

Recommending Books for Children Based on the Collaborative and Content-Based Filtering Approaches

Yiu-Kai Ng^(✉)

Computer Science Department, Brigham Young University, Provo, UT 84602, USA
ng@compsci.byu.edu

Abstract. According to a study conducted by the National Institute of Child Health and Human Development, reading is the single most important skill necessary for a happy, productive, and successful life. A child who is an excellent reader often has confident and a high level of self esteem and can easily make the transition from learning to read to reading to learn. Promoting good reading habits among children is essential, given the enormous influence of reading on students' development as learners and members of the society. Unfortunately, very few (children) websites or online applications recommend books to children, even though they can play a significant role in encouraging children to read. Popular book websites, such as goodreads.com, commonsensemedia.org, and readanybook.com, suggest books to children based on the popularity of books or rankings on books, which are not customized/personalized for each individual user and likely recommend books that users do not want or like. We have integrated the collaborative filtering (CF) approach and the content-based approach, in addition to predicting the grade levels of books, to recommend books for children. The user-based CF approaches filter books appealing to each user based on users' *ratings*, whereas the content-based filtering method analyzes the *descriptions* of books rated by a user in the past and constructs a user profile to capture the user's preferences. Recent research works have demonstrated that a hybrid approach, which combines the content-based filtering and CF approaches is more effective in making recommendations. Conducted empirical study has verified the effectiveness of our proposed children book recommender.

Keywords: Book recommendation · Content analysis · Collaborative filtering · Children

1 Introduction

Reading is an activity performed on a daily basis: from reading news articles and books to cereal boxes and street signs. We recognize that children literacy forms a foundation upon which children will gage their future reading.¹ It is

¹ <http://www.deafed.net/publisheddocs/sub/9807kle.htm>.

imperative to motivate young readers to read by offering them appealing books to read so that they can enjoy reading and gradually establish a reading habit during their formative years that can aid in promoting their good reading habits. As stated in [22], learning to read is a key milestone for children living in a literate society, specially given that reading provides the foundation for children's academic success. A recent study [19] highlights the fact that children who "do not read proficiently by the end of third grade are four times more likely to leave school without a diploma than proficient readers." The results of the study correlate with earlier statistics [8] which confirm that 88% of children who are poor readers by the end of the first grade remain so by the end of the fourth grade. Moreover, young readers who successfully learn to read in the early primary years of school will more likely be prepared to read for pleasure and learning in the future [11]. The aforementioned findings constitute the essence of encouraging good reading habits early on. Identifying books appealing to children, however, can be challenging, given the amount of books made available on a regular basis that address a diversity of topics and target readers at different reading levels. It is essential to provide children with reading materials matching their preferences/interests and reading abilities, since exposing young readers to materials that are either too easy/difficult to understand or involving unappealing topics could diminish their interest in reading [1].

With the huge volume of children books available these days,² it is a time-consuming and tedious process for K-12³ teachers, librarians, and parents to manually examine the topic of each book and choose the one for their students/children to read. Moreover, it is hard for children to choose books to read on their own, since they lack of experiences on choosing appropriate books to read. Online book websites, such as goodreads.com and commensensemedia.org, make book recommendations to children based on the popularity and rankings. However, a child may not enjoy reading a popular book or a book with a very high ranking. For example, the book "Where the wild things are" is considered one of the most popular children books; however, some children find it unappealing to them because of the frightening scenes depicted in the book. Instead of relying on popularity or rankings on books, we have developed *CBRec*, a children book recommender, which adopts the *content-based* and *user-based collaborative filtering* approaches to make personalized book recommendations for children. The user-based and item-based collaborative filtering (CF) approaches are popular techniques for generating personalized recommendations [4]. When the data sparsity becomes a problem for certain children users, i.e., when there is not enough data to generate similar user groups or similar item groups to use

² According to a report published by the Statistics Portal (<http://www.statista.com/statistics/194700/us-book-production-by-subject-since-2002-juveniles/>) there are 32,624 children books published in the U.S.A. in 2012 alone.

³ K-12, which is a term used in the educational system in the United States and Canada (among other countries), refers to the primary and secondary/high school years of public/private school grades prior to college. These grades are kindergarten (K) through 12th grades.

the CF methods, the content-based filtering approach can be adopted to make personalized recommendations for the users.

CBRec is designed for solving the *information overload* problem while minimizing the *time* and *efforts* imposed on parents/educators/young readers in discovering unknown, but suitable, books for pleasure reading or knowledge acquisition. CBRec first infers the readability level of a user U by analyzing the grade levels of books in his/her profile, which are determined using ReLAT, a robust readability level analysis tool that we have developed [17]. Hereafter, CBRec identifies a set of candidate books, among the ones archived at a website, with grade levels compatible to the inferred readability level of U . The current implementation of CBRec is tailored towards recommending books written in English and classified based on the K-12 grade level system. CBRec, however, can be easily adopted to make suggestions in languages other than English.

CBRec is a novel recommender that exclusively targets children readers, an audience who has not been catered by existing recommendation systems. CBRec is a self-reliant recommender which, unlike others, does not rely on personal tags nor access logs to make book recommendation. CBRec is unique, since it explicitly considers the ratings and content descriptions on books rated by children, in addition to the readability levels of children.

The remaining of this paper is organized as follows. In Sect. 2, we discuss existing book recommenders that have been used for suggesting books for individual readers, including children. In Sect. 3, we introduce CBRec and its overall design methodology. In Sect. 4, we present the results of the empirical study on CBRec conducted to assess its performance. In Sect. 5, we give a concluding remark and present directions for future work on CBRec.

2 Related Work

In this section, we present a number of widely-used book recommenders and compare them with CBRec.

A number of book recommenders [10, 15, 25] have been proposed in the past. Amazon’s recommender [10] suggests books based on the purchase patterns of its users. Yang et al. [25] analyze users’ access logs to infer their preferences and apply the traditional CF strategy, along with a ranking method, to make book suggestions. Givon and Lavrenko [6] combine the CF strategy and social tags to capture the content of books for recommendation. Similar to the recommenders in [6, 25], the book recommender in [18] adopts the standard user-based CF framework and incorporates semantic knowledge in the form of a domain ontology to determine the users’ topics of interest. The recommenders in [6, 18, 25] overcome the problem that arises due to the lack of initial information to perform the recommendation task, i.e., the cold-start problem. However, the authors of [6, 25] rely on user access logs and social tags, respectively to recommend books, which may not be publicly available and are not required by CBRec. Furthermore, the recommender in [18] is based on the existence of a book ontology, which can be labor-intensive and time-consuming to construct [5].

In making recommendations, Park and Chang [15] analyze individual/group behaviors, such as clicks and shopping habits, and features describing books, such as their library classification, whereas *PReF* [16] suggests books bookmarked by connections of a LibraryThing user. *PReF* adopts a similarity-matching strategy that uses analogous, but not necessarily the same, words to the ones employed to capture the content of a book of interest to U . This strategy differs from the exact-matching constraint imposed in [15] and a number of content-based recommenders [7, 13]. However, neither *PReF* nor any of the aforementioned recommenders considers the readability level of their users as part of their recommendation strategies.

Vaz et al. [20] present a hybrid book recommendation system that take into account the preferences of users on the content of a book and its authors using two item-based CF approaches. Users' rankings on authors are predicted and are considered along with former book predictions for the users. Mooney and Roy [12], on the other hand, introduce a content-based book recommendation strategy which uses information about an item to make suggestions. An advantage of using the content-based approach for information filtering is that it does not rely on users' ratings on items which is useful in recommending previously unrated items. However, as shown in our empirical study (as presented in Sect. 4), the performance of a recommendation system based on either the item-based CF approach or content-based approach cannot achieve the same degree of effectiveness by incorporating the user-based and content-based filtering approaches.

As mentioned earlier, Givon and Lavrenko [6] predict user ratings on books by using tags attached to books on a social-networking sites. The authors attempt to solve the cold-start book recommendation problem by inferring the most probable tags from the text of a book. However, there are major design faults of the proposed book recommendation system. First of all, According to [2], only 7.7% of published books in the OCLC database, a popular and worldwide library cooperative, are linked to the partial or full content of their corresponding books. For this reason, it is a severe constraint imposed on any analysis tool that relies on even an excerpt of a book due to copyright laws that often prohibit book content from being made publicly accessible. Second, tags are not widely available at children's book sites, since *personal tags* [9] assigned to books are rarely provided by children at the existing social bookmarking sites established for them.

Woodruff et al. [23] apply spreading activation over a text document (i.e., books in their case) and its citations such that nodes in the activation represent documents, whereas edges are created using the citations. The authors claim that the fused spreading activation techniques are superior compared with the traditional text-based retrieval methods. However, unlike textbooks or reference books in the book market, children books lack of references and hence the spreading activation methodology is not applicable to the design of children book recommendation systems.

Cui and Chen [3] claim that existing book recommendation systems do not offer enough information for their users to decide whether a book should be

recommended to others. In solving the existing problem, the authors create recommendation pages of books which contain book information for the users to refer to. This recommendation approach, however, is not applicable to children, since the latter are interested in books recommended to them, instead of initiating the process of making recommendations on books to friends or other users on an online book websites.

3 Our Book Recommender

Content-based recommendation systems suggest books similar in *content* to the ones a given user has liked in the past, whereas recommendation systems based on the CF approaches identify a group of users S whose preferences represented by their ratings are similar to those of the given user U and suggests books to U that are likely appealing to U based on the ratings of S .

3.1 Identifying Candidate Books

We recognize that “reading for understanding cannot take place unless the words in the text are accurately and efficiently decoded” [14] and only recommends books with readability levels appropriate to its users. In order to accomplish this task, CBRec determines the readability level of a book (user, respectively) using ReLAT [17] developed by us. Due to the huge number of books written for K-12 readers, it is not feasible to analyze all the books (e.g., books posted at a social bookmarking site) to identify the ones that potentially match the interests of a site user U . Consequently, CBRec follows a common practice among existing readability analysis tools [24] and applies Eq. 1 to estimate the readability level of a user U , denoted $RL(U)$, based on the grade level of each book P_B in U ’s profile predicted by ReLAT, denoted $ReLAT(P_B)$. Note that only books bookmarked in a user’s profile during the most recent academic year are considered, since it is anticipated that the grade levels of books bookmarked by users gradually increase as the users enhance their reading comprehension skills over time.

$$RL(U) = \frac{\sum_{P_B \in P} ReLAT(P_B)}{|P|} \quad (1)$$

where $|P|$ denotes the number of books in U ’s profile and *average* is employed to capture the *central tendency* on the grade levels of books bookmarked by U .

CBRec first creates *CandBks*, the subset of books (archived at a social bookmarking site) that are compatible with the readability level of a user U which are further analyzed for making recommendations to U to ensure that recommendations made for U can be understood by and are suitable for U . *CandBks* includes a number of books considered by CBRec for recommendation, each of which is within-one-grade-level range from U ’s. By considering books within *one* grade level above/below U ’s mean readability level,⁴ CBRec recommends books with

⁴ We have experimentally determined this range to ensure the suitability of the recommended books with respect to the reading level of the corresponding user.

an appropriate level of complexity for U and grade levels approximate to the grade levels of books that have been read by U (as of the most recent academic year) and thus encourage users' reading growth which are neither too difficult nor too easy for U to understand.

Example 1. Consider a user U who has bookmarked a number of books from Dav Pilkey's "Captain Underpants" series. Based on the grade levels predicted by ReLAT for the books archived at BiblioNasium.com (see a sample of BiblioNasium books in Table 1) and U 's readability level, which is 4, CBRec does not include Bk_1 nor Bk_3 in $CandBks$, since their grade levels are below/beyond the range deemed appropriate for U and thus it is not considered for recommendation by CBRec for U . \square

3.2 The Content-Based Filtering Method

The content-based filtering approach recommend items to a user that are *similar* to the ones that the user prefers in the past. The approach can be adopted for identifying the common characteristics of books being liked by user u and recommend to u new books that share these characteristics. The *similarity of books* is computed by using the designated features applicable to the books to be compared. For example, if u offers very high ratings on books in the domain of adventure or a particular author, then the content-based filtering approach suggests other books to u based on the same domain, i.e., adventure, or author.

The Content-Based Filtering Approach Using the Vector Space Model. The content-based filtering method analyzes the descriptions of children books rated by a user u and construct the profile of u based on the descriptions which are used for predicting the ratings of books unknown to u . Given the attributes of a user profile that capture the preferences and interests of the user, a content-based recommender attempts to match the attributes with the ones that describe the content of another book to recommend new interesting books to the user. This method does not require the *ratings* on books given by other

Table 1. A number of BiblioNasium books

ID	Book title	Grade level
Bk_1	Mummies in the Morning	2.9
Bk_2	Captain Underpants and the Big, Bad Battle of the Bionic Booger Boy	4.7
Bk_3	The Hidden Boy	5.6
Bk_4	Dragon's Halloween	3.1
Bk_5	Junie B. Jones Smells Something Fishy	3.0
...

users as in the collaborative filtering approaches to predict ratings on unknown books to u . The user profile of u is a vector representation of u 's interests, which is constructed using Eq. 2.

$$X_u = \sum_{i \in \tau_u} r_{u,i} X_i \quad (2)$$

where τ_u is the set of books rated by user u , $r_{u,i}$ denotes the rating provided by user u on book i , and X_i is the vector representation of the description D on i with the *weight* of each keyword k in D computed by using the *term frequency (TF)* and *inverse document frequency (IDF)* of k .

The vector space model (VSM) is used to predict the *rating* of a book B unknown to user u using the profile P of u , denoted $CSim(P, B)$. The profile representation of P is computed using Eq. 2, whereas the vector representation of the description of B is determined similarly as X_i in Eq. 2, i.e., the *weight* of each keyword k in the description of B , denoted B_i , is calculated by using the TF/IDF of k .

$$CSim(P, B) = \frac{\sum_{i=1}^t (P_i \times B_i)}{\sqrt{\sum_{i=1}^t P_i^2 \times \sum_{i=1}^t B_i^2}} \quad (3)$$

where t is the dimension of the vector representation of P and B .

The Content-Based Filtering Approach Using the Naïve Bayes Model. Besides using the vector space model for content-based filtering, machine-learning techniques have also been widely used in inducing content-based profiles. In using the machine-learning approach for text (which can be adopted for profile) classification, an inductive process automatically constructs a text classifier by learning from a set of training documents, which have already been labeled with the corresponding categories. Indeed, learning to classify user profiles can be treated as a binary text categorization problem, i.e., each item is classified as either interesting or not interesting with respect to the user preferences as specified by the attributes in a user profile. In this section, we discuss the Naïve Bayes classifier, which is a widely-used machine-learning algorithm in content-based filtering approach. Even though a constraint imposed on using the machine-learning approach for content-based filtering is that items must be labeled with their respective classes during the training process, after the classifier has been trained, it can be used to automatically infer profiles based on the trained model.

The Naïve Bayes model is a probabilistic approach to inductive learning. The probabilistic classifier developed by the Naïve Bayes model is based on the *Bayes' rule* as defined below.

$$\begin{aligned} P(C|D) &= \frac{P(D|C) \times P(C)}{P(D)} \\ &= \frac{P(D|C) \times P(C)}{\sum_{c \in C} P(D|C=c)P(C=c)} \end{aligned} \quad (4)$$

where C (D , respectively) is a random variable corresponding to a class (document⁵, respectively).

Based on the term, which is either an attribute or a keyword in an item, independence assumption, the Naïve Bayes rule yields

$$\begin{aligned} P(c|d) &= \frac{P(d|c) \times P(c)}{\sum_{c \in C} P(d|c)P(c)} \\ &= \frac{\prod_{i=1}^n P(w_i|c) \times P(c)}{\sum_{c \in C} \prod_{i=1}^n P(w_i|c) \times P(c)} \end{aligned} \quad (5)$$

where w_i ($1 \leq i \leq n$) is a term in d , and $\sum_{c \in C} \prod_{i=1}^n P(w_i|c) \times P(c)$ is a *chain rule*.

The classification process is based on the following computation:

$$\begin{aligned} \text{Class}(d) &= \arg \max_{c \in C} P(c|d) \\ &= \arg \max_{c \in C} \frac{P(d|c) \times P(c)}{\sum_{c \in C} P(d|c) \times P(c)} \end{aligned} \quad (6)$$

where $P(d|c)$ is the *probability* that d is observed, given that the class is known to be c , and $P(c)$ is the *probability* of observing class c , which is defined as

$$P(c) = \frac{N_c}{N} \quad (7)$$

where N_c is the number of training items in class c , and N is the total number of training items.

In estimating $P(d|c)$ in Eq. 6, the *Multiple-Bernoulli model* is applied, since the Multiple-Bernoulli distribution is a natural way to model the distributions over binary vectors. $P(d|c)$ is computed in the *Multiple-Bernoulli model* as

$$P(d|c) = \prod_{w \in V} P(w|c)^{\delta(w,d)} (1 - P(w|c))^{1-\delta(w,d)} \quad (8)$$

where $\delta(w, d) = 1$ if and only if term w occurs in d .

Note that $P(d|c) = 0$ if there exists a $w \in d$ that never occurs in c in the training set, which is the *data sparseness* problem and can be solved by using the *Laplacian smoothed* estimate as defined below.

$$P(w|c) = \frac{df_{w,c} + 1}{N_c + 1} \quad (9)$$

⁵ From now on, unless stated otherwise, a document is treated as an item, such as a book.

where $df_{w,c}$ denotes the number of items in c which includes term w , and N_c is the number of items belonged to the class c .

In designing CBRec, we have decided to adopt the *vector space model* instead of the *Naïve Bayes* model, since the latter requires a trained model using a pre-defined labeled item set which imposes additional overhead. However, the *Naïve Bayes* model is an alternative model that can be considered in developing CBRec or other book recommender systems for children.

3.3 The Collaborative Filtering (CF) Approaches

The CF approaches rely on the ratings of a user and other users. The predicted rating of a user u on a book i is likely similar to the rating of user v on i if both users have rated other books similarly.

The User-Based CF Approach. The user-based CF approach determines the interest of a user u on a book i using the ratings on i by other users, i.e., the neighbors of u who have similar rating patterns [26]. We apply the Cosine similarity measure as defined in Eq. 10 to calculate the similarity between two users u and v and determine user pairs which have the lowest rating difference among all the users. Equation 10 can be applied to compute the *similarity* between a user and each one of the other users to find out the *similarity group* of each user. Two users who have the lowest difference rating value between them means that they are the *closest neighbors*.

$$USim(u, v) = \frac{\sum_{s \in S_{u,v}} (r_{u,s} \times r_{v,s})}{\sqrt{\sum_{s \in S_{u,v}} r_{u,s}^2} \times \sqrt{\sum_{s \in S_{u,v}} r_{v,s}^2}} \quad (10)$$

where $r_{u,s}$ ($r_{v,s}$, respectively) denotes the rating of user u (user v , respectively) on book s , and $S_{u,v}$ denotes the set of books rated by both users u and v .

Upon determining the K-nearest neighbors (i.e., KNN) of a user u using Eq. 10, we can compute the predicted rating on a book s for u using Eq. 11.

$$\hat{r}_{u,s} = \bar{r}_u + \frac{\sum_{v \in S_{u,v}} (r_{v,s} - \bar{r}_u) \times USim(u, v)}{\sum_{v \in S_{u,v}} USim(u, v)} \quad (11)$$

where $\hat{r}_{u,s}$ stands for the predicted rating on book s for user u , \bar{r}_u is the average rating on books provided by user u , $S_{u,v}$ is the group of closest neighbors of u , $r_{v,s}$ is the rating of user v on book s , and $USim(u, v)$ is the similarity measure between users u and v as computed in Eq. 10.

Instead of using the user-based predicted ratings as defined in Eq. 11, another commonly-used user-based rating prediction approach is given in Eq. 12 in which the rating prediction is computed for each user u on a new book i without considering *different levels of similarity* among users.

$$\hat{r}_{u,i} = \frac{1}{|N_i(u)|} \sum_{v \in N_i(u)} r_{v,i} \quad (12)$$

Table 2. Children's books and the ratings (in the range of 1-5) by the children

	Runny Babbit	Harry Potter	Kid Athletes	Funny Bones	Finding Winnie
Noah		4	2	3	3
Alex	5	4	3	1	4
Emma	3	4	?	1	5
Ava	4	3	4	2	5
Jacob	2			5	2

where $N_i(u)$ is the group of nearest neighbors of u who have rated book i and $r_{v,i}$ is the rating of i provided by user v who is one of the nearest neighbors of u .

If the nearest neighbors of u come with different levels of similarity with respect to u , denoted $w_{u,v}$, the predicted user-based rating using the different levels of user similarity is defined as

$$\hat{r}_{u,i} = \frac{\sum_{v \in N_i(u)} w_{u,v} \times r_{v,i}}{\sum_{v \in N_i(u)} w_{u,v}} \quad (13)$$

Example 2. Consider Table 2 which includes a number of children and their ratings on different books.

Two children, Emma and Ava, have very similar ratings on the five books listed in Table 2, whereas Emma and Jacob have very dissimilar ratings on corresponding books. Both Emma and Ava enjoyed the book *Finding Winnie* and disliked the book *Funny Bones*. However, Jacob really liked the book *Funny Bones*, whereas Emma did not like it at all.

Assume that we are supposed to predict the rating of the book *Kid Athletes* for Emma using the ratings provided by Ava and Alex, the two nearest neighbors of Emma. Further assume that the similarity values between Emma and Ava and between Emma and Alex are 0.8 and 0.5. Applying Eq. 13, the predicted rating on the book *Kid Athletes* for Emma would be

$$\hat{r}_{\text{"Emma"}, \text{"KidAthletes"}} = \frac{0.8 \times 4 + 0.5 \times 3}{0.8 + 0.5} \cong 3.62 \quad \square$$

We adopt Eq. 11 for the rating predictions using the user-based CF approach, instead of Eq. 13, which requires different levels of similarity among different users to be generated in advance. However, if the similarity weights are available among different users, Eq. 13 could be adopted in place of Eq. 11 in the user-based CF rating prediction.

The Item-Based CF Approach. Contrast to the user-based CF approach which relies on similar user groups to recommend books, the item-based CF approach computes the similarity values among different books and determines sets of books with similar ratings provided by different users. The item-based CF approach predicts the rating of a book i for a user u based on the ratings

of u on books similar to i . The *adjusted cosine similarity matrix* [21] is applied to compute the similarity values among different books and assign books with similar ratings into the same similar-item group as defined in Eq. 14.

$$ISim(i, j) = \frac{\sum_{u \in U} (r_{u,i} - \bar{r}_u) \times (r_{u,j} - \bar{r}_u)}{\sqrt{\sum_{u \in U} (r_{u,i} - \bar{r}_u)^2} \times \sqrt{\sum_{u \in U} (r_{u,j} - \bar{r}_u)^2}} \quad (14)$$

where $ISim(i, j)$ denotes the similarity value between books i and j , $r_{u,i}$ ($r_{u,j}$, respectively) denotes the rating of user u on book i (j , respectively), \bar{r}_u is the average rating for user u on all books u has rated, and U is the set of books rated by u .

Equation 14 computes the similarity between two books, whereas Eq. 15 predicts the rating for user u on book i .

$$S_{u,i} = \bar{r}_u + \frac{\sum_u (r_{u,i} - \bar{r}_u)}{u(i) + r} + \frac{\sum_{j \in I(u)} (r_{u,j} - \frac{\sum_u (r_{u,j} - \bar{r}_u)}{u(j)})}{I(u) + r} \quad (15)$$

where $S_{u,i}$ denotes the predicted rating on book i for user u , \bar{r}_u denotes the *average rating* on all books u has rated, $r_{u,i}$ ($r_{u,j}$, respectively) is the rating on book i (j , respectively) provided by u , $I(u)$ is the set of books u has rated, $u(j)$ is the number of users who has rated i , and r is the book rating which is used to decrease the extremeness when there are not enough ratings available, which is determined experimentally.

The first component on the right-hand side of Eq. 15 is called the *global mean* which is the average rating on all the books u has rated. The second component is called the *item offset* which is the score for user u on book i , whereas the third component is called the *user offset* which is the user prediction on book i .

An alternative item-based CF approach is presented in [4] which considers similar items (i.e., books in our case) with similarity weights between two items, which are predefined. The predicted rating on item i for user u is computed as follows.

$$\hat{r}_{u,i} = \frac{\sum_{j \in N_u(i)} w_{i,j} \times r_{u,j}}{\sum_{j \in N_u(i)} |w_{i,j}|} \quad (16)$$

where $N_u(i)$ is the set of items rated by user u that are *most similar* to item i , and $w_{i,j}$ is the *similarity weight* between items i and j .

Example 3. Consider Example 2 again. Instead of consulting Emma's peers, CBRec considers the ratings on the books Emma and others have read in the past. Based on the ratings provided by children as shown in Table 2, the two books that are the closest neighbors, i.e., most similar in terms of ratings, of the book *Kid Athletes* are *Harry Potter* and *Finding Winnie*. Assume that the similarity values between the books *Kid Athletes* and *Harry Potter* and between *Kid Athletes* and *Finding Winnie* are 0.55 and 0.35. As shown in Table 2, the ratings given by Emma on *Harry Potter* and *Finding Winnie* are 4 and 5, respectively, the predicted rating on *Kid Athletes* for Emma is

$$\hat{r}_{\text{"Emma"}, \text{"KidAthletes"}} = \frac{0.55 \times 4 + 0.35 \times 3}{0.55 + 0.35} \cong 4.3 \quad \square$$

Once again we do not adopt Eq. 16 for our item-based CF approach, since the similarity weights of two items must be predefined.

4 Experimental Results

In this section, we first introduce the datasets used for the empirical study conducted to assess the performance CBRec (in Sect. 4.1). Hereafter, we present the results of the empirical study on CBRec in Sect. 4.2.

4.1 Datasets

We have chosen a number of children book records included in the Book-Crossing dataset to conduct our performance evaluation of CBRec.⁶ The book-crossing dataset was collected by Cai-Nicolas Ziegler from the book-crossing community. It contains 278,858 users who provide 1,149,780 ratings on 271,379 books. Since not all of books in the book-crossing database are children books, we pre-processed the dataset to extract only children book records. Each record includes a user_ID, the ISBN of a book, and the rating provided by the user (identified by the user_id) on the book. We used [Amazon.com](https://www.amazon.com) AWS advisement API to verify that the ISBNs from the book-crossing dataset are valid and they are children books. Out of the 271,379 books in the Book-Crossing dataset, approximately 29,000 books are children books, which is denoted as CBC_DS.

Besides using the children books and their ratings in the Book-Crossing dataset, we extracted the book description of 30 % of the children books in CBC_DS from [Amazon.com](https://www.amazon.com), since they were missing in the children books and needed for the content-based filtering approach. The Amazon dataset yields the additional dataset used for evaluating the performance of CBRec. Figure 1 shows the differences in terms of prediction errors using only 70 % versus 100 % of book descriptions generated by the content-based filtering approach.

4.2 Performance Evaluation of CBRec

In our empirical study, we considered the similar user group size of *ten* users in the user-based CF approach, since LensKit,⁷ which has implemented the user-based CF method and has been cited in a number of published papers, has demonstrated that ten is an ideal group size in predicting user ratings. We have also chosen *ten* to be the group size of books used in the content-based and item-based CF approaches, since the prediction error rate using this group size is the most ideal, in terms of size and accuracy, as demonstrated in our empirical study and reported in Fig. 1.

To evaluate the performance of CBRec, we computed the prediction error of CBRec for each user U in CBC_DS by taking the absolute value of the difference

⁶ Other datasets can be considered as long as they contain user_IDs, book ISBNs, and rating information.

⁷ <http://lenskit.org/>.

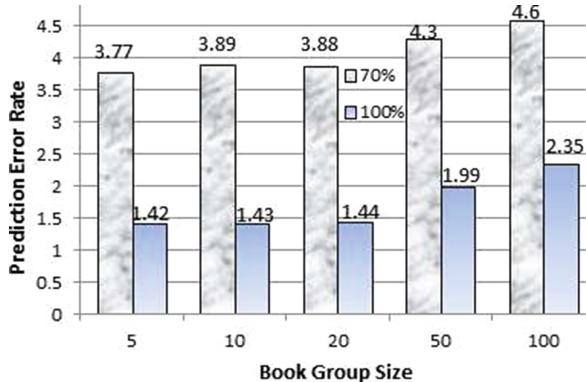


Fig. 1. Prediction errors of the content-based approach on the children books in the Book-Crossing dataset

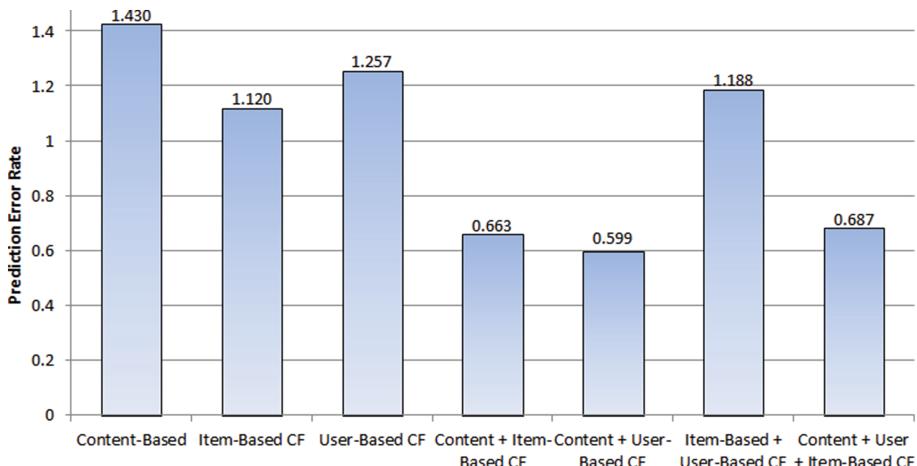


Fig. 2. Prediction error rates of the various filtering approaches and their combinations

between the real and predicted ratings on each book U has rated in the dataset. These prediction errors were added up and divided it by the total number of predictions. Figure 2 shows the prediction error rate of each filtering approaches and their combinations.

As shown in Fig. 2, the combined content-based and user-based CF approach, denoted CUB, outperforms individual and other combined prediction models in terms of obtaining the lowest prediction error rates among all the models. CUB achieves the highest prediction accuracy, which is only *half* a rating (out of 10) away from the actual rating, since the content-based filtering approach compensates the user-based CF approach when user ratings are *sparse* and vice versa. The prediction error rate, i.e., accuracy ratio, achieved by UCB is

statistically significant ($p < 0.05$) over the ones based on the combined content-based and item-based CF approach and the combination of all the three filtering approaches, the next two models with prediction error rate lower than *one*, which are determined using the Wilcoxon test signed-ranked test. The experimental results have verified that UCB is the most accurate recommendation tool in predicting children's ratings on books, which is the most suitable choice for making book recommendations for children based on the rating prediction.

5 Conclusions and Future Work

Existing book recommenders either are (i) not personalized enough, since they make the *same* recommendations to all users on a given book, (ii) based on the availability of users' historical data in the form of social tags, which may not be publicly available on children, or (iii) developed for a *general audience*, instead of taking into account the reading levels of their users. To address these issues, we have developed CBRec, a book recommender tailored to children, which simultaneously considers the reading levels and interests of its users in making personalized suggestions. CBRec adopts the widely-used *content-based filtering* approach and the *user-based collaborative filtering* approach and integrates the two filtering approaches in predicting ratings on children books to make book recommendation. Predicted ratings on children books, in addition to the readability levels of the (candidate) books to be considered for recommendation, provide CBRec the wealth of useful information to suggest books with appropriate levels of complexity and topics of interest that are appealing to children.

CBRec is unique, since it makes *personalized* suggestions on books that satisfy both the *preferences* and *reading abilities* of its users. Unlike current state-of-the-art recommenders that rely on the existence of user access logs or social tags, CBRec simply considers *brief descriptions* on children's books, their *ratings*, and their *grade levels* computed using our grade-level prediction tool, ReLAT, which is different from popular readability formulas that focus solely on analyzing lexicographical and syntactical structures of the texts in books. Information, such as metadata and ratings on books, are readily available on (children) social bookmarking websites, such as goodreads.com., whereas ReLAT can determine the grade level of any book (even if a sample of the text of a book is unavailable) by analyzing the Subject Headings of books, US Curriculum subject areas identified in books, and information about the authors of books. As children continue to read more books if they can *choose* what to read [1], a significant contribution of CBRec is to provide children a selection of suitable books to choose from that are not only appealing to them, but can be comprehended by them. The conducted experiments demonstrate the effectiveness of CBRec in suggesting books for children.

As a by-product of this research work we have created a benchmark dataset consisting of users and books, in addition to metadata and readability levels of the books, which can be used to assess the performance of recommenders that provide books suggestions to K-12 readers.

As part of our future work, we intend to extend CBRec so that it can suggest reading materials for struggling readers, especially the ones with learning disabilities and those who learn English as a second language. For these readers, their readability levels can be different from ordinary students. Book recommenders can aid these users by finding books potentially of interest to them.

References

1. Allington, R., Gabriel, E.: Every child, every day. *Read. Core Skill* **69**(6), 10–15 (2012)
2. Chen, X.: Google books and worldcat: a comparison of their content. *Online Inf. Rev.* **36**(4), 507–516 (2012)
3. Cui, B., Chen, X.: An online book recommendation system based on web service. In: *Proceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2009)*, pp. 520–524 (2009)
4. Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) *Recommender Systems Handbook*, pp. 107–144. Springer, Heidelberg (2011)
5. Ding, Z.: The Development of ontology information system based on bayesian network and learning. In: Jin, D., Lin, S. (eds.) *Advances in Multimedia, Software Engineering and Computing Vol. 2. Advances in Intelligent and Soft Computing*, vol. 129, pp. 401–406. Springer, Heidelberg (2012)
6. Givon, S., Lavrenko, V.: Predicting social-tags for cold start book recommendations. In: *Proceedings of the 3rd ACM Conference on Recommender Systems (ACM RecSys 2009)*, pp. 333–336 (2009)
7. Guan, Z., Wang, C., Bu, J., Chen, C., Yang, K., Cai, D., He, X.: Document recommendation in social tagging services. In: *Proceedings of the 19th International World Wide Web Conference (WWW 2010)*, pp. 391–400 (2010)
8. Juel, C.: Learning to read and write: a longitudinal study of fifty-four children from first through fourth grade. *Educ. Psychol.* **80**, 437–447 (1988)
9. Li, H., Gu, Y., Koul, S.: Review of digital library book recommendation models. *SSRN* (2009). <http://dx.doi.org/10.2139/ssrn.1513415>
10. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. *IEEE Internet Comput.* **7**(1), 76–80 (2003)
11. Ministry of Education of Ontario. A Guide to Effective Instruction in Reading, Kindergarten to Grade3 (2005). <http://goo.gl/UCo5e3>
12. Mooney, R., Roy, L.: Content-based bookrecommending using learning for text categorization. In: *Proceedings of the fifth ACM Conference on Digital Libraries (DL 2000)*, pp. 195–204 (2000)
13. Nascimento, C., Laender, A., da Silva, A., Goncalves, M.: A source independent framework for research paper recommendation. In: *Proceedings of ACM/IEEE Joint Conference on Digital Libraries (JCDL 2011)*, pp. 297–306 (2011)
14. Oakhill, J., Cain, K.: The precursors of reading ability in young readers: evidence from a four-year longitudinal study. *Sci. Stud. Read. (SSR)* **16**(2), 91–121 (2012)
15. Park, Y., Chang, K.: Individual and group behavior-based customer profile model for personalized product recommendation. *Expert Syst. Appl.* **36**(2), 1932–1939 (2009)

16. Pera, M.S., Ng, Y.-K.: With a little help from my friends: generating personalized book recommendations using data extracted from a social website. In: Proceedings of the 2011 IEEE/WIC/ACM Joint Conference on Web Intelligent (WI 2011), pp. 96–99 (2011)
17. Pera, M.S., Ng, Y.-K.: What to read next?: making personalized book recommendations for K-12 users. In: Proceedings of the 7th ACM Conference on Recommender Systems (ACM RecSys 2013), pp. 113–120 (2013)
18. Sieg, A., Mobasher, B., Burke, R.: Improving the effectiveness of collaborative recommendation with ontology-based user profiles. In: Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems (ACM HetRec), pp. 39–46 (2010)
19. The Annie E. Casey Foundation. Early Warning Confirmed: A Research Update on Third-Grade Reading (2013). <http://goo.gl/HQrPOA>
20. Vaz, P., de Matos, D., Martins, B., Calado, P.: Improving a hybrid literary book recommendation system through author ranking. In: Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL2012), pp. 387–388 (2012)
21. Wang, J., de Vries, A., Reinders, M.: Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2006), pp. 501–508 (2006)
22. Whitehurst, G., Lonigan, C.: Emergent literacy: development from prereaders to readers. In: Handbook of Early Literacy Research, vol. 1. The Guilford Press (2003)
23. Woodruff, A., Gossweiler, R., Pitkow, J., Chi, E., Card, S.: Enhancing a digital book with a reading recommender. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2000), pp. 153–160 (2000)
24. Wright, B., Stenner, A.: Readability and reading ability. ERIC Document Reproduction Service No. ED435979 (1998)
25. Yang, C., Wei, B., Wu, J., Zhang, Y., Zhang, L.: CARES: A ranking-oriented CADAL recommender system. In: Proceedings of ACM/IEEE Joint Conference on Digital Libraries (JCDL 2009), pp. 203–212 (2009)
26. Zhao, Z., Shang, M.: User-based collaborative-filtering recommendation algorithms on hadoop. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM KDD), pp. 478–481 (2010)