
Movie Recommendations Using the Deep Learning Approach

Jeffrey Lund
Computer Science Department

Brigham Young University
Provo, Utah 84602, USA

jefflund@byu.edu

Yiu-Kai Ng
Computer Science Department

Brigham Young University
Provo, Utah 84602, USA

ng@compsci.byu.edu

Abstract—Recommendation systems are an important part
of suggesting items especially in streaming services. For stream-
ing movie services like Netflix, recommendation systems are
essential for helping users find new movies to enjoy. In
this paper, we propose a deep learning approach based on
autoencoders to produce a collaborative filtering system which
predicts movie ratings for a user based on a large database
of ratings from other users. Using the MovieLens dataset,
we explore the use of deep learning to predict users’ ratings
on new movies, thereby enabling movie recommendations. To
verify the novelty and accuracy of our deep learning approach,
we compare our approach to standard collaborative filtering
techniques: k-nearest-neighbor and matrix-factorization. The
experimental results show that our recommendation system
outperforms a user-based neighborhood baseline both in terms
of root mean squared error on predicted ratings and in a
survey in which users judge between recommendations from
both systems.

Keywords-movie recommendation; deep learning; collabora-
tive filtering

I. INTRODUCTION

Movie streaming services like Netflix, Hulu, Amazon
Prime, and others are increasingly used by consumers to
enjoy video content. For example, in 2017 Netflix sub-
scribers collectively watched more than 140 million hours
per day1 and Netflix surpassed $11 billion in revenue in
2017.2 In fact, roughly 80% of hours streamed at Netflix
were influenced by their proprietary recommendation system
[5]. Undoubtedly, movie streaming services have become an
integral part of how we consume video content today, and
the importance of movie recommendation systems cannot be
understated—they are an integral part of how we consume
video content today. With this in mind, the problem we
propose to work on is movie recommendations through
collaborative filtering based on the deep learning strategy.

For movie streaming services like Netflix, recommenda-
tion systems are important for helping users to discover new
content to enjoy. While the details of this system are mostly
confidential, what we do know is that it is a combination of
various individual recommendation systems, including some

1techcrunch.com/2017/12/11/netflix-users-collectively-watched-1-
billion-hours-of-content-per-week-in-2017/

2tvtechnology.com/news/netflix-surpasses-11-billion-in-2017-revenue

systems which leverage collaborative filtering systems. In
light of this, the problem we examine is movie recommen-
dations through collaborative filtering.

Collaborative filtering is an approach for recommendation
systems which relies on the ratings for particular user as well
as the ratings of similar users. The underlying assumption
is that if we can accurately predict movie ratings, then we
can recommend new movies to users that they are likely to
enjoy, including movies the user may not have considered
before. Therefore, in the context of movie recommendation,
collaborative filtering aims to predict unknown movie ratings
for a particular user, based on that user’s known ratings as
well as the movie ratings by other users in the system. As
opposed to content-based systems, collaborative filtering ac-
counts for users with diverse taste, so long as there are other
users with similar preferences. By finding similar users, new
items can be recommended based on the assumption that
items which are liked by similar users will be liked by the
user in question.

There are many ways to perform collaborative filtering
such as utilizing k-nearest neighbor clustering with user
profiles [2]. Various approaches for measuring similarity
have been proposed, but a simple approach is to represent
a user profile as a vector, and then use some measure of
similarity between those vectors (e.g., cosine similarity). An
alternative k-nearest-neighbor approach instead computes
similarity between pairs of items with the idea that users who
like a particular item will like similar items [11]. Another
common method for performing collaborative filtering is
with matrix factorization [8]. With this technique a user-
item matrix is factorized into two matrices with the inner
dimension representing some latent factors. The resulting
factorization represents both users and items in terms of
the latent factors in such a way that new items can be
recommended to users based on the latent factors.

Lately, deep learning has demonstrated its effectiveness in
coping with recommendation tasks. Due to its state-of-the-
art performances and high-quality recommendations, deep
learning techniques have been gaining momentum in recom-
mender system. Compared with traditional recommendation
models, deep learning provides a better understanding of
user’s demands, item’s characteristics and historical interac-

tions between them. We apply the deep learning approach
for movie recommendation.

The rest of the paper is organized as follows. The most
popular approaches for collaborative filtering are discussed
in Section II. These methods work by computing neighbor-
hoods of similar users or items. In contrast, in Section III we
propose a deep learning approach for collaborative filtering
based on an autoencoder. We demonstrate in Section IV that
our approach outperforms the neighborhood-based baseline.
We give a concluding remark in Section V.

II. RELATED WORK

The most common method of performing collaborative
filtering is to utilize a k-nearest-neighbor approach between
users [2]. With this technique, it first starts with a user-item
matrix R, where Ri,j gives the rating of user i for item j

and the value 0 indicates that a particular rating is missing.
From R a user-user similarity matrix S is computed, where
Si,j is the similarity between user i and user j, which can
be computed with R · RT . Note that using other distance
metrics, such as the correlation similarity measure or cosine
similarity, to populate S are also effective. Once S is
computed, we can predict the rating of user i for item j by
computing RT

j · Si, which essentially computes the average
of the other users’ ratings for item j weighted by their
similarity to user i.

We can also use the k most similar users to user i to
predict the rating for item j. Empirically, this works better
than the weighted average over all users, although some
extra work is required at test time in order to compute the
k nearest neighbors. This approach relies on the assumption
that if two users rated the same item similarly, they are likely
to rate other items similarly as well. At scale, data structures
such as ball trees and k-d trees (a binary space partition tree
in k-dimensions) can be utilized to more efficiently compute
local neighbors between user profiles.

An alternative k-nearest-neighbor approach instead com-
putes similarity between pairs of items (as opposed to users)
with the idea that users who like a particular item will like
similar items [11]. With this approach we compute an item-
to-item similarity matrix I as RT ·R. As before, we can also
use other similarly metrics to populate I . In order to predict
the rating for user i on item j, we can compute Ri ·Ij , which
gives an average of the ratings provided by user i weighted
by the similarity of those items to item j. Since there tends
to be many more users than items in a recommender system,
user-user collaborative filtering can be more performant.

Another common method for performing collaborative
filtering is with matrix factorization [8]. With this technique
a user-item matrix is factorized into two matrices with
the inner dimension representing some latent factors using
techniques such as singular value decomposition (SVD). The
resulting factorization represents both users and items in
terms of the latent factors in such a way that they can be used

to recommend new items. As with item-item neighborhood
approaches, our preliminary experiments on movie ratings
indicate that user-user neighborhood approaches are superior
to matrix factorization.

Deep learning has revolutionized many fields of computer
science, including natural language processing [9]. Despite
this, deep learning is relatively new in the area of recom-
mender systems, and has not received much attention [18].
Having said that, Wang et al. [15] propose a collaborative
deep learning (CDL) model which jointly performs deep
representation learning for the content information and col-
laborative filtering for the ratings matrix. CDL is differed
from ours, since the former relies on content information,
whereas we do not. Elkahky et al. [3] introduce a deep learn-
ing recommendation system according to the web browsing
history and search queries provided by users. They maximize
the similarity between users and their preferred items by
mapping users and items to a latent space. A constraint
imposed on this approach is that browsing history and users
search queries are required, which are not always available.
Wei et al. [16] develop a deep neural network model which
extracts the content features of items into prediction of
ratings for cold start items. Our recommendation system is
differed, since we do not deal with user content.

III. OUR PROPOSED RECOMMENDATION SYSTEM

Deep learning, which is essentially just deep artificial
neural networks, is able to learn complex decision bound-
aries for classification or complex non-linear regressions. By
stacking large numbers of hidden layers in these networks,
deep neural networks can learn complex functions by learn-
ing to extract many low level features from the data and
composing them in useful non-linear combinations.

A. Network Architecture

While neural networks are theoretically able to approxi-
mate any computable function, including the mapping from
user profiles to movie ratings, in practice great care must be
taken when selecting the architecture of the neural network.
While the extracted structure of our network is subject to
change, there are some reasonable starting places.

Inputs. The inputs to our network architecture are two
n-dimensional vectors, where n is the number of movies
in a movie dataset, such as the MovieLens database. One
vector encodes a particular user profile, with each dimension
indicating the rating the user gave for a particular film (or a
zero to indicate that no rating has been given). The other
vector is a one-hot encoding of a particular movie (i.e.,
a vector with a single “hot” dimension set to 1, with all
other values set to zero). These two vectors request that
the network predict a rating for a particular user for a
specific movie.

One advantage of this input format is that we can do
without a single rating from a known user profile, and use the

known rating for withheld item as a labeled example. Con-
sequently, even though we only have 270,000 user profiles,
each one of the 26,000,000 individual ratings constitutes a
train example.

Hidden Layers. There are a variety of ways to structure a
simple feed-forward neural network. We start with a number
of the standard fully-connected layers. However, we also
experiment with alternative structures, such as ResNets [7],
which currently obtain state-of-the-art results in other fields
such as image recognition.

Output. There are two main possibilities for the output
of our network. The first is to treat this problem as a
classification problem, with five different class representing
the five start ratings that are present in the data. Under this
architecture, we treat the five outputs of our network as
unnormalized log probabilities, and use cross entropy as our
loss function.

With the basic neural network architecture introduced
above, we describe the deep learning architecture proposed
as an alternative to the user-based neighborhood approach.
We first consider the dimensions of the input and output
of the neural network. In order to maximize the amount of
training data we can feed to the network, we consider a
training example to be a user profile (i.e. a row from the
user-item matrix R) with one rating withheld. The loss of
the network on that training example must be computed with
respect to the single withheld rating. The consequence of this
is that each individual rating in the training set corresponds
to a training example, rather than each user.

As we are interested in what is essentially a regression, we
choose to use root mean squared error (RMSE) with respect
to known ratings as our loss function. Compared to the
mean absolute error, root mean squared error more heavily
penalizes predictions which are further off. We reason that
this is good in the context of recommender system because
predicting a high rating for an item the user did not enjoy
significantly impacts the quality of the recommendations. On
the other hand, smaller errors in prediction likely result in
recommendations that are still useful—perhaps the regres-
sion is not exactly correct, but at least the highest predicted
rating are likely to be relevant to the user.

1) Autoencoder: One of the existing deep learning mod-
els is the Deep Neural Network (DNN) model. DNN is
a Multi-Layer Perceptron (MLP) model with many hidden
layers. The uniqueness of DNN is due to its larger number of
hidden units and better parameter initialization techniques.
A DNN model with large number of hidden units can have
better modeling power. Although the learned parameters of
the DNN model is a local optimal, which requires more
training data and more computational power, it can perform
much better than those with less hidden units. Deep Auto
Encoder is a special type of DNN. (See Figure 1 for a sample
autoencoder.)

Figure 1. An autoencoder with three fully-connected hidden layers

An autoencoder is a neural network that is trained to
copy its input to its output, with the typical purpose of
dimension reduction, i.e., the process of reducing the number
of random variables under consideration. It features an
encoder function to create a hidden layer (or multiple hidden
layers) which contains a code to describe the input. There
is a decoder which creates a reconstruction of the input
from the hidden layer. An autoencoder can then become
useful by having a hidden layer smaller than the input layer,
forcing it to create a compressed representation of the data
in the hidden layer by learning correlations in the data. This
autoencoder is a form of unsupervised learning, meaning
that an autoencoder only needs unlabelled data, which is a
set of input data rather than input-output pairs. Through an
unsupervised learning algorithm, for linear reconstructions
the autoencoder attempts to learn a function to minimize
the root mean square difference.

To compute the root mean square error (RMSE) of a
machine learning model, we can measure the performance
of the model. RMSE is defined as

RMSE =
1

m

∑

i

(ŷ − y)2i , ŷ = w
T
x (1)

where w ∈ �n is a vector of parameters, x ∈ �n is a vector
used for predicting a scalar value y ∈ �, and ŷ is the value
that a machine learning model predicts what the scalar value
y ∈ � should be.

Note that RMSE decreases to 0 when ŷ = y and the error
increases when the Euclidean distance between the predicted
values and the target values increases.

2) Multilayer Perceptron: Initially, the architecture of our
recommender system consists of input from the row of the
user-item matrix R with the rating for some item j withheld,
along with a one-hot encoded query which indicates the
network should predict the rating for user i on item j.
Unfortunately, this architecture has been proved difficult to
train, since the network must learn to understand not only
user profiles, but also the interplay between those profiles
and the query inputs. With respect to the root mean squared

Figure 2. Overview of the network architecture of our recommender

error on the training data, we never achieved a loss less than
1.2 with this architecture.

Instead, we take inspiration from the concept of an au-
toencoder to design our neural network architecture (see Fig-
ure 2). This simple architecture takes an input and connects
it to some number of fully connected hidden layers which
include a “bottleneck.” This bottleneck is a hidden layer
which has a much smaller dimensionality than the input. The
output of the network is then re-expanded to have the same
dimensionality as the input. The network is then trained to
learn the identity function, with the idea that in order for
the network to compute the identity function through the
bottleneck, it must learn a dense representation of the input.
Thus, the autoencoder could be viewed as something akin
to a dimensionality reduction technique. We can also hope
that the bottleneck layer learns something useful related to
the structure underlying the input. For example, a neuron
in the bottleneck layer might represent something related to
the genre of a movie or similar movie groupings.

Note that we are not interested in learning to compute an
identity function—after all, our goal is to predict missing
ratings, not reproduce the zeros in the input vectors. Con-
sequently, while our final network architecture resembles
an autoencoder with the bottleneck hidden layers and the
matching dimensions on input and output, the network is
actually trained using a loss function for regression (i.e.,
RMSE) with the aim of learning to predict missing ratings.

More specifically, the training examples to the network
are user profiles with one rating withheld, and the output
is the predicted ratings for all movies in the dataset. While
the network is expected to predict ratings for each movie
based on a user profile, we only have the answer for the one
withheld rating. Consequently, we only propagate loss for
the missing rating when learning from the training example.3

3) The Deep Learning Recommender System: Withhold-
ing ratings does have the unfortunate consequence that our
deep learning model is only able to learn ratings for movies
similar to what the user has actually watched, as the loss
function is not directly affected by the output on unrelated
movies. Due to the bottleneck layer, the model is required to
generalize to some degree, but the model may have difficulty

3In code, this can be accomplished with the tf:gather function.

for movies which are drastically different than the movies
the user actually rated. While users do watch movies they
rate lowly, most of the time they do not rate more than a few
hundred items, and avoid watching completely non-relevant
movies, so it may be difficult for the model to predict ratings
for completely unrelated movies.

For the purposes of our loss function, which is root mean
squared error on known ratings, the fact that our network
may not learn how to output ratings for completely unrelated
movies does not seem to affect the test loss, probably
because the movies in the test data are related enough that
the patterns learned from the training data generalize to
the ratings in the test data. Of course, it may affect the
rankings, so it could be desirable to add a regularization
term (discussed in details in Section III-B) to the loss.

With this basic design in place, we have experimented
with several variations of this architecture using various
numbers of layers, and various sizes for the bottleneck layer.
The most interesting parameter was the size of the small-
est bottleneck layer, and after experimenting with various
values, we eventually settled on a bottleneck size of 512.
From there we experimented with different numbers of fully
connected layers, always using powers of 2 to increase and
decrease the dimensionality. The final network topology has
seven fully connected hidden layers with dimensions [4096,
2048, 1024, 512, 1024, 2048, 4096]. Each layer used a
rectified linear unit4 as the non-linear activation function.
The connecting weights of the hidden layers were initialized
using Xavier initialization [4] with the biases set to zeros.

4) Clustering: We have considered the idea of using
the smallest bottleneck layer in the network as some form
of a natural clustering. By forcing the input into such a
small dimensional space, the model must necessarily learn
something about the underlying structure of the input data.
The hypothesis was that by fixing a single neuron in the
bottleneck layer and zeroing out the remaining neurons in
the bottleneck layer, and then optimizing the input space for
this particular activation, we can visualize that structure by
showing the movies which trigger each cluster. For example,
we expect that there might be a neuron or small set of
neurons which trigger for various genres of movie, or various
styles of filmography.

Table I gives an example of such a “cluster” from op-
timizing the input to trigger a single bottleneck neuron.
These movies have common theme. Obviously, for this
network to be able to accurately predict movie ratings it
must learn some sort of structure. However, this structure
is more distributed throughout the bottleneck layer than
expected. One potential solution to this problem is to add a
regularization term to the loss which encourages sparsity in
the bottleneck layer.

4The rectified linear unit, or ReLU, is defined as max(0; x). While
simple, it is currently the state-of-the-art in activation functions for DNN.

Table I
A CLUSTER WHEN OPTIMIZING THE INPUT TO TRIGGER A SINGLE

BOTTLENECK NEURON

Jules and Jim (Jules et Jim) (1961)
Frankenstein Must Be Destroyed (1969)
Lolita (1962)
Lawnmower Man, The (1992)
First Knight (1995)
Urban Legends: Final Cut (2000)
Fair Game (1995)
Guinevere (1999)
Paradine Case, The (1947)
400 Blows The (Les quatre cents coups) (1959)

B. Regularization

Regularization in deep learning, and in machine learn-
ing in general, is an important concept which solves the
overfitting problem. It is very important to implement the
regularization while training a good model, since it is a
technique used in an attempt to solve the overfitting problem.

As mentioned earlier, regularization is an attempt to
correct for model overfitting by introducing additional in-
formation to the cost function. Within the context of least
squares linear regression, the regularization term is added to
a standard least squares linear regression cost function J as
defined below.

J(Θ) =
1

2
m [

m∑

i=1

(hΘ(x
i)− yi)2 + λ

n∑

j=1

Θ2

j] (2)

where Θ is the parameter values, m is the number of training
examples with n different features, hΘ(x

i) is the estimator
hΘ value for the training example i, yi is the actual labeled
value of training example i, and λ is the regularization
constant.

In discussing regularization we have employed L2 regu-
larization, whereas L1 regularization is another such strategy
for controlling overfitting. The two regularizations share the
same goal but differ in a few key respects. Note that in
Equation 2,

λ

n∑

j=1

Θ2

j (3)

is the L2 regularization term, whereas in L1, the same
regularization term is written as

λ

n∑

j=1

|Θj| (4)

Hence, the difference between L1 and L2 is that L2 uses
the sum of the square of the parameters, whereas L1 is the
sum of the absolute value of the parameters. In essence,
L1 regularization reduces some parameters associated with a
given feature to zero, whereas L2 regularization does not set
feature parameters to zero, but will only continue to reduce
the value of a given Θ.

Figure 3. Distribution of ratings in the full MovieLens dataset

IV. EXPERIMENTAL RESULTS

Prior to presenting the experimental results of our rec-
ommendation system, we discuss the dataset used for the
empirical study and the experimental setup. We first describe
the MovieLens dataset and then briefly explain the baseline
model used as a point of comparison.

A. MovieLens Data

In academia the most well-known movie ratings dataset
is undoubtedly the MovieLens dataset [6], although a close
second is probably the Netflix prize data released via Kag-
gle.5 For our recommendation system we utilize the latest
version of the MovieLens dataset, which is the recommended
version for education and development.6

The MovieLens dataset is provided by GroupLens, which
is a social computing research lab at the University of
Minnesota. The full MovieLens dataset contains ratings for
45,115 movies provided by 270,896 different users. In total,
the dataset contains 26,024,289 individual movie ratings.
Each rating allows users to assign between half a star and
five stars to a movie, in half star increments. Figure 3 shows
the distribution of the ratings in the data. Each rating is also
accompanied by a time stamp. Since the dataset does not
contain a standard train/test split, we used these time stamps
to split the data into training and test sets, with the oldest
90% of the data making the training set and the newest
10% of the data composing the test set. We did this with
the intent to mimic the problem faced by real world movie
recommendation systems which have all of the data up to a
certain point in time, and are faced with predicting movie
ratings going forward in time.

B. Full Dataset Versus BaseLine

As previously mentioned, there are a number of popu-
lar methods for performing collaborative filtering, includ-
ing nearest-neighbor based technique comparing user-user
similarity [2], nearest-neighborhood comparing item-item
similarity [11], and matrix factorization techniques [8]. We

5https://www.kaggle.com/netfix-inc/netfix-prize-data
6https://grouplens.org/datasets/movielens/latest

Figure 4. Graph showing loss (root mean squared error) decreasing over
time. Each step represents 1,000 training examples

determined user-user neighborhood approach with cosine
similarity and a neighborhood size of five performs the best
with respect to root mean squared prediction error. In our
empirical study, we used them all on the full MovieLens
dataset. We allocated enough RAM to fully vectorize these
algorithms. For example, in order to process the vectorized
version of the user-user nearest neighbor approach, we
computed a user-user similarity matrix which took nearly
600 GB in RAM. The non-vectorized brute force version
of the algorithm required more than a week to finish. An
alternative is to utilize a small version of the MovieLens
dataset, called the BaseLine dataset, which contains only
943 users and 1,682 movies as a development dataset. The
BaseLine database can be split into a train/test set, and we
can measure the root mean squared error of the predictions
of each of the proposed baseline algorithms.

C. Results

Using 90% of the full MovieLens dataset as training, we
trained the architecture described in Section III-A. It took
roughly 4 days using a Titan X GPU to make 30 passes over
the entire data before the training loss stabilized. Figure 4
shows the training loss (i.e. RMSE) decreasing over time.

We discuss the results of our model on the test set and
compare its results to the user-based neighborhood models.

1) Root Mean Squared Error: Table II summarizes the
results comparing our model-based approach with the user-
based neighborhood baseline. On the training data, our ap-
proach is stabilized around 0.42. The neighborhood approach
has learned parameters, as it simply relies on the training
data itself to make predictions. Consequently, there is no
training loss to report.

Table II
ROOT MEAN SQUARED ERROR (RMSE) FOR OUR USER-BASED

NEIGHBORHOOD BASELINE AND AUTOENCODER INSPIRED BY OUR
MODEL-BASED APPROACH

User-User KNN Model-based

Train N/A 0.4209
Test 11.6715 0.3544

On test data, our deep learning model-based algorithm
outperforms the neighborhood approach by a large margin.

However, it should be noted that for the purpose of making
movie recommendations, we do not actually care about the
error. Instead what we care about is the ranking of the top
few most highly rated movies. It is not an unreasonable
assumption that the algorithm which ranks better will also
have lower root mean squared error, but it is entirely possible
that despite the higher errors, the top ranked movies from the
model-based approach produce superior recommendations.
This is especially true when we consider that our algorithm
does not directly learn about highly unrelated movies.

2) Comparing Our Movie Recommendation Systems with
Others: Besides using RMSE as shown in Table II, we com-
pare between various well-known movie recommenders and
our deep learning movie recommendation model. These ex-
isting movie recommenders were chosen, since they achieve
high accuracy in recommendations on movies based on their
respective model, and more importantly they are simply
based on user ratings, but not solely on contents.

• MF. Yu et al. [17] and Singh et al. [13] predict ratings
on movies based on matrix factorization (MF), which
can be adopted for solving large-scale collaborative
filtering problems. Yu et al. develop a non-parametric
matrix factorization (NPMF) method, which exploits
data sparsity effectively and achieves predicted rank-
ings on items comparable to or even superior than
the performance of the state-of-the-art low-rank matrix
factorization methods. Singh et al. introduce a col-
lective matrix factorization (CMF) approach based on
relational learning, which predicts user ratings on items
based on the items’ genres and role players, which
are treated as unknown values of a relation between
entities of a certain item using a given database of
entities and observed relations among entities. Singh et
al. propose different stochastic optimization methods to
handle and work efficiently on large and sparse data sets
with relational schemes. They have demonstrated that
their model is practical to process relational domains
with hundreds of thousands of entities.

• ML. Besides the matrix factorization methods, prob-
abilistic frameworks have been introduced for rating
predictions. Shi et al. [12] propose a joint matrix fac-
torization model for making context-aware item recom-
mendations. The matrix factorization model developed
by Shi et al. relies not only on factorizing the user-item
rating matrix but also considers contextual information
of items. The model is capable of learning from user-
item matrix, as in conventional collaborative filtering
model, and simultaneously uses contextual information
during the recommendation process. However, a sig-
nificant difference between Shi et al.’s MF model and
other MF approaches is that the contextual information
of the former is based on movie mood, whereas other
MF models makes recommendations according to the

contextual information on movies.

• MudRecS [10], which makes recommendations on
books, movies, music, and paintings similar in content
to other books, movies, music, and/or paintings, respec-
tively that a MudRecS user is interested in. MudRecS
does not rely on users’ access patterns/histories, con-
nection information extracted from social networking
sites, collaborated filtering methods, or user personal
attributes (such as gender/age) to perform the recom-
mendation task. It simply considers the users’ ratings,
genres, role players (authors or artists), and reviews
of different multimedia items. MudRecS predicts the
ratings of multimedia items that match the interests of
a user to make recommendations.

• Netflix. We compare our deep learning recommenda-
tion system indirectly against the 20 systems that partic-
ipated in the Netflix contest in 2008 through MudRecS
[10]. The open competition was held by Netflix, an
online DVD-rental service, and the Netflix Prize was
awarded to the best recommendation algorithm with the
lowest RMSE score in predicting user ratings on films
based on previous ratings. On September 21, 2009,
the grand prize of one million dollars were given. The
RMSE scores achieved by each of the twenty systems,
as well as detailed discussions on their rating prediction
algorithms, can be found on the Netflix website.7

Figure 5 shows the Mean Absolute Error (MAE) and
RMSE scores of our deep learning movie recommender and
other recommendation systems on the MovieLens dataset.
RMSE and MAE are two performance metrics widely-used
for evaluating rating predictions on multimedia data [1].
Both RMSE and MAE measure the average magnitude
of error, i.e., the average prediction error, on incorrectly
assigned ratings. The error values computed by RMSE are
squared before they are summed and averaged, which yield a
relatively high weight to errors of large magnitude, whereas
MAE is a linear score, i.e., the absolute values of individual
differences in incorrect assignments are weighted equally in
the average. Our deep learning recommender outperforms
each of the movie recommenders as shown in Figure 5,
and the RMSE and MAE values are statistically significant
(p < 0.01) [14].

On the Netflix dataset, MudRecS achieves a RMSE score8

of 0.8571. MudRecS outperforms 18 recommendation sys-
tems and is only outperformed by two systems (Belkor and
Ensemble), both of which achieve the same score of 0.8567,
a small, insignificant fraction (0.8571 - 0.8567 = 0.0004)
better than MudRecS. The reason for the slightly better
RMSE score achieved by the two systems on the Netflix
dataset are twofold. Unlike MudRecS, Belkor and Ensemble

7https://www.netflixprize.com/leaderboard.html
8MAE scores were not computed on the Netflix dataset due to their

unavailability for the other 20 recommenders.

Figure 5. The MAE and RMSE scores for various movie recommendation
systems based on the MovieLens dataset

were specifically designed for movie rating predictions, and
the construction of their algorithms focus on rating patterns
found in movies which may not apply to other domains.
Moreover, Belkor and Ensemble account for temporal ef-
fects, i.e., the fact that a user’s preference changes over
time, which may lead to different ratings for the same
movie over time. The temporal effect, however, does not
apply to all users and requires a larger subset of training
data in order to obtain reliable results, which are the con-
straints. In considering a 95% confidence interval, MudRecS
significantly outperforms 17 recommendation systems and
is not significantly outperformed by any of the twenty
systems. CineMatch, Netflix’s recommender, achieves an
RMSE score of 0.9514 on the Netflix dataset, which is
outperformed by MudRecS. We ran our deep learning rec-
ommender system on the Netflix dataset and achieves a
0.782 RMSE score, which is lower than MudRecS, even
though the results are not statistically significant. However,
our recommender performs at least as good as MudRecS
based on the Netflix dataset.

3) User Evaluation: In order to establish the usefulness
of our deep learning approach in making movie recommen-
dation, we conducted a user study in which users, who
play the role of appraisers, had the chance to evaluate
movies recommended by our system and the user-based
neighborhood (KNN) approach.

Appraisers were shown a user profile, which consisted
of every movie the corresponding user had rated, as well
as the associated ratings. Each appraiser was then presented
two possible recommendations: one from our system and one
from the user-based neighborhood approach. The recommen-
dations were chosen by picking the movie with the highest
predicted rating from either system, excluding movies that
had already been rated by the user. The order in which the
two possible recommendations were shown was randomized.
Appraisers were asked to pick which recommendation they
thought was more relevant to the given user profile (see
Figure 6 for an example of the study).

A total of 100 participants, who were students at the
authors’ university, were used in the study. Each user, who

Criminal Minds

Scandal

Portlander

Flight

Sliver Linings Playbook

The Birdcage

OR

Figure 6. An example of the type of questions appraisers were asked to answer in the user evaluation of our deep learning-based system and the user-based
KNN approach.

is an appraiser, was asked to rate 15 randomly chosen rec-
ommendations. In this survey, 71.67% of the time appraisers
preferred the recommendation made using our deep learning
approach over the recommendation made by the baseline
approach, and this result is encouraging. Of course, it is
clear that this survey using a small sample size. In addition,
most of the appraisers indicated that they were unfamiliar
with most of movies referenced in the survey. Realizing this
problem in advance, we indicated in the survey that they
were allowed to use resources like Google9 and IMDBa10

while making their judgements.

V. CONCLUSIONS

We have proposed a simple neural network model which
performs well in terms of root mean squared error for
collaborative filtering. This adds to existing literature which
suggests that deep learning can be a powerful tool for a
variety of problems in information retrieval [18]. In the end,
this work makes improvement in terms of predicting ratings
of and recommending movies for users. Our recommender
system applies regularization to further minimize the pre-
diction errors. In addition, our system was able to handily
outperform the neighborhood-based baseline, and was able
to provide superior movie recommendations. As an added
advantage of our deep learning approach, it is much more
scalable at test time.

REFERENCES

[1] T. Chai and R. Draxler. Root Mean Square Error (RMSE) or
Mean Absolute Error (MAE)? Geoscientific Model Develop-
ment Discussions, 7(1):1525–1534, 2014.

[2] W. Croft, D. Metzler, and T. Strohman. Search Engines:
Information Retrieval in Practice. Addison Wesley, 2010.

[3] A. Elkahky, Y. Song, and X. He. A Multi-View Deep Learning
Approach for Cross Domain User Modeling in Recommenda-
tion Systems. In WWW, pages 278–288, 2015.

[4] X. Glorot and Y. Bengio. Understanding the Difficulty of
Training Deep Feed-Forward Neural Networks. In AISTATS,
pages 249–256, 2010.

9https://www.google.com
10www.imdb.com

[5] C. Gomez-Uribe and N. Hunt. The Netflix Recommender
System: Algorithms, Business Value, and Innovation. ACM
TMIS, 6(4):Article 13, 2016.

[6] F. Harper and J. Konstan. The Movielens Datasets: History
and Context. ACM TiiS, 5(4):Article 19, 2016.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. In IEEE CVPR, pages 770–778, 2016.

[8] Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization
Techniques for Recommender Systems. Computer, 42(8):30–
37, 2009.

[9] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. Alsaadi.
A Survey of Deep Neural Network Architectures and Their
Applications. Neurocomputing, 234:11–26, 2017.

[10] R. Qumsiyeh and Y.-K. Ng. Predicting the Ratings of
Multimedia Items for Making Personalized Recommendations.
In ACM SIGIR, pages 475–484, 2012.

[11] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-
based Collaborative Filtering Recommendation Algorithms. In
WWW, pages 285–295, 2001.

[12] Y. Shi, M. Larson, and A. Hanjalic. Mining Mood-Specific
Movie Similarity with Matrix Factorization for Context-Aware
Recommendation. In Context-Aware Movie Recommendation,
pages 34–40, 2010.

[13] A. Singh and G. Gordon. Relational Learning via Collective
Matrix Factorization. In SIGKDD, pages 650–658, 2008.

[14] M. Smucker, J. Allan, and B. Carterette. Agreement Among
Statistical Significance Tests for Information Retrieval Evalua-
tion at Varying Sample Sizes. In SIGIR, pages 630–631, 2009.

[15] H. Wang, N. Wang, and D.-Y. Yeung. Collaborative Deep
Learning for Recommender Systems. In KDD, pages 1235–
1244, 2015.

[16] J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang. Collaborative
Filtering and Deep Learning Based Recommendation System
for Cold Start Items. Expert Systems with Applications, 69:29–
39, 2017.

[17] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast Nonparametric
Matrix Factorization for Large-Scale Collaborative Filtering.
In ACM SIGIR, pages 211–218, 2009.

[18] S. Zhang, L. Yao, and A. Sun. Deep Learning Based
Recommender System: A Survey and New Perspectives. ACM
JOCCH, 1(1):Article 35, 2017.

