
Personalized Book Recommendation Based on a Deep
Learning Model and Metadata

Yiu-Kai Ng and Urim Jung

Computer Science Department, Brigham Young University, Provo, Utah 84602, USA
ng@compsci.byu.edu, urimjung1@gmail.com

Abstract. Reading books is one of the widely-adopted methods to obtain knowl-
edge. Through reading books, one can obtain life-long knowledge and maintain
them. Additionally, if multiple sources of information can be obtained from vari-
ous books, then obtaining relevant books is desirable. This can be done by book
recommendation. There are, however, a number of challenges in designing a
book recommender system. One of the challenges is to suggest relevant books
to users without accessing their actual content. Unlike websites or blogs, where
the crawler can simply scrape the content and index the websites for web search,
book contents cannot be accessed easily due to copyright laws. Because of this
problem, we have considered using data such as book records, which contains
various metadata of a book, including book description and headings. In this pa-
per, we propose an elegant and simple solution to the book recommendation prob-
lem using a deep learning model and various metadata that can infer the content
and the quality of books without utilizing the actual content. Metadata, which in-
clude Library Congress Subject Heading (LCSH), book description, user ratings
and reviews, which are widely available on the Internet. Using these metadata are
relatively simple compared to approaches adopted by existing book recommender
systems, yet they provide essential and useful information of books.
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1 Introduction

Reading books enhances our understanding on the content covered in a book and offer
us an opportunity to learn new knowledge. According to [8], many of the college stu-
dents believe reading book is directly linked to academic success in college. For people
who are not in college, reading books helps them learn throughout their lives.

Instead of accessing the content of a book using its hard-copy archived in a library or
made available in a book store, electronic copies became available online through online
services such as Google Books or Amazon. In addition, book reviews and ratings can
be downloaded by customers and users so that they can filter sub-standard books and
make the best choice. Several book recommendation systems have been developed to
recommend relevant books to users [7] based on machine learning algorithms or other
techniques such as data mining. However, these algorithms require accessing the actual
book content which is not widely available due to the copyright law. Instead, we propose
an elegant and effective solution to the problem by using metadata associated with
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books. Metadata are useful, since they offer useful information of the corresponding
books. We consider book descriptions, LCSH, user ratings, and reviews to rank books.

Our book recommender is designed for solving the information overload problem
while minimizing the time and efforts imposed on readers in discovering unknown, but
suitable, books for pleasure reading or knowledge acquisition. Our recommender first
identifies a set of candidate books, among the ones archived at a website, with topics
related to a number of books preferred by the user U . Our recommender is a self-reliant
recommender which, unlike others, does not rely on personal tags nor access logs to
make book recommendation. It is unique, since it explicitly determines categories of
books that match the one preferred by users using a deep learning algorithm, besides
considering the subject headings, user ratings, content descriptions, and sentiment on
books that are available online.

Our proposed solution provides book stores and libraries diverse and effective book
recommendation. In addition, the users can have a satisfying experience with the book
recommendation system in terms of saving time and efforts in searching for relevant and
interested books to read. Furthermore, our book recommender system is significantly
differed from existing approaches, since we do not consider any data mining technique.
By simply aggregating the information provided by metadata of books, we effectively
recommend books that are relevant to the user’s information needs.

2 Related Work

A number of book recommenders [6, 15] have been proposed in the past. Amazon’s
recommender [6] suggests books based on the purchase patterns of its users. Yang et al.
[15] analyze users’ access logs to infer their preferences and apply the collaborative fil-
tering (CF) strategy, along with a ranking method, to make book suggestions. Givon and
Lavrenko [4] combine the CF strategy and social tags to capture the content of books
for recommendation. Similar to the recommenders in [4, 15], the book recommender in
[12] adopts the standard user-based CF framework and incorporates semantic knowl-
edge in the form of a domain ontology to determine the users’ topics of interest. The
recommenders in [4, 12, 15] overcome the problem that arises due to the lack of initial
information to perform the recommendation task, i.e., the cold-start problem. However,
the authors of [4, 15] rely on user access logs and social tags, respectively to recommend
books, which may not be publicly available and are not required by our recommender.
Furthermore, the recommender in [12] is based on the existence of a book ontology,
which can be labor-intensive and time-consuming to construct [2].

Zhu and Wang [17] adopt relational data mining algorithm for recommending books.
They apply the Apriori data mining algorithm to eliminate mismatched book records
and effectively perform data mining using optimization. This approach reduces the
amount of book data to be considered. Mooney and Roy [7] apply the contend-based
book recommendation approach to obtain the descriptions of books and develop a ma-
chine learning algorithm to categorize the text. After categorizing the text, they utilize
user profile and use the Bayesian learning algorithm to find the appropriate book for the
specific user. Sohail et al. [14] solve the book recommendation problem by construct-
ing an opinion-mining algorithm which relies on the reviews written by users to ex-
tract the users’ opinions on books for making recommendation. All of these approaches
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are significantly differed from ours, since the latter simply relies on topic analysis and
matadata of books in making book recommendation to its users.

3 Our Book Recommender System

We first utilize a deep neural network model to classify a book B given by a user U
who also provides a number of preferred books in a profile. Based on the category of
B, we filter books in a collection that are in the same category as B, called candidate
books CB. Hereafter, we consider different features (presented in Sections 3.2 to 3.5)
of books in CB to rank them (in Section 3.6) accordingly.

3.1 The Recurrent Neural Network (RNN) Model

We employ a recurrent neural network (RNN) as our classifier, since RNNs produce
robust models for classification. Similar to other deep neural networks, RNNs are both
trained (optimized) by the backpropagation of error and comprised of a series of layers.

– An input layer is a vector or matrix representation of the data to be modeled.
– A few hidden, or latent, layers of activation nodes, sometimes referred to as “neu-

rons”, are included. Each of the hidden layer is designed to map its previous layer to
a higher-order (and often higher-dimensional) representation of the features which
aims to be more useful in modeling the output than the original features.

– An output layer produces the desired output for classification or regression tasks.

The output is produced by propagating numeric values forward.The network is trained
by backpropagating the error1 from the output layer backwards. Unlike other network
structures, a RNN takes into account the ordering of tokens within sequences, rather
than simply accounting for the existence of certain values or combinations of values
in that sequence. For example, the terms ‘car’ and ‘repair’ may appear in a sentence,
but the sentiment of that sentence depends on whether or not they appear adjacent to
each other and in that order. For complex textual tasks such as this example, RNNs tend
to outperform bag-of-words models which are unable to capture important recurrent
patterns that occur within sentences.

RNNs achieve the recurrent pattern matching through its recurrent layer(s). A re-
current layer is one which contains a single recurrent unit through which each value
of the input vector or matrix passes. The recurrent unit maintains a state which can be
thought of as a “memory”. As each value in the input iteratively passes through the unit
at time step t, the unit updates its state ht based on a function of that input value xt and
its own previous state ht−1 as ht = f(ht−1, xt), where f is any non-linear activation.

Recurrent layers are designed to “remember” the most important features in se-
quenced data no matter if the feature appears towards the beginning of the sequence
or the end. In fact, one widely-used implementation of a recurrent unit is thus named
“Long-Short Term Memory”, or LSTM. The designed RNN accurately classifies our
data set of books solely based on their sequential text properties.

1 An error is the relative divergence of the produced output from the ground truth.



4 Ng and Jung

Table 1. Dimensions and number of parameters of layers in the RNN

Layer Output Dimensions Total Parameters Trainable Parameters

Input 72 0 0
Embedding 72 × 300 1,950,000 0
Bi-directional GRU 72 × 128 140,160 140,160
Global Max Pooling (1D) 128 0 0
Dropout 1 128 0 0
Dense Hidden 64 8,256 8,256
Dropout 2 64 0 0
Dense Output 31 845 845

Total 2,099,279 149,261

Feature Representation To utilize a RNN, we need to provide the network with se-
quential data as input and a corresponding ground-truth value as its target output. Each
data entry has to first be transformed in order to be fed into the RNN. Attributes of book
entries were manipulated as follows:

Label. The label consists of the category of a book, each of which is the top 31
categories pre-defined by Thriftbooks2. Since RNN cannot accept strings as an output
target, each unique category string is assigned a unique integer value, which is trans-
formed into a one-hot encoding3 to be used later as the network’s prediction target.

Features. Features are extracted from the data set S as the brief description of a
book, which is called a sentence of an entry, and is accessible from the book-affiliated
websites such as Amazon4. Words in a brief description are transformed into sequences,
or ordered lists of tokens, i.e., unigrams and special characters such as punctuation
marks. Each sequence is padded with an appropriate number of null tokens such that
each sequence was of uniform length. We have considered only the first 72 tokens in
each sentence when representing the features, since over 90% of sentences in S contain
72 or fewer tokens. We considered the 6,500 most commonly-occurring tokens in S.

Text. While extracting features, we have chosen not to remove stopwords, since we
prefer not to lose any important semantic meaning, e.g., ‘not’, within term sequences
nor punctuation, since many abstracts include mathematical symbols, e.g., ‘|’, which
especially correlate to certain categories. We did, however, convert all of the text in a
sentence to lowercase because the particular word embedding which we used did not
contain cased characters.

Network Structure We first discuss our RNN used for classifying book categories.
Table 1 summaries different layers, their dimensions, and their parameters in our RNN.

The Embedding Layer. A design goal of our neural network is to capture related-
ness between different English words (or tokens) with similar semantic meanings. For
example, the phrase “he said” has a similar semantic meaning to the phrases “he says”
or “she said”. Our neural network begins with an embedding layer whose function is

2 https://www.thriftbooks.com/sitemap/
3 A one-hot encoding of an integer value i among n unique values is a binarized representation
of that integer as an n-dimensional vector of all zeros except the ith element, which is a one.

4 www.amazon.com
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to learn a word embedding for the tokens in the vocabulary of our dataset. A word em-
bedding maps tokens to respective n-dimensional real-valued vectors. Similarities in
semantic meanings between different tokens ought to be captured in the word embed-
ding by corresponding vectors which are also similar either by Euclidean distance, or
by cosine similarity, or both. For example, the n-dimensional vector for ‘he’ may be
similar to the vector for ‘she’ by cosine similarity, or the vector for ‘says’ may be close
in Euclidean space to the vector for ‘said’.

The embedding layer contains 1,950,000 parameters, since there are 6,500 vectors,
one for each token in the vocabulary, and each vector comes with 300 dimensions, and
all of which could be trained. Due to the large amount of time it would take to properly
train the word embedding from scratch, we have performed two different tasks: (i) we
have loaded into the embedding layer as weights an uncased, 300-dimensional word
embedding, GloVe, which has been pre-trained on documents on the Web, and (ii) we
have decided to freeze, i.e., not train, the embedding layer at all. The pre-trained vectors
from GloVe sufficiently capture semantic similarity between different tokens for our
task and they are not required to be further optimized. Since the embedding layer was
not trained, it simply served to transform the input tokens into a 300-dimensional space.
Therefore, instead of the 72-element vector which we started with, the embedding layer
outputs a 72 × 300 real-valued matrix.

The Bi-directional GRU Layer. Following the embedding layer in our network is
one type of recurrent layer – a bi-directional GRU, or Gated Recurrent Unit, layer. A
GRU is a current state-of-the-art recurrent unit which is able to ‘remember’ important
patterns within sequences and ‘forget’ the unimportant ones.

This layer effectively ‘reads’ the text, or ‘learns’ higher-order properties within a
sentence, based on certain ordered sequences of tokens. The number of trainable pa-
rameters in a single GRU layer is 3×(n2+n(m+1)), where n is the output dimension,
or the number of time steps through which the input values pass, and m is the input di-
mension. In our case, n = 64, since we have chosen to pass each input through 64 time
steps, and m = 300 which is the dimensionality of each word vector in the embedding
space. Since our layer is bi-directional, the number of trainable parameters is twice that
of a single layer, i.e., 2 × 3 × (642 + 64 × 301) = 140,160, the greatest number of
trainable parameters in our network.

The recurrent layer outputs a 72 × 128 matrix, where 72 represents the number of
tokens in a sequence, and 128 denotes the respective output values of the GRU after
each of 64 time steps in 2 directions.

The Global Max-Pooling Layer (1D). At this point in the network, it is necessary
to reduce the matrix output from the GRU layer to a more manageable vector which
we eventually use to classify the token sequence into one of the 31 categories. In order
to reduce the dimensionality of the output, we pass the matrix through a global max-
pooling layer. This layer simply returns as output the maximum value of each column in
the matrix. Max-pooling is one of several pooling functions, besides sum- or average-
pooling, used to reduce the dimensionality of its input. Since pooling is a computable
function, not a learnable one, this layer cannot be optimized and contains no trainable
parameters. The output of the max-pooling layer is a 128-dimensional vector.
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The Dropout Layer 1. Our model includes at this point a dropout layer. Dropout, a
common technique used in deep neural networks which helps to prevent a model from
overfitting, occurs when the output of a percentage of nodes in a layer are suppressed.
The nodes which are chosen to be dropped out are probabilistically determined at each
pass of data through the network. Since dropout does not change the dimensions of the
input, this layer in our network also outputs a 128-dimensional vector.

The Dense Hidden Layer. Our RNN model includes a dense, or fully-connected,
layer. A dense layer is typical of nearly all neural networks and is used for discovering
hidden, or latent, features from the previous layers. It transforms a vector x with N

elements into a vector y with M inputs by multiplying x by aM ×N weight matrixW .
Throughout training, weights are optimized via backpropagation.

The Dropout Layer 2. Before classification, our RNN model includes another
dropout layer to again avoid overfitting to the training sequences.

The Dense Output Layer. At last, our RNN model includes a final dense layer
which outputs 31 distinct values, each value corresponding to the relative probability
of the input belonging to one of the 31 unique categories. Each instance is classified
according to the category corresponding to the highest of the 31 output values.

3.2 LCSH

The Library of Congress provides a unique tag, known as Library of Congress Subject
Heading, denoted LCSH, for each book prior to its publication. Unlike social media,
where users can create a tag to a post suitable to their taste, Library of Congress main-
tains standardized tags, which come from a controlled vocabulary, from where a subject
heading is constructed [3]. Based on this fact, we can effectively measure the closeness
of two books in terms of their subject areas by applying our word correlation factor
(WCF) to compute the similarity between their corresponding tags, which consists of a
sequence of keywords, in LCSH.

The word-correlation factor between keywords i and j, denoted Sim(i, j), is pre-
computed using 880,000 documents in the Wikipedia collection (wikipedia.org/)5 based
on their frequency of co-occurrence and relative distance in each Wikipedia document.

Sim(i, j) =

∑
wi∈V (i)

∑
wj∈V (j)

1
d(wi,wj)+1

|V (i)| × |V (j)|
(1)

where d(wi, wj) is the distance between words wi and wj in any Wikipedia document
D, V (i) (V (j), respectively) is the set of stem variations of i (j, respectively) in D, and
|V (i)| × |V (j)| is the normalization factor.

Although WordNet6 provides synonyms, hypernyms, holonyms, and antonyms for
a given word, there is no partial degree of similarity measures (closeness), i.e., weights,
assigned to any pair of words. For this reason, word-correlation factors are more so-
phisticated in measuring word similarity than word pairs in WordNet.

The word correlation factor of keywords w1 and w2 is assigned a value between 0
and 1, such that ‘1’ denotes an exact match and ‘0’ denotes total dissimilarity between

5 Words within the Wikipedia documents were stemmed and stopwords were removed.
6 wordnet.princeton.edu/
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w1 and w2. Note that even for highly similar, non-identical words, they are on the order
of 5 × 10−4 or less. For example, the degree of similarity between “tire” and “wheel”
is 3.1× 10−6, which can be treated as 0.00031% similar and 99.99% dissimilar. As we
prefer to ascertain how likely the words are on a scale of 0% to 100% in sharing the
same semantic meaning, we further scale the word-correlation factors. Since correlation
factors of non-identicalword pairs are less than 5×10−4 and word pairs with correlation
factors below 1 × 10−7 do not carry much weight in the similarity measure, we use
a logarithmic scale, i.e., ScaledSim, which assigns words w1 and w2 the similarity
value V of 1.0 if they are identical, 0 if V < 1× 10−7, and a value between 0 and 1 if
1× 10−7 ≤ V ≤ 5× 10−4, which is formally defined as

ScaledSim(w1, w2) =

⎧⎨
⎩

1 if w1 = w2

Max(0, 1−
ln( 5×10−4

Sim(w1,w2)
)

ln( 5×10−4

1×10−7 )
) Otherwise

(2)

where Sim(w1, w2) is the word-correlation factor of w1 and w2 defined in Equation 1.
We computes the degree of similarity of any two LCSHs L and C using

LimSim(L,C) =

∑m

i=1 Min(1,
∑n

j=1 ScaledSim(i, j))

m
(3)

where m and n denote the number of keywords in the LCSHs L and C, respectively, i
and j are the keywords in L and C, respectively, and ScaledSim(i, j) is as defined in
Equation 2.

Using the LimSim function, instead of simply adding the ScaledSim value of
each keyword in L with respect to each keyword in C, we restrict the highest possible
sentence-similarity value between L and C to 1, which is the value for exact matches.
By imposing this constraint, we ensure that if L contains a keyword K that is (i) an
exact match of a keyword in C, and (ii) similar to (some of) the other words in C, then
the degree of similarity of L with respect to C cannot be significantly impacted/affected
by K to ensure a balanced similarity measure of L with respect to C.

3.3 User Ratings

Making recommendations for users based on their past behaviors is crucial and is in
essence learning hidden factors which drive users’ decision-making process, and rating
prediction is such an approach. In this paper, we apply rating prediction for making
book recommendations. The higher a predicted rating on a book B for user U using
the ratings of books previously viewed by U is, the more likely B is appealed to U . To
reduce the problem of finding a user’s decision latent-factor model to finding the set of
users who make similar decisions, matrix factorization (MF) is a sophisticated rating
prediction approach to use such a decision latent-factor model.

To predict unknown ratings on books, a recommender is given am×n sparse matrix
of known user-book ratings. Singular value decomposition (SVD) [5] can be employed
to deduce each user and book latent-factor vectors by factoring out the user and book
latent-factor matrices from the user-book rating matrix. Traditional SVD, however, re-
quires the given matrix to be dense. Assuming that all the missing entries are either
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zero or averages of other entries and applying classical SVD to fill the matrix is going
to result in intolerable inaccuracy in the predictions. To handle the sparseness prob-
lem, we apply the Funk SVD Learning Algorithm, which is the current state-of-the-art
SVD algorithm popularized by Simon Funk in solving the Netflix 100M rating prob-
lem. The basic idea is to employ techniques of gradient descent to iterate through the
set of known ratings to minimize the squared error of the predicted rating. This iterative
process involves the following steps: (i) before the training starts, a predicted rating was
guessed to be the average book rating plus the user offset, (ii) for each given user-book
rating, the prediction in the previous iteration is updated in the opposite direction of the
gradient, and (iii) step (ii) was repeated until prediction error converges to zero.

3.4 User Reviews

In addition to user ratings, we consider common user reviews on books, which can be
used for measuring the overall sentiment [12] towards books, to determine the most
desirable books to be recommended. Quite often a user writes a user review on a book
without providing a rating, and vice versa. Given that user ratings offer only an absolute
value without any additional information on a book, while the user reviews contribute
additional sentiments to the book. For example, assume that a user gives the same rat-
ings on two different books. Based on the ratings we have to assume that the two books
are equally good or equally bad. However, suppose the user makes the comment “De-
cently written” on the first book, and “Decently written, but I liked the concept” on the
second book. With the additional comments, we can claim that the second book is more
desirable than the first, since positive sentiment is made towards the second book. For
this reason, users’ reviews can be used as a supplement to the users’ ratings to make
suitable book recommendations to users. Sentiment book reviews can easily be found
through multiple book websites.

In order to apply users’ book reviews in our recommender system, we first de-
termine the polarity of each word w in each review r of a book BK such that w is
positive (negative, respectively) if its positive (negative, respectively) SentiWordNet7

(sentiwordnet.isti.cnr.it) score is higher than its negative (positive, respectively) coun-
terpart. We calculate the overall sentiment score of the reviews made on BK , denoted
StiS(BK), by subtracting the sum of its negative words’ scores from the sum of its
positive words’ scores, which reflects the overall sentiment orientation, i.e., positive,
negative, or neutral, of the reviews on BK . As the length of the comments on BK

can significantly affect the overall sentiment on BK , i.e., the longer each review is, the
more sentiment words are in the review, and thus the higher (lower, respectively) its
sentiment score is, we normalize the sentiment score of BK by dividing the sum of the
SentiWordNet scores of the words in the reviews with the number of sentiment words
in the reviews on BK , which yields

StiS(BK) =

n∑
i=1

∑m

j=1 SentiWordNet(Wordi,j)

|Revi|
(4)

7 SentiWordNet, a lexical resource for opinion mining, assigns to each word in WordNet three
sentiment scores: positivity, objectivity (i.e., neutral), and negativity. A SentiWordNet score is
bounded between -1 and 1, inclusively.
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Table 2. TF-IDF weighting scheme used in the enhanced cosine similarity measure in Equation 6

Condition Weight Assignment

Bi ∈ B and PBi
∈ PB VBi

= tfBi,B × idfBi
and VPBi

= tfPBi
,PB

× idfPBi

Bi ∈ B and PBi
�∈ PB VBi

= tfBi,B × idfBi
and VPBi

=

∑
c∈HSBi

tfc,PB
×idfc

|HSBi
|

Bi �∈ B and PBi
∈ PB VBi

=

∑
c∈HSPBi

tfc,B×idfc

|HSPBi
|

and VPBi
= tfPBi

,PB
× idfPBi

where n is the number of reviews on BK , m is the number of words in the kth (1 ≤
k ≤ n) review on BK , Wordi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) is the jth word in the ith

review, and |Revi| is the number of words in the ith review of BK .
As the highest (lowest, respectively) SentiWordNet score of any word is 1 (-1, re-

spectively), LS < StiS(BK) ≤ HS, where −0.9 ≤ HS ≤ 1, −1 ≤ LS ≤
0.9, and HS − LS = 0.1. StiS(BK) is further scaled so that its value, denoted
StiSScaled(BK), is bounded between 0 and 1, since a negative StiS(BK) value can
be returned if the overall sentiment ofBK leans towards the negative region. Equation 5
assigns the normalized value to StiS(BK).

StiSScaled(BK) = CL(StiS(BK)) +
0.9− FL(StiS(BK))

2

CL(StiS(BK)) =
�StiS(BK)× 10�

10
, FL(StiS(BK)) =

�StiS(BK)× 10�

10
(5)

3.5 Content Similarity Measure

We depend on the user profile P of a user U 8, which is a set of books preferred by
U , to infer U ’s interests/preferences. To determine the degree to which the content
of a candidate book B in appeals to U , we compute the content similarity between
B and each book PB in P , denoted CSim(B, P ) as defined in Equation 6, using a
“bag-of-words” representation on the brief descriptions of B and PB obtained from
book-affiliated websites, such as Amazon9. To compute CSim(B, P ), we employ an
enhanced version of the cosine similarity measure, which relaxes the exact-matching
constraint imposed by the cosine measure and explores words in the description of B
that are analogous to, besides the same as, words in the description of PB .

CSim(B,P ) = max
PB∈P

∑n

i=1 V Bi × V PBi√∑n

i=1 V B2
i ×

√∑n

i=1 V P 2
Bi

(6)

where B and PB are represented as n-dimensional vectors V B = <VB1, . . ., V Bn>

and V PB = <V PB1 , . . ., V PBn
>, respectively, n is the number of distinct words in the

descriptions ofB and PB , and V Bi (V PBi
, respectively), which is theweight assigned

to word Bi (PBi
, respectively), is calculated as shown in the equations in Table 2.

8 If a user does not offer a user profile P , then we simply treat the book provided by the user as
the only book in P .

9 www.amazon.com
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HSw in Table 2 is the set of words that are highly similar to, but not the same as,
a given word w in the description of a book Bk, which is either B or PB , |HSw| is
the size of HSw, tfw,Bk = fw,Bk∑

w∈Bk fw,Bk
is the normalized term frequency of w in Bk,

and idfw = log N
nw

is the inverse document frequency for w in the collection of books
N archived at a social bookmarking site, where nw is the number of books in N that
include w in their descriptions. Relying on the tf -idf weighting scheme, we prioritize
discriminating words that capture the content of its respective book.

The max function in Equation 6 emulates the “most pleasure” strategy (commonly
applied in game theory and group profiling [10]). Applying this strategy, we select the
highest possible score among the ones computed for each PB in P and B. The larger
the number of exact-matched or highly-similar words in the descriptions of both B

and PB is, the more likely B is a relevant recommendation for U , and guarantees that
B is highly similar to at least one of the books of interest to U . We adopt the cosine
measure (in Equation 6), which has been effectively applied to determine the degree of
resemblance between any two items in content-based recommenders.

3.6 Combining Ratings

Based on computed scores of LCSH, user ratings, user reviews, and content similarity
measure for each candidate book B, we apply the Borda Count voting scheme [1] to
determine the ranking score for B. The Borda Count voting scheme is a positional-
scoring procedure such that given k (≥ 1) candidates, each voter casts a vote for each
candidate according to his/her preference. A candidate that is given a first-place vote
receives k-1 points, a second-ranked candidate k-2 points, and so on up till the last
candidate, who is awarded no points. Hereafter, the points assigned to each candidate
across all the voters are added up and the candidate with the most points wins.

We employ the Borda Count strategy to generate a single ranking score for B, de-
noted Borda(B), that regards all the features scores of B as equally important in de-
termining the degree to which a user is interested in B. Using Equation 7, we assign
(i) k = |CandBks|, which is the number of candidate books selected for a user U , and
(ii) C = 4, which is the number of voters, i.e., the four ranked lists of the four features.
Candidate books with the top-10 Borda scores are recommended to U .

Borda(B) =

C∑
c=1

(k − SB
c ) (7)

where SB
c is the position on the ranking of B based on the cth ranked list to be fused.

We adopt Borda, since its combination algorithm is simple and efficient, which re-
quires neither training nor compatible relevance scores that may not be available [1],
and its performance is competitive with other existing aggregation strategies [1].

4 Experimental Results

In this section, we evaluate our recommender and compare its performance with others.



Personalized Book Recommendation Based on a Deep Learning Model and Metadata 11

4.1 Datasets

We have chosen a number of book records included in the Book-Crossing dataset to
conduct the performance evaluation of our recommender10. The book-crossing dataset
was collected by Cai-Nicolas Ziegler [18] in 2004 with data extracted from BookCross-
ing.com. It includes 278,858 users who provide, on the scale of 1 to 10, 1,149,780
ratings on 271,379 books. Each book record includes a user ID, the ISBN of a book,
and the rating provided by the user (identified by user ID) on the book. We used Ama-
zon.com AWS advisement API to verify that the ISBNs from the book-crossing dataset
are valid. The 271,379 books in the Book-Crossing dataset is denoted as BKC DS.

4.2 Accuracy of Our RNN Classifier

Using a 80/10/10% training/validation/test split of the data as mentioned in Section 4.1,
we achieved 73% classification accuracy on book test data. The accuracy could not be
higher likely because of the high amounts of overlap between distinct keywords in the
brief description of books with different categories, such as “Deep Learning Comput-
ing” and “Theory of computation”. With 73% accuracy, we still successfully classify 3
out of 4 articles, which is way above the baseline “best-guesser” classifier. Other bag-of-
words modeling techniques with which we have experimented, i.e., logistic regression,
SVM, and Multinomial Naı̈ve Bayes [10], showed lower results.

4.3 Evaluation Using Individual versus Combined Features

In order to justify the necessity of employing all of the four features adopted by our rec-
ommender for identifying and ranking appealing books for a user, we have conducted
an empirical study which analyzes the capability of each individual feature in making
useful book recommendations and compares its performance with employing all the
features. As shown in Figure 1, our book recommender that consider all the features
significantly outperforms each of the individual features in terms of obtaining the low-
est prediction error rates among all the features and thus in making useful suggestions
to its users based on the rating prediction errors. The combined feature model achieves
the highest prediction accuracy, which is less than half a rating (out of 10) away from
the actual rating. The results clearly indicate that we take the advantage of the individ-
ual strength of each feature and greatly improves its effectiveness and the ranking of
its suggested books. The overall prediction error of using all the features is 0.41 (see
Figure 1), is a statistically significant improvement (p < 0.01) over the prediction error
achieved by any individual feature based on the Wilcoxon signed-ranked test.

4.4 Comparing Book Recommendation Systems

In this section, we compared our recommender with exiting book recommenders that
achieve high accuracy in recommendations on books based on their respective model.

10 Other datasets can be considered as long as they contain user IDs, book ISBNs, and ratings.
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Fig. 1. Prediction error rates of the individual features and the combined prediction model

– MF. Yu et al. [16] and Singh et al. [13] predict ratings on books and movies based
on matrix factorization (MF), which can be adopted for solving large-scale collab-
orative filtering problems. Yu et al. develop a non-parametric matrix factorization
(NPMF) method, which exploits data sparsity effectively and achieves predicted
rankings on items comparable to or even superior than the performance of the state-
of-the-art low-rank matrix factorization methods. Singh et al. introduce a collective
matrix factorization (CMF) approach based on relational learning, which predicts
user ratings on items based on the items’ genres and role players, which are treated
as unknown values of a relation between entities of a certain item using a given
database of entities and observed relations among entities. Singh et al. propose dif-
ferent stochastic optimization methods to handle and work efficiently on large and
sparse data sets with relational schemes. They have demonstrated that their model
is practical to process relational domains with hundreds of thousands of entities.

– ML. Besides the matrix factorization methods, probabilistic frameworks have been
introduced for rating predictions. Shi et al. [11] propose a joint matrix factoriza-
tion model for making context-aware item recommendations.11 Similar to ours, the
matrix factorization model developed by Shi et al. relies not only on factorizing
the user-item rating matrix but also considers contextual information of items. The
model is capable of learning from user-item matrix, as in conventional collaborative
filtering model, and simultaneously uses contextual information during the recom-
mendation process. However, a significant difference between Shi et al.’s matrix
factorization model and ours is that the contextual information of the former is
based on mood, whereas ours makes recommendations according to the contextual
information on books.

– MudRecS [9] makes recommendations on books, movies, music, and paintings
similar in content to other books, movies, music, and paintings, respectively that
a MudRecS user is interested in. MudRecS does not rely on users’ access pat-
terns/histories, connection information extracted from social networking sites, col-
laborated filtering methods, or user personal attributes (such as gender and age) to
perform the recommendation task. It simply considers the users’ ratings, genres,
role players (authors or artists), and reviews of different multimedia items. Mu-
dRecS predicts the ratings of multimedia items that match the interests of a user to
make recommendations.

11 The system was originally designed to predict ratings on movies but was implemented by [9]
for additional comparisons on books as well.
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Fig. 2. The MAE and RMSE scores for various book recommendation systems based on
BKC DS, the BookCrossing dataset

Figure 2 shows the Mean Absolute Error and RMSE scores of our and other recom-
mender systems on the BKC DS dataset. Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) are two performance metrics widely-used for evaluating rating
predictions on multimedia data. Both RMSE and MAE measure the average magnitude
of error, i.e., the average prediction error, on incorrectly assigned ratings. The error val-
ues computed by RMSE are squared before they are summed and averaged, which yield
a relatively high weight to errors of large magnitude, whereas MAE is a linear score,
i.e., the absolute values of individual differences in incorrect assignments are weighted
equally in the average.

RMSE =

√∑n

i=1(f(xi)− yi)2

n
,MAE =

1

n

n∑
i=1

|f(xi)− yi| (8)

where n is the total number of items with ratings to be evaluated, f(xi) is the rating
predicted by a system on item xi (1 ≤ i ≤ n), and yi is an expert-assigned rating to xi.

As the MAE and RMSE scores shown in Figure 2, our book recommender sig-
nificantly outperforms other book recommender systems on rating predictions of the
respective books based on the Wilcoxon Signed-Ranks Test (p ≤ 0.05).

4.5 Human Assessment on Our Recommender

We further evaluated our recommender to determine whether its suggestions are per-
ceived as preferable by ordinary users, which offers another perspective on the perfor-
mance of the recommender. The additional evaluation is based on real users’ assess-
ments of the recommender which goes beyond the offline performance analysis con-
ducted and presented in previous subsections. To accomplish this task, we conducted
a user study using Amazon’s Mechanical Turk (MT)12, a “marketplace for work that
requires human intelligence”, which allows individuals or businesses to programmati-
cally access thousands of diverse, on-demand workers and has been used to collect user
feedback for multiple information retrieval tasks.

12 https://www.mturk.com/mturk/welcome
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Table 3. Sampled books and their corresponding subject area employed in the user study con-
ducted using Mechanical Turk

Book Title Subject Area

The Autobiography of Benjamin Franklin History
Fast Food Nation: The Dark Side of . . . Cooking
The 7 Habits of Highly Effective Teens Parenting
Think and Grow Rich: The Landmark . . . Business
Code Complete Computer & Tech
Healthy Sleep Habits, Happy Child Medical
Scary Stories to Tell in the Dark Horror

In the user study, we used a set of 100 randomly-sampled books with diverse sub-
ject areas. (A number of sampled books used in this study and their corresponding
subject areas is shown in Table 3.) We created a HIT (Human Intelligent Task) on MT
so that for each sampled book, each appraiser was presented with a list of five ranked
recommended books suggested by our recommender, CMF, Shi, and MudRecS, respec-
tively and asked to select the ones that are relevant to the sampled book. The user study
was conducted between March 12 and March 23, 2019 on MT. Altogether, there were
715 responses among the HITs used in the study. Based on the corresponding set of
responses provided by MT appraisers, we have verified that users tend to favor our rec-
ommended books for a given book. (See Figure 3 for the results of the empirical study.)

We evaluated and compared the performance of our recommender with CMF, Shi,
and MudRecS based on average P@1 (Precision at rank position 1), P@3, and P@5,
and MRR (Mean Reciprocal Rank). These values are easy to compute to produce a sin-
gle performance value and is readily understandable. Figure 3 shows the performance
ratios computed using MT appraisers, which indicates that highly-ranked books rec-
ommended by us were treated as relevant by the MT appraisers, and the results are
statistically significant (p < 0.03).

5 Conclusions

Reading books can enrich one’s life with knowledge and deep understanding of various
topics, and over the years the book industry has become an influential global consumer
market. According to Statista13, approximately 74% of the population in the U.S.A. con-
sumed at least one book and books published in the higher education market generated
nearly 4 billion US dollars in the year of 2017. With the huge amount of books available
these days, various book recommendation systems have been proposed to meet user’s
book searching needs. Unlike many of the existing book recommender systems, our
proposed book recommender simply relies solely on a deep learning model and book
metadata to make personalized book recommendations. The empirical study demon-
strates that our recommender outperforms well-known book recommenders.
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