2^{nd} word in the preceding bigram is the 1^{st} word in the subsequent bigram to generate candidate suggestions. Thus, candidate suggestions are N-grams generated from across different categories, which are constructed based on the frequencies of word co-ocurrences. CQS computes the N-Gram frequency score for each candidate suggestion CS.

Given a CS, which is a sequence of words, t_1, \ldots, t_n ($n > 1$) extracted from documents in c, CQS computes the average (N-Gram) frequency of the sequence below.

$$f(t_1, t_2, \ldots, t_n) = \frac{f(t_1, t_2) + f(t_2, t_3) + \ldots + f(t_{n-1}, t_n)}{n - 1}$$

(4)

where $f(t_{i-1}, t_i)$, $1 < i \leq n$, is the frequency of the bigram made up by the word t_{i-1} followed by word t_i. A high N-gram frequency value of CS indicates that, in general, CS includes highly co-occurring bigrams in c and is treated as a favorable suggestion.

We consider a special case $f(t_{i-1}, \text{EOS})$, where EOS stands for “End Of Sentence”. $f(t_{i-1}, \text{EOS})$ captures the frequency with which term t_{i-1} is the last
term in a sentence. CQS considers all the terms following \(t_{i-1} \), including EOS\(^{14}\).

CQS applies \(N \)-gram frequency to determine which candidate suggestions should be considered favorable.

3.4. Children’s Vocabulary (CV)

CQS determines the “children-friendliness” of the vocabulary used in a candidate suggestion by consulting a vocabulary dictionary comprised of words appropriate for children that were downloaded from children’s word lists posted at a number of children’s websites, including, but not limited to Reading Rockets, Big IQ Kids, Game Gal (see Table 2 for details), as well as Library of Congress (Children’s Subheading). If a term in a suggestion is found in the dictionary, it is assigned the value of 1; otherwise, it is given the value of 0. For a candidate suggestion \(CS \) with multiple terms, CQS averages the values over all the terms in \(CS \) and obtains a single value between 0 and 1, which is called the Vocabulary score for \(CS \). A Vocabulary score of value closer to 1 indicates that the corresponding suggestion is child-friendly.

3.5. Simplicity of Phrase Keywords

As indicated earlier, one of the design goals of CQS is to offer query suggestions that children can understand, i.e., providing simple query suggestions. To determine the simplicity of a candidate suggestion \(CS \), CQS measures not only whether non-stop words in \(CS \) appear in children’s vocabulary (CV), but also how often they are seen in web pages that are written in a simple style. Given that texts consisting of short sentences and simple words are deemed easier to read than those including longer sentences and rare words [1], it is assumed that web pages written using basic English vocabulary and shorter sentences are tailored for children. SimpWiki is such a website that includes these web documents. Hence, we maintain a count of all the words in the entire collection of documents archived at SimpWiki.

A highly-ranked candidate suggestion \(CS \) can be partially affected by having keywords of \(CS \) in the SimpWiki documents. CQS considers the normalized frequencies for the occurrences of keywords in SimpWiki documents, with values between 0 and 1. A value closer to 1 for a non-stop keyword in a phrase indicates that the word is very often found in SimpWiki, which reflects its degree of simplicity. For example, the term “call” with a value 0.7 indicates that it is very commonly found in simple text documents, i.e., kid’s literature, as compared with “torrent”, which is assigned a value 0.000327, is less-frequently-used in kid’s simple text documents. The values of the keywords in \(CS \) are averaged, and the averaged value is referred as the simplicity score of \(CS \).

Simplicity vocabulary \(SV \) generated from SimpWiki differs from the children’s vocabulary \(CV \) introduced in Section 3.4. First, words in \(CV \) are not extracted from a collection of text documents. Instead, they are words that a child is expected to know. Second, a word in \(SV \) is simple but may be absent in \(CV \). In \(SV \), we include words, such as “Nintendo” (a video game console), “Transformer” (the name of a toy), or “Anna” (a character in a Disney movie), which are common terms of children’s folk culture, or terms that children are exposed to on a regular basis through mass-media, i.e., pop-culture. (See [22] for a detailed discussion on children’s exposure to terms/concepts addressing children’s folk, mass-media, and commercial cultures.) Terms in \(SV \) are simple based on their frequency of exposure to children. However, they are not commonly-occurred words in children’s literature, and hence are not part of, i.e., included in, \(CV \). Quite often to distinguish which one of the two candidate suggestions with all the words included in \(CV \) is more appealing to a kid, CQS must rely on their simplicity scores.

3.6. Distribution of Phrase Keywords in Children’s Documents

While simplicity of phrase keywords indicates how often keywords in a candidate suggestion \(CS \) are used by kids, it does not show whether the words are more likely to be found in documents pertaining to kids than in documents belonging to generic audience. To measure whether the word distribution of \(CS \) within kids’ documents is more likely than in a general-audience’s documents, CQS determines its Naïve Bayes (NB) classification score using the NB model. This score captures the probability distribution of keywords in \(CS \) that are also in children’s content. We trained a multinomial model as presented in [7] using 10,900

\(^{14}\)technically, EOS is not a term according to its definition. However, we consider the frequency of \(f(EOS|t_i) \) as an exceptional case in CQS.
documents randomly chosen from Wikipedia.org for the non-kid’s class and 25,115 documents from children’s websites, such as Dogo News, National Geographic for Kids, Time for Kids, etc. (see Table 2 for further details), for the kid’s class. Although the number of documents in kid’s class is more than the number in non-kid’s class, it does not create an imbalance, since documents in the former are comparatively shorter than the Wikipedia documents, resulting in a vocabulary smaller than the non-kid’s class. Given CS, the NB feature calculates the likelihood of CS using the Naïve Bayes’ rule.

3.7. Locality

By concatenating different bigrams in a category into an N-gram phrase, some undesirable phrases, such as “greek language french cyclist” which consists of frequent bigrams ‘greek language’, ‘language french’, and ‘french cyclist’, can be created and should be avoided. To eliminate their creations, CQS determines the locality score for each candidate suggestion CS. The locality score, as defined below, which is based on the Lennon Similarity measure [19], captures the likelihood of all the bigrams in CS being extracted from the same document(s) within a given category c, such that the smaller the number of documents in c in which all the bigrams in CS occur, the less likely CS is an appealing one.

$$\text{locality}(CS, c) = \frac{S_n}{\text{Min}\{S_{i_1i_2}, S_{n}, \ldots, S_{i_{n-1}i_n} - S_n\} + S_n}$$

(5)

where n is the number of terms in CS, l_i (1 ≤ i ≤ n) is a term in CS, S_n is the number of documents in c that include all the bigrams in CS, and S_{i_1j_1} (i, j > 0) is the number of documents in c that include bigram l_i l_j. It is easy to see that the more bigrams in CS, the fewer the number of documents that include all the bigrams in CS which yields the lower locality score. By using the Min function in Equation 5, we normalize the locality score of CS without penalizing CS based on its length.

3.8. Subject Headings

It has been shown [11] that searching information on the Web can be facilitated by searching for the topics of the desired information. With that in mind, we have designed CQS to examine the topics of information addressed in candidate suggestions and penalize suggestions that are associated with topics/themes that are not commonly associated with children content. To accomplish this task, CQS relies on Library of Congress Subject Headings (LCSH), which is a de facto universal controlled vocabulary and constitutes the largest general indexing vocabulary in the English language. LCSH, which are keywords or phrases that denote concepts, events, or names, are employed by librarians to categorize and index books according to their themes, i.e., topics. Examples of LCSH include “Fairy tales” and “Fear of the dark-Fiction”.

To identify, among the large number of LCSH, the subject headings that address topics of interest to children, we (i) examined LCSH assigned to 30,000 randomly selected books known to be suitable for children, which are with readability levels between the K-6 grades defined by publishers and (ii) generated a list of 10,749 children’s LCSH, denoted cLCSH, that describe text content in children’s literature using subject keywords.

In examining the topical information of a candidate suggestion CS, CQS employs Equation 6 to determine the degree of closeness of CS and children’s subject headings, denoted SHScore. To compute the SHScore feature score of CS, CQS compares CS against each subject heading SH in cLCSH, and chooses the highest similarity value between CS and the subject headings as the value that quantifies the degree to which CS addresses themes suitable for children. The degree of similarity between CS and SH is computed using the word correlation factor (wcf).\(^{15}\)

\(^{15}\)wcf reflects the degree of similarity between any two words based on their (i) frequencies of co-occurrence and (ii) relative distances in a collection of Wikipedia documents. CQS relies on wcf, as opposed to WordNet-based similarity measures, since it has been empirically verified that the former correlates with human assessments on word similarity more accurately than the latter [24].
[24] of each (non-stop, stemmed) word in \(CS \) with respect to (non-stop, stemmed) words in \(SH \):

\[
SHScore(SH, CS) = \max_{SH \in cLCSH} \min_{i=1}^{n} \left(\frac{1}{n} \sum_{j=1}^{m} wcf(CS_i, SH_j) \right)
\]

where \(n \) (\(m \), respectively) is the number of distinct (non-stop, stemmed) words in \(CS \) (\(SH \), respectively), \(CS_i \) (\(SH_j \), respectively) is a (non-stop, stemmed) word in \(CS \) (\(SH \), respectively), and \(wcf(CS_i, SH_j) \) is the correlation factor of \(CS_i \) and \(SH_j \).

The \(\min \) function in Equation 6 imposes a constraint on summing up the correlation factors of words in the description of \(CS \) and \(SH \). Even if a word in the description of \(CS \) (i) matches exactly one of the words in \(SH \) and (ii) is similar to some of the remaining words in \(SH \), which yields a value greater than 1.0, CQS limits the sum of their similarity measure to 1.0, which is the word-correlation factor of an exact match. This constraint ensures that if \(CS \) contains a dominant word \(w \) in its description which is highly similar to a few words in \(SH \), \(w \) alone cannot dictate the content resemblance value of \(CS \) with respect to \(SH \). Words in \(SH \) that are similar to most of the words in \(CS \) should yield a greater \(SHScore \) value than the \(SHScore \) value of words in \(SH \) that are similar to only one dominant word in \(CS \). The \(\max \) function, on the other hand, ensures that the \(SHScore \) of \(CS \) reflects the highest similarity of \(CS \) among all the subject headings which most effectively captures the topics/theme of \(CS \).

A candidate suggestion \(CS \) with a high \(SHScore \) illustrates that \(CS \) is closely related to contents in children’s literature and hence is treated by CQS as more favorable compared with other suggestions with lower \(SHScore \).

Example 1 Consider a candidate suggestion “british movies”, which is generated by CQS in response to the user query “british.” In comparing against the subject headings *digestion, finance person, television*, and *films* using word-correlation factors, the corresponding degrees of resemblance with respect to “british movies” are assigned the \(SHScore \) of 0, 0, \(2.7 \times 10^{-7} \), and \(3.8 \times 10^{-7} \), respectively. Based on the aforementioned resemblance scores, *films* is the closest to the suggestion. By using the subject heading feature, CQS assigns \(3.8 \times 10^{-7} \), which is the similarity score computed with respect to *films*, as the \(SHScore \) value of “british movies”.

Now consider the four subject headings again for another candidate suggestion “british pancakes”, which is assigned the value 0 as its \(SHScore \), indicating that there is no suitable topic description for the suggestion based on the set of subject headings. Furthermore, in considering the two suggestions “british movies” and “british sitcoms” against the subject heading *television*, CQS assigns higher \(SHScore \) to “british sitcoms” than “british movies”, i.e., \(1.1 \times 10^{-6} \) versus \(2.7 \times 10^{-7} \), since *television* is more accurately reflecting the subject area of “british sitcoms” than “british movies.”

3.9. Ranking Candidate Queries

Using the individual scores of the features introduced earlier, which are computed for each candidate suggestion \(CS \), CQS ranks the candidate suggestions belonged to multiple categories so that the top-\(k \) suggestions\(^{17} \) are recommended to its user by CQS. CQS relies on a backpropagation model to generate a single score for each candidate suggestion \(CS \) that reflects the cumulative effect of each of the seven features computed for \(CS \) and determines the degree to which \(CS \) is a suggestion suitable for children. BP is a machine learning algorithm based on neural networks, which learns weights associated with different inputs, i.e., features in our case, and is often used to perform categorization and/or ranking tasks.

In training the BP model for CQS, 138,579 training instances were used. Each training instance includes a given noun-phrase, in lieu of a query, and is associated with the seven different feature scores computed for the corresponding noun-phrase and a label, which is either 1 or 0, to designate whether the

\(^{16}\text{While the list of subject headings is created by indexers and librarians, each of the headings in cLCSH addresses a topic/theme of interest to children. Using the word-correlation factors, we measure the degree to which a candidate suggestion } CS \text{ refers to various topics/themes of interest to children, without requiring the terms in } CS \text{ to exactly match the terms in cLCSH, which are known to be defined adults who are indexers or librarians. In doing so, we explicitly ensure that } CS \text{ remains child-friendly.}

\(^{17}\text{ }\text{K in top-}\(k \) suggestions is determined by the software developer who implements CQS and is recommended to be in the range of 4 and 10.}
noun-phrase is a children or generic query, respectively. In gathering the training instances of children queries, noun-phrases from a number of children websites, including spaghettibookclub.org, motherdaughtertbookreviews.com, and best-kids-books.com, were extracted. Training instances associated with generic queries, on the other hand, included queries extracted from the AOL query log, a well-known source of general-audience queries.

4. Experimental Results

In this section, we present the results of the empirical studies conducted to assess the design of CQS and compare its performance with well-known QS modules.

4.1. Dataset and Metrics

Due to the lack of benchmark datasets to evaluate the design methodology and performance of QS modules for children, we turned to a number of 7- to 12-year-old children who are 1st to 6th-grade students at a local school. During the month of April 2014, we asked the students to first create keyword queries that they would like to use to conduct their searches. We collected 127 children queries. Children were then provided with a number of CQS-, Google-, Yahoo!, and Bing-generated suggestions to evaluate. We selected these popular search engines for baseline purposes, as opposed to search engines specifically targeting children, since it has been reported that children rank Google, Yahoo!, and Bing as their three most favored engines for conducting their daily information discovery tasks.[3]

We used eight, five unigram and three bigram, queries randomly chosen out of the (keywords in) 127 unique queries provided by 127 elementary school students, who are 3rd to 6th graders, to evaluate the performance of CQS. (Table 3 shows a few of the 127 queries offered by the children.) Altogether, 25 students in 3rd grade, 36 in 4th grade, 26 in 5th grade, and 40 in 6th grade participated in the empirical study. For each query Q, we applied CQS to generate the top-4 query suggestions, which were mixed with the top-4 suggestions of Q offered by Google, Yahoo!, and Bing.

Note that we assessed the performance of CQS against Google, Yahoo!, and Bing, since the latter are widely-used search engines. Furthermore, the top-4 suggestions of CQS were used, since Google offers four suggestions per query, the least number of generated suggestions among the QS modules considered for comparison purpose.

Each child who participated in the study was asked to choose four useful suggestions for each test query. Table 4 shows two of the test queries and their corresponding suggestions used in the evaluation, and the remaining queries are arctic circle, chocolate chip, football, greek, information, and snow. The top-4 most frequently chosen suggestions for each test query Q, among the choices provided by the 43 children who participated in the evaluation, were treated as the gold standard of Q.

We acknowledge that the number of queries considered for the evaluation of CQS by school children is relatively small. However, given that (i) evaluations involving children are difficult to conduct due to privacy constraints[28] and (ii) we only had access to students for a limited amount of time—each student involved in the assessment was given 15 minutes to complete the evaluation, which was imposed by their school administrators—we were forced to limit the number of queries to be assessed to eight which allowed each student to spend an average of at most 2 minutes on evaluating suggestions for a query. Had we been given access to more students at the school and/or more time to conduct our evaluation, we would have compiled the results based on more than eight queries.

We applied a simple counting scheme to evaluate the query suggestions made by CQS. For each CQS-offered query suggestion that was chosen by a child (as a useful suggestion), a point is rewarded for the suggestion. Using this counting strategy, we consider the top-4 counts of suggestions for each one of the eight test queries, which yields the gold standard for our

18These sources include diverse content for creating sample children queries addressing multiple topics.

19http://goo.gl/TOlcZ5
Two sample queries and suggestions recommended by Google, Yahoo!, Bing, and CQS, respectively. Highlighted queries are among the top-4 gold standard suggestions for the respective query.

Table 4

<table>
<thead>
<tr>
<th>Query</th>
<th>Google</th>
<th>Yahoo!</th>
<th>Bing</th>
<th>CQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ice cream</td>
<td>ice cream clothing</td>
<td>ice cream maker</td>
<td>ice cream sandwich cake</td>
<td>ice cream pie</td>
</tr>
<tr>
<td>ice cream</td>
<td>ice cream recipes</td>
<td>ice cream sandwich cakes</td>
<td>ice cream maker</td>
<td>ice cream month</td>
</tr>
<tr>
<td>ice cream shoes</td>
<td>ice cream cake recipe</td>
<td>ice cream cake</td>
<td>ice cream maker recipes</td>
<td>ice cream time</td>
</tr>
<tr>
<td>ice cream cake</td>
<td></td>
<td></td>
<td></td>
<td>ice cream cone</td>
</tr>
<tr>
<td>british</td>
<td>british open leaderboard 2014</td>
<td>british open 2014</td>
<td>british airways</td>
<td>british people</td>
</tr>
<tr>
<td>british airways</td>
<td>british open 2014</td>
<td>british airways flight status</td>
<td>british television series</td>
<td>british india</td>
</tr>
<tr>
<td>british slang</td>
<td>british open</td>
<td>british museum</td>
<td>British museum</td>
<td>british actress</td>
</tr>
<tr>
<td>british virgin islands</td>
<td>british airways</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

evaluation. A total of 43 children participated in the evaluation.

To determine the effectiveness of CQS and existing QS modules (considered for comparison purpose) in making useful suggestions to children, we have computed the Normalized Discounted Cumulative Gain (nDCG) value [15] on their corresponding top-4 suggestions for each test query. nDCG penalizes relevant suggestions that are ranked lower in the list of suggested queries.

4.2. Performance Evaluation

To verify the correctness of the design of CQS we conducted a number of studies using the dataset and metrics introduced in the previous section. We first validated the correctness of selecting Backpropagation as a combination strategy. Thereafter, we evaluated the effectiveness of each individual feature (as discussed in Sections 3.2 through 3.8) in making good query suggestions to children, which validates its usefulness. Lastly, we assessed the overall performance of CQS based on combining individual features as a whole (as defined in Section 3.9), which we compared with the performance of a number of existing QS modules adopted by popular search engines.

4.2.1. Validating CQS’s Combination Strategy

CQS considers the BP model, a supervised learning-to-rank approach as presented in Section 3.9. To demonstrate the correctness of selecting such a strategy to combine the seven different scores generated by CQS for each candidate suggestion into a single ranking score, we compared the use of BP with two other combination strategies: (i) CombMNZ [18], which is a linear combination measure frequently used in fusion experiments [6] and (ii) Reciprocal Rank Fusion (RRF) [6].

CombMNZ, as defined in Equation 7, is applied to consider multiple existing lists of rankings on CS to determine a joint ranking of CS, a task known as rank aggregation or data fusion.

\[
CombMNZ_{CS} = \sum_{f=1}^{N} CS^f \times |CS^f > 0| \tag{7}
\]

where \(N \) is the number of (ranked lists of) features to be fused, which is seven in our case, \(CS^f \) is the normalized score of CS on the ranked list of feature \(f \), and \(|CS^f > 0| \) is the number of non-zero, normalized scores of CS in the ranked lists to be fused.

Prior to computing the ranking score of CS, it is necessary to transform the original scores in each individual ranked list of CS into a common range, which can be accomplished by applying Equation 8 to each score in each ranked list so that it is within the range \([0, 1]\), a commonly-used.

\[
CS^f = \frac{g^{CS} - CS^f_{\text{min}}}{CS^f_{\text{max}} - CS^f_{\text{min}}} \tag{8}
\]

20In computing nDCG scores, a candidate suggestion CS for a test query Q is considered a useful suggestion, i.e., relevant, if it matches any of the suggestions included in the gold standard of Q.
where S^{CS} is the score of the feature f of CS prior to be normalized, CS_f^{\max} (CS_f^{\min}, respectively) is the maximum and (minimum, respectively) score in the ranked list of f, and CS_f^l is the normalized score for CS in the ranked list of f.

Reciprocal Rank Fusion (RRF) \cite{6} first sorts the score list of each feature of all the candidate suggestions, which yields a ranked list of candidate suggestions corresponding to every feature in descending order. Given a list of M candidate suggestions, RRF in Equation 9 is applied to generate a single rank score for CS.

\[
\text{RRFscore}(CS \in M) = \sum_{f \in N} \frac{1}{\text{rank}(CS_f^l)} \tag{9}
\]

where N is a set of features such that their scores for a particular CS are to be combined and $\text{rank}(CS_f^l)$ is the ranking position of CS in the ranked list of feature f.

It has been empirically verified that BP is significantly better than CombMNZ and RRF in terms of combining different features of a candidate suggestion as shown in Figure 2. The figure shows the performance of using different combination strategies on the eight queries that were evaluated by CQS. While the unsupervised combination strategies of CombMNZ and RRF are simple, their overall nDCG values are significantly lower than the overall nDCG value achieved by BP. Although BP requires training to learn the feature weights, the training process is one-time.

4.2.2. Feature Evaluation

To determine which feature(s) of CQS, as presented Sections 3.2 through 3.8, contribute(s) the most in making children suggestions, we relied on a test dataset, denoted TestData. TestData consists of 12,000 labeled instances, which include phrases and their corresponding scores computed for each of CQS features. These phrases are uniformly distributed among children/non-children categories and are disjoint from the instances presented in Section 3.9. Each instance in TestData comes with the scores computed based on each of the aforementioned features. We analyzed the capability of each (group of) feature(s) in distinguishing (non-)child phrases, which are potential candidate queries.

We computed the nDCG score of each feature using the TestData dataset in addition to the overall nDCG score of CQS computed using backpropagation as a combination strategy (as discussed in Section 3.9). As reflected by the nDCG scores in Figure 3, each individual feature underperforms the combined features used by CQS. By combining all the features, CQS takes the advantage of their individual strengths and greatly improves the degree of relevance and suitability of its generated query suggestions for children. The overall nDCG of CQS as shown in Figure 3, which is 0.51, is a statistically significant improvement ($p < 0.001$) over the nDCG score achieved by any single feature.

4.2.3. CQS versus QS Modules

We compared CQS with the QS modules employed by Google, Yahoo!, and Bing in terms of nDCG, which is an evaluation framework similar to the one adopted by the authors of \cite{28,29}. One of the strengths of our evaluation strategy lies on the fact that we rely on children’s assessments, and there is no room for adult-based bias. This is because we use keyword queries initiated by children as test queries and the top-4 suggestions selected as the gold standard are the ones chosen by children.

In seven out of eight queries, CQS provides a suggestion that made it either to the first or second position in the gold standard, whereas Google achieves only six out of the eight queries. Figure 4 shows the performance of Google, Yahoo!, Bing, and CQS using the nDCG measure. The results have verified that suggestions made by CQS are more appealing to children than the ones offered by Google, Yahoo!, and Bing. Although the results of CQS are not statistically significant ($p \leq 0.05$) compared with Google, they are statistically significant ($p \leq 0.01$) compared with Yahoo! and Bing based on the Wilcoxon signed-ranked test.

Besides analyzing the overall performance of CQS, Google, Yahoo!, and Bing using nDCG, we also examined their performance at the query level.
As shown in Figure 5, CQS outperforms Google in making suggestions in four out of the eight test queries based on the gold standard. More importantly, CQS-offered suggestions are placed at higher ranking positions compared to Google. In fact, among all the test queries, while CQS and Google both have equal number of suggestions posted at rank position 1, the former has more suggestions placed at positions 2 and 3. Similar to the overall performance, CQS and Google distance themselves from Yahoo! and Bing in terms of achieving higher nDCG values at the query level.

We attempted to compare CQS against other children QS modules [10, 28, 29]. Unfortunately, implementing these modules requires setting up different parameters which are not explicitly articulated in [10, 28, 29]. For example, the authors of [28, 29] create the random walk graphs, which include a foreground and background model, based on tags and URLs. Given that the (i) specific URLs considered for creating such graphs were not made available, and (ii) authors’ cleaned tags and URLs to a large extent using tag normalization and tag filtering are not described in details in the respective paper, it is not possible to re-generate the foreground and the background model for comparison purpose. Furthermore, datasets presented in [10, 28, 29] are not available to the research community. For this reason, fair comparisons between CQS and these children QS modules are not possible.

4.3. Mechanical Turk’s Evaluation

As previously stated, there are no benchmark datasets that can be used to assess the performance of QS modules for children. For this reason, we turned to Mechanical Turk\(^2\) to conduct empirical studies that allow us to further evaluate the performance of CQS. We relied on Amazon’s Mechanical Turk, since it is a “marketplace for work that requires human intelligence”, which allows individuals or businesses to programmatically access thousands of diverse, on-demand workers and has been used in the past to collect user feedback on various information retrieval tasks. The performance evaluation of CQS based on independent appraisers are presented in Sections 4.3.1 through 4.3.3.

4.3.1. Relevance of CQS-generated Suggestions

We conducted a survey on Mechanical Turk in which we asked appraisers to examine a set of ten test queries for each of the eight test queries. Each query was presented in a random order to the appraisers. For each query, the appraisers were asked to rate the relevance of each of the ten suggestions. The relevance of a suggestion was rated on a scale of 1 to 5, where 1 indicates completely irrelevant and 5 indicates completely relevant.

\(^2\)https://www.mturk.com/mturk/welcome
Fig. 5. Per-query distribution of nDCG scores for CQS, Google, Yahoo!, and Bing, respectively

queries and their corresponding suggestions created by CQS. For each query \(Q \), appraisers were required to identify, among a provided set of four suggestions generated by CQS for \(Q \), the ones (if any) that were suitable and relevant for children\(^{22}\). (A sample evaluation form is shown in Figure 6.)

While the ten test queries (with five queries in each evaluation form) included in the survey, which are “Disney”, “Lego”, “Pet”, “Transformers”, “National football”, “Art”, “Dog”, “Minecraft”, “Video”, and “Basketball player”, were selected among the query set introduced in Section 4.1 that address varied topics of interests for children at diverse school grade levels, the corresponding suggestions were generated using CQS. The goal of this survey is to quantify the degree to which queries suggested by CQS are appealing to children (from the adults’ points of view). We collected 90 responses during the month of July 2014. Based on the feedback collected through Mechanical Turk, we have observed that, on the average, (close to) 50% of the recommendations generated by CQS were deemed suitable for children. (For the evaluation of the performance of CQS on each test query, see Figure 7.)

We are aware that each Mechanical Turk appraiser must be over 18 years old. We solicited appraisers of all walks of life and assessed the performance of CQS by separating the opinions of appraisers known to be educators or parents of young children\(^{23}\), who have a more direct knowledge on the interests/preferences of children in terms of selecting suitable query suggestions, from the opinions of general appraisers. As shown in Figure 7, the accuracy ratios computed based on parents/educators’ responses yield not only a statistically significant improvement (\(p < 0.05 \)) over the ones based on the responses of the general appraisers, which is determined using the Wilcoxon signed-ranked test, but also confirm the appropriateness of the design methodology of CQS, i.e., offering useful query suggestions to children, since in general parents/educators are in better position to judge the usefulness of queries suggested to children than the general public.

4.3.2. Evaluations on QS Modules

We also turned to Mechanical Turk to validate our claim that queries suggested by CQS for children are more favorable than the ones generated by Google, Yahoo!, and Bing. To verify this claim, we conducted another survey on Mechanical Turk (see a sample eval-

\(^{22}\)Note that the responses identified as relevant provided by an appraiser are treated as the gold standard for accuracy and reciprocal rank assessment, and the reported overall accuracy and MRR are based on the average of the corresponding accuracy and MRR calculated according to each appraiser’s response. In other words, the suggested queries treated as “suitable and relevant” by each appraiser were not combined into a single gold standard for evaluation purpose, since we would like to preserve varied opinions on relevance in evaluating the performance of CQS.

\(^{23}\)Mechanical Turk appraisers were asked to voluntarily answer a question which inquired whether they were parents/educators. Overall, 57% of the 90 appraisers who assessed the performance of CQS were parents/educators.
Fig. 6. An evaluation conducted by Mechanical Turk appraisers who assessed the relevance of the suggestions generated by CQS.

Fig. 7. Performance evaluation of CQS based on the responses of Mechanical Turk appraisers.

For each of the queries shown below, examine the corresponding generated query suggestions. Thereafter, select the ones (if any) that you consider to be suitable and relevant, i.e., related, query suggestions.

1. Disney
 - Disney world
 - Disney character
 - Disney movie
 - Disney animated feature

2. Lego
 - Lego city
 - Lego character
 - Lego harry
 - Lego movie

3. Pet
 - Pet dog
 - Pet lamb
 - Pet cat
 - Pet sounds

4. Transformers
 - Transformers movie
 - Transformer toys
 - Transformers suit
 - Transformers fans

5. National football
 - National football coach
 - National football star
 - National football match
 - National football jersey

![Accuracy Ratios Chart]

The survey requested the appraisers to identify for each test query the two suggestions that, to the best of their knowledge, were most suitable for children. The test queries in this survey are the same queries as presented in Section 4.3.1, and the corresponding suggestions are the top-2 suggestions generated by CQS, Bing, Google, and Yahoo!. (Note that...
due to overlapped suggestions offered by the four QS modules, there are less than eight suggestions for each of the test queries.) We treated the two suggestions chosen for each test query Q by each appraiser as the gold standard for Q. Based on the chosen suggestions, we computed the accuracy ratio and Mean Reciprocal Rank (MRR). While the former quantifies the proportion of relevant suggestions generated by a QS module, the latter computes the average ranking position of the first relevant suggestion provided by the corresponding QS module.

The accuracy and MRR scores computed according to the 90 responses collected during the month of July of 2014 are shown in Figure 9. The results, which are statistically significant with $p < 0.05$, show that appraisers often preferred children query suggestions provided by CQS over the suggestions created by Google, Yahoo!, or Bing. These findings are consistent among the 57% of appraisers who were either educators or parents of young children.

To further validate the performance of CQS, Google, Yahoo!, and Bing, in terms of their ability to generate suggestions appealing to younger audiences, we conducted another survey to gather feedback through Mechanical Turk. Using the same experimental framework described earlier in this section, we created new HITs using 28 new queries (see the new queries, along with the 10 test queries used in the July 2014 survey, in Table 5), which are selected among the ones described in Section 4.1, and vary in terms of length.

We collected 657 responses on the new HITs during the months of January and February of 2017. Based on these responses, we computed the accuracy ratio and MRR of CQS, Google, Yahoo!, and Bing, respectively. As shown in Figure 10, query suggestions generated by CQS continued to be favored by appraisers over those generated by Google, Yahoo!, or Bing, and CQS performs significantly better than Google, Yahoo!, and Bing (with $p < 0.05$) based on the Wilcoxon signed-ranked test. The results, which remain comparable among the 46% Mechanical Turk appraisers who reported being parents of young children or educators, further demonstrate the validity of the experimental results reported earlier in this section.

Note that Table 5 shows the child-formulated queries used in all of the Mechanical Turk experiments discussed in this section. For each test query, we also include the top suggestion generated by CQS and each of the web search engines considered for comparison purpose.

4.3.3. The Need for Suggestions Tailored to Children

As we previously stated in Section 4.1, the objective of our empirical assessment is to demonstrate the need for query suggestion modules, alike to CQS, that can be used to complement search engines favored by children, such as Google. In order to further illustrate the suitability of CQS in generating query suggestions to meet the information needs of younger audiences, we conducted another experiment. In the new online study, we examined the performance of CQS and Kidzsearch, a leading kids search engine as discussed earlier.

Following the framework discussed Section 4.3, we created HITs in which we included suggestions generated by both Kidzsearch and CQS for diverse sets of unigram, bigram, and trigram queries, with a total of 28 queries (see the queries in Table 5). We asked Mechanical Turk appraisers to select, according to their interpreted intent of each query Q, the top-2 suggestions most relevant to Q. We collected 687 responses, out of which 344 were provided by appraisers who reported being either parents of young children or educators.

Based on the responses collected on Mechanical Turk, we computed the MRR and accuracy ratios. As shown in Figure 11, Kidzsearch and CQS achieve comparable performance in terms of MRR, i.e., the difference between their MRR ratios are not significant. The reported results are also consistent among appraisers that are parents or educators. Even though the overall differences in the accuracy ratios between Kidzsearch and CQS are statistically significant ($p < 0.001$) for general appraisers (as depicted in Figure 12), CQS and Kidzsearch perform almost identically according to the responses collected among appraisers who are parents/educators. Moreover, the overall accuracy ratios achieved by CQS and Kidzsearch are not statistically significant.
4.3.4. Observations

In Section 4.2 and Sections 4.3.1 through 4.3.3, we presented the results of the different experiments conducted to validate the design strategy of CQS as well as its overall performance. We demonstrated that suggestions generated using CQS are often favored over those provided by Google, a search engine preferred by children. This is promising, given the fact that CQS does not depend on query logs, which are rarely, if at all, publicly available. Instead, CQS relies on public data sources, which are accessible through the Internet, to train probabilistic models that can be updated over time, allowing CQS to offer timely suggestions. Moreover, CQS generates suggestions on the fly, as opposed to the suggestions provided by many of the suggestion modules examined in our experiments, which are based on queries previously formulated by other users.
Furthermore, children are familiar and accustomed to the keywords specified in suggestions offered by CQS, since they are extracted from children’s vocabulary and children web pages. Due to of its design methodology, CQS is tailored to serve groups of children of different ages.

5. Conclusions

A statistical report published in 2012 shows that 76% of children searched information on the Internet [16], which is a significant number back to those days and in today’s standard. To enhance the children’s web search experience, it is critical to design a query suggestion module that tailored towards children’s information needs. In this paper, we have proposed a query suggestion module, called CQS, to suggest queries for children. Instead of following existing query suggestion approaches that rely on frequently-used queries in query logs or children’s query suggestion approaches that count on snippets and titles given by search engines to (obtain tags that can be used to) generate candidate suggestions, CQS considers sentences in children’s writing, children’s vocabulary/phrases, simplicity of words, children’s subject headings, and children’s categories (i.e., subject areas) extracted from various children’s websites, to generate simple and comprehensible phrases as query suggestions. The novelty of CQS is its reliance on freely and easily accessible online content/documents written by or for children. These resources not only allow CQS to make age-appropriate suggestions, but they also offer different children-likelihood features to be considered for capturing children’s information needs, creating cohesiveness and simplicity of keywords in suggestions, and enriching the coverage of various topics in suggestions. Experiments conducted to evaluate the performance of CQS demonstrate the correctness of the design methodology of CQS and show that (i) children prefer suggestions offered by CQS over Yahoo! and Bing’s, and (ii) the suggestions made by CQS are as popular as the ones recommended by Google.

References

<table>
<thead>
<tr>
<th>Children Query</th>
<th>CQS</th>
<th>Google</th>
<th>Yahoo!</th>
<th>Bing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>Art and crafts</td>
<td>Art of manliness</td>
<td>Art van furniture</td>
<td>Art Institute of Chicago</td>
</tr>
<tr>
<td>Animal migration route</td>
<td>Animal migration route every time</td>
<td>Animal migration routes</td>
<td>Animal migration route of the monarch</td>
<td>Animal migration routes in washington state</td>
</tr>
<tr>
<td>Basketball player</td>
<td>Basketball player team</td>
<td>Basketball player with clothing line</td>
<td>Basketball player clipart</td>
<td>Basketball player with broken leg</td>
</tr>
<tr>
<td>Biggest</td>
<td>Biggest book fair</td>
<td>Biggest looser 2017</td>
<td>Biggest looser</td>
<td>Biggest loser</td>
</tr>
<tr>
<td>Central train station</td>
<td>Central train station</td>
<td>Central train station</td>
<td>Central train station</td>
<td>Central train station amsterdam</td>
</tr>
<tr>
<td>Cheese</td>
<td>Cheese boxes</td>
<td>Cheese sauce</td>
<td>Cheese ball recipes</td>
<td>Cheese ball recipes</td>
</tr>
<tr>
<td>Cheese cake</td>
<td>Cheese cake sweet</td>
<td>Cheese cake factory</td>
<td>Cheese cake recipes</td>
<td>Cheese cake recipes scratch</td>
</tr>
<tr>
<td>Chocolate chip cookie</td>
<td>Chocolate chip cookie dough</td>
<td>Chocolate chip cookie recipe</td>
<td>Chocolate chip cookie recipe</td>
<td>Chocolate chip cookie recipe</td>
</tr>
<tr>
<td>Cookie recipes</td>
<td>Cookie recipes in book</td>
<td>Cookie recipes without butter</td>
<td>Cookie recipes from scratch</td>
<td>Cookie recipes from scratch</td>
</tr>
<tr>
<td>Disney</td>
<td>Disney movie</td>
<td>Disney store</td>
<td>Disney character</td>
<td>Disney cruise</td>
</tr>
<tr>
<td>Dog</td>
<td>Dog pet</td>
<td>Dog breeds</td>
<td>Dog breeds</td>
<td>Dog breeds</td>
</tr>
<tr>
<td>Ice cream</td>
<td>Ice cream cake</td>
<td>Ice cream boise</td>
<td>Ice cream alley</td>
<td>Ice cream maker</td>
</tr>
<tr>
<td>India</td>
<td>India trading company</td>
<td>India news</td>
<td>India map</td>
<td>India news</td>
</tr>
<tr>
<td>Japan</td>
<td>Japan animation</td>
<td>Japan time</td>
<td>Japan airlines</td>
<td>Japan crate</td>
</tr>
<tr>
<td>Famous piano concert</td>
<td>Famous piano concert composers</td>
<td>Famous piano composers of all time</td>
<td>Famous piano composers of classical music</td>
<td>Famous piano composers list</td>
</tr>
<tr>
<td>Lego</td>
<td>Lego movie</td>
<td>Lego dimensions</td>
<td>Lego city</td>
<td>Lego games</td>
</tr>
<tr>
<td>Lego dinosaurs</td>
<td>Lego dinosaurs robots</td>
<td>Lego dinosaurs movie</td>
<td>Lego dinosaurs video</td>
<td>Lego dinosaurs games</td>
</tr>
<tr>
<td>Map</td>
<td>Map expert</td>
<td>Map of idaho</td>
<td>Yahoo maps</td>
<td>Mapquest</td>
</tr>
<tr>
<td>Meme</td>
<td>Meme in july</td>
<td>Meme maker</td>
<td>Meme generator</td>
<td>Meme generator</td>
</tr>
<tr>
<td>Minecraft</td>
<td>Minecraft</td>
<td>Minecraft skins</td>
<td>Minecraft skins</td>
<td>Minecraft servers</td>
</tr>
<tr>
<td>Music</td>
<td>Music books</td>
<td>Music notes</td>
<td>Music videos</td>
<td>Music notes</td>
</tr>
<tr>
<td>National football</td>
<td>National football coach</td>
<td>National football league</td>
<td>National football league</td>
<td>National football league</td>
</tr>
<tr>
<td>Migration routes</td>
<td>Migration routes enable people</td>
<td>Migration routes definition</td>
<td>Migration routes in the united states</td>
<td>Migration routes of birds</td>
</tr>
<tr>
<td>Most popular sport</td>
<td>Most popular sport music</td>
<td>Most popular sport in the world</td>
<td>Most popular sport in the world</td>
<td>Most popular sport in the world</td>
</tr>
<tr>
<td>Nike</td>
<td>Nike shoes</td>
<td>Nike shoes</td>
<td>Nike outlet</td>
<td>Nike inc.</td>
</tr>
<tr>
<td>Pet</td>
<td>Pet dog</td>
<td>Petsmart</td>
<td>Pet supplies</td>
<td>Pet supplies plus</td>
</tr>
<tr>
<td>Piano</td>
<td>Piano teacher</td>
<td>Piano guys</td>
<td>Piano guys</td>
<td>Piano guys</td>
</tr>
<tr>
<td>Soccer</td>
<td>Soccer ball</td>
<td>Soccer ball</td>
<td>Soccer games</td>
<td>Soccer games</td>
</tr>
<tr>
<td>Sport shoes</td>
<td>Sport shoes fashionist</td>
<td>Sport shoes for women</td>
<td>Sport shoes for women</td>
<td>Sport shoes for men</td>
</tr>
<tr>
<td>Star wars</td>
<td>Star wars characters</td>
<td>Star wars 8</td>
<td>Star wars rogue one</td>
<td>Star wars rebels</td>
</tr>
<tr>
<td>Star wars clones</td>
<td>Star wars clones episode</td>
<td>Star wars clones wars</td>
<td>Star wars clones vs droids</td>
<td>Star wars clones ebay</td>
</tr>
<tr>
<td>Tallest person</td>
<td>Tallest person of the year</td>
<td>Tallest person in the world</td>
<td>Tallest person in the world</td>
<td>Tallest person in the world</td>
</tr>
<tr>
<td>Tiger</td>
<td>Tiger Woods</td>
<td>Tiger Woods</td>
<td>Tiger Woods</td>
<td>Tiger Woods</td>
</tr>
<tr>
<td>Transformer</td>
<td>Transformers movies</td>
<td>Transformers toys</td>
<td>Transformers toys</td>
<td>Transformers calculator</td>
</tr>
<tr>
<td>Video</td>
<td>Video games</td>
<td>Video games</td>
<td>Video converter</td>
<td>Video editor</td>
</tr>
<tr>
<td>Water</td>
<td>Water bottles</td>
<td>Water cycle</td>
<td>Water softener systems</td>
<td>Water softeners</td>
</tr>
<tr>
<td>Youtube</td>
<td>Youtube celebrity</td>
<td>Youtube to mp3</td>
<td>Youtube music</td>
<td>Youtube music</td>
</tr>
</tbody>
</table>