
Recommending Long-Tail Items Using Extended Tripartite Graphs

Andrew Luke
Computer Science Department

Brigham Young University
Provo, Utah 84602, USA
kiyotaka.a.l@gmail.com

Joseph Johnson
Computer Science Department

Brigham Young University
Provo, Utah 84602, USA

josephjohnson11@gmail.com

Yiu-Kai Ng
Computer Science Department

Brigham Young University
Provo, Utah 84602, USA

ng@compsci.byu.edu

Abstract—With the popular and increasing power of the
Internet these days, the effort of distributing and inventory
costs of stocking various online retailing items are nearly
negligible. In addition to selling popular, called “short-head”,
items in large quantities, online retailers, such as Amazon,
offer a large number of unique items, called “long tail”,
with relatively small quantities sold. Retailers realize that
it has high value to sell items from the long-tail category,
since for users these long-tail items could meet the interest
of them and surprise them simultaneously. Retailers also
recognize that long-tail items can be an untapped source of
revenue for a business; however, it is difficult to connect
customers with long-tail items they are interested in, since
they are unaware of them. Recommender systems help bridge
the gap between users and long-tail items by learning user
preferences and recommending appropriate items to them. In
this paper, we propose a new tripartite graph recommender
system, which is designed to suggest long-tail items. Compared
with other graph-based recommender systems, our proposed
recommendation system solves the tripartite variant problem
suffered by existing approaches for having a low diversity
score. A rework of the tripartite graph system is introduced,
called the extended tripartite graph system, which enhances the
performance of existing long-tail recommendation approaches
measured by using two widely-used performance metrics: recall
and diversity. Experimental results on the extended tripartite
graph algorithm verify its merits and novelty.

Keywords-long-tail items; recommendation; tripartite graphs

I. INTRODUCTION

In an inventory, items can be generally divided into short-
head items and long-tail items. Short-head items are items
that are well-known and popular to users, whereas long-
tail items are products that are lesser-known. It is not the
case that long-tail items are inferior to short-head items,
i.e., these items may still be favorably reviewed and well-
received, but they are niche and relatively unknown to the
general population, especially potential buyers.

To businesses, long-tail items are of great interest as they
have the potential to be a significant source of revenue,
whereas short-head items are generally more competitive,
since popular items are well-known and many businesses
carry the products which drives profits per item down.
The lower popularity of long-tail items means that fewer
competitors carry the items, allowing businesses to make

more profit off of the items. Carrying a niche product can
also draw new customers—people are attracted to a business
that consistently offers interested, hard-to-find items.

Knowing who is interested in long-tail items, however, is
a difficult problem to solve [11]. There are many long-tail
items and since they are niche products, they are not visible,
relatively unfamiliar, and unexplored to a given customer.
Due to the low popularity of a long-tail item with which
data about the item is sparse, purchasing and preference
information on the item are often missing. The less rating
and purchase information is available about an item, the
more difficult it is for a recommender to correctly learn about
the item in order to make good recommendations.

In the past, Yin et al. [15] and Shang et al. [13] have pro-
posed different algorithms that enhance long tail recommen-
dations. Yin et al. argue that traditionally, the Pareto Rule, or
the 80/20 rule, seemed to hold in that a large amount (80%)
of company revenues was generated by relatively few (20%)
products. Yin’s method modifies the probability variables of
the hitting time algorithm to increase the likelihood that a
random walker reaches the long tail regions of a bipartite
graph, whereas Shang et al.’s approach is a collaborative
filtering method that employs a tripartite graph and random
walkers to find users with similar tastes as a user u [1].
Our proposed method combines elements of these methods,
as well as elements from the familiar PageRank algorithm,
to increase the likelihood that u is recommended items (i)
whose characteristics are appealing to u, and (ii) are found
in the long tail region. Specifically, we reduce the long
tail recommendation problem to traversing a tripartite graph
through a Markov process. In other words, we represent
the tripartite graph as a stochastic matrix and after t (≥
1) iterations make recommendations to u based on the
probability of arriving at each of the items available.

In this paper, we look at the long-term recommender
system developed by Johnson et al. [7], which has been
shown to outperform Yin’s and Shang’s approaches, and
rework it better to recommend long-tail items. We first
discuss work relevant to Johnson et al.’s tripartite graph
recommender system. Hereafter, two test metrics, recall
and diversity, are defined. A proposal of a rework of the
tripartite graph recommender algorithm is given, along with

the rationale for changes and performance results for recall
and diversity. The results are compared against the original
algorithm and previous long-tail recommender systems.

The rest of the paper is organized as follows. In Section II,
we present existing representative recommender systems that
target the long-tail problem. In Section III, we introduce our
extended tripartite graph algorithm used by our recommen-
dation system. In Section IV, we evaluate the performance
of our recommendation approach. In Section V, we give a
concluding remark.

II. RELATED WORK

Recommendation systems have typically been divided into
two categories: content-based filtering and collaborative-
based filtering. Collaborative-based filtering provides rec-
ommendations based on the users most similar to a user
u or the products most similar to the products p rated by
u [5], [10]. The weakness of this process is that it tends
to provide local, trivial recommendations. Content-based
filtering refers to predicting a rating by u for a product
p based on a feature vector of descriptions of products
previously rated by u [12]. Unfortunately, most products lack
elaborate descriptions, which makes for poor predictions. In
addition, products that do not have similar features to those
rated by u are not recommended. In other words, this method
provides no novel recommendations. The usage longevity
of collaborative-based filtering and content-based filtering
is that they tend to do well in the head market. However,
as mentioned before, we believe the real value to users
comes from long-tail recommendations; the introduction of
products they would likely never discover through a non-
algorithmic search.

Instead of relying on collaborative-based or content-based
filtering approach, Yin et al. [15] introduce a number of
bipartite graph-based recommender algorithms in which
users and items are nodes connected based on users’ ratings
of items. In their hitting time (denoted HT) algorithm, given
an adjacency matrix A of nodes which represent users and
items and edges which represent ratings, edges in the graph
are defined as Pi,j = a(i,j)

di
, where Pi,j is the weight of

the edge between user i and item j, a(i, j) is a user rating
connecting an item j and a user i as contained in A, and
di =

∑n

k=1 a(i, k) is the degree of user i.
The hitting time, as defined in [15], from (node) j to

(node) q, denoted H(q|j), is the expected number of steps
that a random walker starting from item j (j �= q) will take
to reach user q. Hitting time has the property such that it is
lower when q and j are relevant and few users have rated j.
Two nodes are relevant when (i) there are many paths that
connect them, (ii) the paths are short, and (iii) the edges in
the path have a high weight, i.e., a user rated that item highly.
This is ideal in trying to make long-tail recommendations,
i.e., given a user and an item, the hitting time score will
be minimized if they are relevant and the item is a long-tail

item. We can calculate a hitting time score for every user for
every item. This gives a list of recommendations for a user,
along with how strongly an item is being recommended.

Yin et al. also proposes two other graph-based algorithms,
which are referred as the AC1 and AC2 algorithms [15].
Essentially, the AC algorithms build on their HT algorithm
by weighting some user’s ratings more than others. Users
who have limited preferences are considered “experts” and
are given more consideration than people who has a wide
range of tastes. (The formal definitions of the AC algorithms
are given in Section IV-A2.)

Shang et al. [13] present a tripartite graph-based approach
to solve the long-tail recommendation problem. They supple-
ment user-item data with user-tag data. Connections between
users and items are a binary value, regardless of the user’s
rating, i.e., if a user rated an item, then that connection has a
weight of 1, and 0 otherwise. Their approach is most similar
to a collaborative filtering system, where users are compared
to other users, and items are recommended if they are rated
highly by similar users.

III. OUR TRIPARTITE RECOMMENDATION SYSTEM

In discussing graph structure, we refer to individual users,
items, and other latent information as “nodes”. Each node
is contained within a “set”, which is a group of similar
elements—users, items, or latent information. The edge that
connects nodes is referred to as a “connection” or “path”,
and the strength of the connection as its weight.

In constructing the graph structure to capture the relation-
ships among users, items, and latent information, Joseph et
al.’s tripartite recommender system [7] is an extension of
Yin’s graph-based recommendation approach [15]. Yin’s bi-
partite approach uses only item and user data, and Johnson’s
tripartite approach adds in latent information in a new set
which is connected to the item and user sets. It is anticipated
that the latent information helps fill in gaps where user-item
data is sparse and serves a bridge which provides another
path when traversing the graph. Recall that in Yin’s hitting
time algorithm, the more short paths connect a user to an
item, the stronger the recommendation of the item for that
user. In the case of the tripartite algorithm, the bipartite
graph is supplemented by latent information, such as genre.
The graphical representation shown in Figure 1 illustrates
the basic differences in structure between Yin’s bipartite
approach and Johnson’s tripartite method. Note that while
the tripartite algorithm of [7] uses only genre information
specifically as examples, the algorithm can be used on any
kind of latent information that is set based.

Regarding movie’s genre, the tripartite graph in [7] uses
the full genre, which is essentially a list of genre tags such
as “Action, Adventure, Comedy, Romance”. Each node in
the genre set is a set of full genres represented in the item
set (meaning every item node has its full genre represented
in the genre set). The tripartite graph in [7] uses the same

Figure 1. Yin et al.’s Bipartite [15] (on the left) versus Johnson et al.’s
Tripartite [7] Graph Structure (on the right)

Figure 2. Bipartite representation of user-item dataset in [15]

algorithm as Yin et al.’s hitting time algorithm [15] discussed
earlier. User-item relations are still defined by the rating a
user gives an item. However, the hitting time algorithm does
not define the weights of user-genre connections or genre-
item connections. Instead, they are defined as follows based
on the movie genres (see Figure 2 for an example):

• User-genre: the user’s average rating for movies they
have seen with the given genre such that 0 is given if
the user has not rated any movies with this genre.

• Genre-item: the average rating for the item across all
users if the genre matches the item, and 0 otherwise.

Johnson et al.’s tripartite graph algorithm [7] also uses a
Markov process [4] to simulate random-walker movements
(as seen in Yin’s hitting time algorithm [15]). The Markov
process starts with a stochastic transition matrix, which holds
the probabilities of a random walker traveling from one node
to another. If there is only one edge from node A to node B,
then the probability that the random walker moves from A to
B is 1.0. The more edges a node has, the less likely it is for
a random walker to travel from that node to a specific node.
By multiplying this stochastic transition matrix to itself, we
can obtain the probability of a random walker starting at a
node X ending up on node Y in two steps. By continuing
to multiply this matrix by the transition matrix, we can
calculate the probabilities of a random walker starting on
node X and ending on node Y in T (≥ 1) number of
steps. Essentially, this T value dictates how long the random-
walker is allowed to traverse the graph.

Johnson et al. argue that lower values of T are more
appropriate for long-tail item recommendation, since the
higher the T -value, the more likely a random walker is to
end up on a short-head node. Intuitively, if a random walker
were to have a very long time to explore a graph, it is mostly
likely to end up on nodes with a higher degree, giving the
walker a short period of time to crawl the graph means that
it will be more likely to end on nodes that are relevant to its
starting node. By keeping values of T low, the high degree
of long-tail items has less effect on the recommendation
strength. Johnson et al. [7] calculated recall and diversity
scores for T = [3, 5, 7]. We consider when T = [3, 5],
which are the T 3 and T 5 tripartite graph algorithms in [7],
since they had better experimental results than T 7.

The MovieLens dataset was used to generate recall and
diversity scores for the Johnson et al.’s tripartite algorithm
[7], which are formally defined below. The dataset contains
information on a set of users and movies, along with a list
of ratings created by the users for the movies.

A. Testing Metrics

Recall and diversity are the two metrics used to evaluate
Johnson et al.’s tripartite recommender system. Recall mea-
sures a recommender system’s ability to correctly learn a
user’s preferences, which is calculated as follows:

1) A set of users is chosen randomly.

2) For each user, an item is randomly chosen from the
set of items rated 5 stars by the user.

3) Rating information relating the item to the user is
scrubbed from the data set, and the scrubbed data set
contains no information that the user ever rated the
particular item.

4) For each user, a set of items unrated by the user is
randomly selected. The number of selected items is
the same for all users.

5) The recommendation algorithm is run using the
scrubbed data set.

6) The recommendation score is created for the items
in Steps 2 and 4, which are sorted according to the
scores.

7) A Recall@N measure is taken for various values of
N (≥ 1). Recall@5 (Recall@10, respectively) checks
whether the 5-star item (from Step 2) is in the top-
5 (top-10, respectively) recommendations, and so on.
This is repeated for each user.

8) An overall Recall value is calculated for each value of
N . Recall@N is defined as

Recall@N =

∑
Hit@N

|L|
(1)

where Hit@N = 1 if the item in Step 2 is in the top-N
items and 0 otherwise, and L is the number of users
chosen in Step 1.

In Recall, a user’s highly-rated item suggests a preference
in the user’s tastes. The recommender should learn those
tastes, and make recommendations based on that knowledge.
While we know that the user likes the item chosen in Step 2,
the recommender does not have access to that information
(because the data was scrubbed) and must learn it. If the
recommender is learning the user’s preferences correctly, it
should give a strong recommendation for the item chosen in
Step 2, resulting in a higher recall value.

The diversity score [3], on the other hand, measures how
diverse a set of items a recommender suggests. Intuitively,
if a recommendation algorithm suggests a very narrow
set of items to a wide variety of users, it’s likely that
the suggestions are not niche, long-tail items but rather
the generally popular short-head items. A higher diversity
score indicates that the recommender system is suggesting a
variety of items across many users that are likely preferred
by the users. The diversity score is computed as

Diversity =
∪u∈URu

|I|
(2)

where U is a set of users, Ru is the set of items recom-
mended for user u, and |I| is the maximum possible number
of unique items that could be recommended. Specifics about
the calculation of recall and diversity for our tripartite graph
recommender algorithm are discussed in Section IV-B.

B. Recalculating Diversity

The diversity score, as defined in Equation 2, is used
by Johnson et al.’s recommendation system [7]. In their
tripartite graph system, U is defined as 200 (i.e., 200 random
users), Ru is the top-10 items recommended to user u, and
|I|, which is the maximum number of unique items that
could be recommended, is set to be 200 × 10 = 2,000 items.

The original tripartite graph recommender as proposed
by Johnson et al. makes recommendations for items that
users had already rated. For example, if a user gave the
rating of 5 to a movie, then it tends to show up as a highly
recommended item for that user. In a practical recommender
system, it would not make sense to recommend items that
a user has already seen and rated, so the original algorithm
was changed to remove these unnecessary recommendations
in our new tripartite graph algorithm.

C. Our Enhanced Tripartite Graph Algorithm

We have improved the tripartite algorithm developed by
Johnson et al. [7], and we refer ours as the extended tripartite
recommender. The extended algorithm connects the user,
genre, and item sets according to following setups:

Figure 3. Full versus basic genre graphs

1) User-item: the user’s rating for the item is 0 if the user
has not rated the item.1

2) User-genre: the Bayesian average for the genre as
defined in Equation 4.

3) Genre-item: the average rating of the item divided by
the number of basic genres for applicable basic genres.

In making changes to Johnson et al.’s algorithm, we seek
to change the user-genre relationship to better utilize the
data, and the genre-item relationship to create more paths
in the graph. The extended system uses “basic genres”, a
split-up version of the “full genre” used by Johnson et al.’s
tripartite graph algorithm. Basically, a full genre consists
of a set of tags applied to a movie, whereas a basic genre
breaks up the full genre into its individual tags. For example,
“Action, Adventure, Comedy” is a full genre, whereas its
basic genres are “Action,” “Adventure,” and “Comedy.”

The original tripartite algorithm proposed by Johnson et
al. [7] does not fully take advantage of this connectedness
metric when connecting an item node to a genre node, i.e.,
there is always one and only one path from an item node
to a genre node, as an item only has one matching full
genre. We have observed that creating more paths allows the
algorithm to make better recommendations. To improve the
connectivity, we move from using a full genre to using basic
genres. In the extended tripartite algorithm, we change the
nodes in the genres set to the set of individual basic genres,
as opposed to a set of full genres so that an item can have
multiple connections to the genres node based on the number
of basic genres it has (see Figure 3 for an example).

1) Genre-Item: A feature of graph-based recommenders
is the ability to make recommendations based on the degree
of connection between a user and an item, which depends on
the weight of a path and the number of paths. The weight of a
connection in our extended tripartite algorithm is defined as

Wi,bg =

{
iavg

|BGi|
, bg ∈ BGi

0, bg �∈ BGi

(3)

where i is an item, iavg is the average rating for i, bg is a
basic genre, and BGi is the set of basic genres applied to i.

1Note that this is the same in Johnson et al.’s algorithm.

We divide the average rating by the number of basic
genres to avoid giving items with many basic genres too
much weight. Consider two movies with the same average
rating, but the first movie has one basic genre, and the second
has ten. If we do not divide the average rating by the number
of basic genres, there is one path from the first movie to
the genre set, but ten equally strong paths from the second
movie to the genre set. This would cause the recommender to
lean towards recommending the second item higher because
it has many strong paths. Dividing the average rating by
the number of basic genres means that items with fewer
basic genres will have a few strong paths, and items with
many basic genres will have many weaker paths, and the
recommender avoids a bias towards one over the others.

2) User-Genre: In Johnson et al.’s algorithm [7], the
weight of a user-genre relationship is the average rating of
a genre across the movies a user has seen, but there is some
loss of information in taking the simple average. Consider
the case where a user likes western movies, and has rated
10 western movies, rating them an average of 4.7 out of 5.
The user has also seen one sci-fi movie, and they rated it a
5. Taking the simple average would cause the recommender
system to lean more towards recommending sci-fi movies,
since they have a higher average rating. However, recom-
mending a western movie would be more in line with the
user’s preference. This suggests that the connection between
a user and a genre should be weighted more towards genres
the user has rated many times. In improving the original
tripartite graph recommender system, we use a Bayesian
average [14] in weighting the user-genre relationship.

Wu,bg =

avg votesu × avg ratingu + votesu,bg × ratingu,bg
avg votesu + votesu,bg

(4)

where u is a user, bg is a basic genre, avg votesu is the
average number of items u has rated per basic genre, which
is computed by summing the number of items a user has
rated that has a given basic genre and taken an average
of that value across all basic genres, avg ratingu is u’s
average rating of basic genres, votesu,bg is the number of
ratings u has made for bg, and ratingu,bg is the average
rating u has given bg.

The Bayesian average has the desirable property that as
a user rates more items of a genre, the weighting of the
Bayesian average shifts to the true average for that genre.
Based on this strategy, we avoid the scenario when a genre
with few ratings but a high average rating is recommended
ahead of a genre with many ratings but a lower average.

Note again that while the extended tripartite system uses
genre information specifically throughout the discussion, the
algorithm works for any set-based latent information.

D. Using Latent Semantic Attributes on Long-Tail Items

Latent Semantic Indexing (LSI) [6] is a mathematical
method used to determine the relationship between terms
and concepts in content. It has been shown that we can
improve the accuracy of many information retrieval appli-
cations based on latent semantic analysis. Given a term-
item (i.e., attribute-item) frequency matrix, LSI can be used
to decompose the matrix into two matrices of reduced
dimensions and a diagonal matrix of singular values, which
can be used in solving the long-tail problem. A latent factor
yields a dimension in the reduced space which represents
groups of highly correlated semantic terms. Reducing the
dimensionality of the original matrix reduces the amount of
noise in the data, as well as its sparsity, and as a result
improving retrieval based on the computation of similarities
among different items. We apply this idea to create a reduced
dimension space for the semantic attributes associated with
long-tail items.

Singular Value Decomposition (SVD) [8] is a well-known
technique used in LSI to perform matrix decomposition.
We apply SVD on the semantic attribute matrix Sn×d by
decomposing it into three matrices, i.e.,

Sn×d = Un×r •
∑

r×r • Vr×d (5)

where U and V are two orthogonal matrices, r is the rank of
matrix S, and

∑
is a diagonal matrix of size r×r of which

its diagonal entries contain all singular values of matrix S
that are sorted in decreasing order.

SVD provides the best lower rank approximation of the
original matrix S [2]. The diagonal matrix

∑
can be reduced

into a lower-rank diagonal matrix
∑

k×k by retaining the k
(< r) largest values. We reduce U to U

′

and V to V
′

.
Sequentially, the original matrix S is reduced to

S
′

= U
′

•
∑

′

• V
′

(6)

which is the rank-k approximation of S.
In the reduction process, U

′

consists of the first k columns
of the matrix U , which corresponds to the k highest order
singular values. In the resulting semantic attribute matrix,
S

′

, each item is represented by a set of k latent attributes
(i.e., terms). The results yield a much less sparse matrix,
which improves the outcomes of similarity computations and
the computational cost throughout the process. Moreover,
the generated latent attributes represent groups of highly
correlated attributes in the original data which potentially
reduce the amount of noise associated with the semantic
information. Performing latent semantic analysis on the
semantic space can generally lead to substantial gains in
prediction accuracy based on the semantic attributes, which
we have applied to our long-tail recommendation strategy
to (i) minimize the number of latent information to be
considered, and (ii) speed up the recommendation process
in terms of processing time.

IV. EXPERIMENTAL RESULTS

To analyze the performance of our extended tripartite
algorithm, the recall and diversity tests were run on the same
MovieLens dataset used by Johnson et al.’s algorithm [7].
We compare the scores achieved by our extended tripartite
graph algorithm with Johnson et al.’s original tripartite
algorithm, in addition to Yin’s bipartite graph algorithms
[15] and Shang et al. [13] tripartite graph-based algorithm.

A. Existing Bipartite and Tripartite Algorithms

Prior to presenting any experimental results, we present
the formal approach of Markov process used by Johnson et
al [7]. Hereafter, we formally introduce Yin’s bipartite graph,
and Shang et al.’s tripartite graph algorithm for long-tail item
recommendations for comparison purpose.

1) Markov Chains: Critical to the long-tail solution pro-
posed by Johnson et al. [7] is the balance of a trade-off
between the implementations of the tripartite graph and
the Markov chain or Markov process. A Markov process
describes the probabilities of a random walker arriving at
a node j from a node i, which is termed as pi,j , given an
increasing time horizon T . As T increases, the elements of
a stochastic transition matrix L2 converge to probabilities
that do not change with subsequent iterations of the Markov
process. This state is known as the stationary distribution.

Specifically, while the tripartite graph adds a significant
number of shorter paths between user u and a preferred item
i and the Markov process calculates the probabilities of u
arriving at items that (s)he has not yet rated, the process will
favor items with more links as the time T for the Markov
chain increases. In other words, as T increases so does
the probability of arriving at an item with few ratings—a
long-tail item. Johnson et al. provide specific details of the
implementation of the tripartite graph and Markov chain and
describe in more detail the benefit they provide the solution
(see implementation details in [7]).

The experimental results, as shown in [7], illustrates that
Johnson et al.’s recommendation algorithm works best for
the lower values of T . As the Markov process progresses
towards the stationary probability, the descriptiveness of
the graph is lost. For T = 7, the ability of the model
to recommend long-tail items breaks down. Johnson et al.
demonstrate in [7] that based on their results and those
archived by the absorbing cost (AC) methods in [15], their
proposed tripartite graph recommendation system edges out
the AC methods at both T = 3 and T = 5.3

2) Absorbing Cost and Hitting Time: A score rated by
a user who specializes in limited interests often provide
much more valuable information than the rating offered

2A stochastic transition matrix indicates the probabilities of different
nodes connected in an undirected graph based on edges connected among
different nodes in the graph.

3T3, T5, and T7 referring to the Markov process where T = 3, 5, and
7, respectively.

Figure 4. Recall@N values of various versions of bipartite and tripartite
graph structure

by a person of wide interests. The bipartite-graph based
Absorbing Cost (AC) algorithms proposed by Yin et al. [15]
compute such a score as defined below.

AC(S|i) =

{
0 i ∈ S∑

j pij × c(j|i) +
∑

j pij ×AC(S|j) i /∈ S
(7)

where pij is the probability of following a path from node i
to node j, c(j|i) is the transition cost from state i to its
adjacent state j, and S, called absorbing nodes, denotes
the set of items rated (or purchased) by a query user. AC
is the average cost incurred by the random walker starting
from state i to reach S for the first time. While the hitting
time (HT) algorithm (introduced in Section II) employes the
ratings that users gave to items, AC entails other features.

The HT algorithm [15] considers the number of steps a
user i takes to reach a product j in a graph. The single-step
transition probability from i (at time t) to j (at time t+1) is

pi,j = P (s(t+ 1) = j | s(t) = i) =
a(i, j)

di
(8)

where di=
∑n

k=1 a(i, k), and a(i, k) is the weight of i and k.
While traversing a graph for query user q, HT is given by

H(q|j) =
1

pj,q
=

πj

pq,jπq

, and πi =

∑n

j=1 a(i, j)∑n

i,j=1 a(i, j)
(9)

The metric H(q|j) has the unusual quality that a low
hitting time means q and j are relevant and few users have
rated item j. In other words, j is a product that is similar
to those q has rated high and j is in the long tail. This
ingenious approach maps q to items that are in the long tail
and potentially appealing to q.

B. Recall/Diversity Values of Various Algorithms on Long-
Tail Recommendations

The results achieved by using the extended tripartite ap-
proach on long-tail recommendations are shown in Figure 4
and Table I. Overall, the best performing algorithm is the

Table I
Diversity VALUES OF VARIOUS VERSIONS OF BIPARTITE AND

TRIPARTITE GRAPH STRUCTURE

Algorithm Diversity Score
T3 Original [7] 0.404
T5 Original [7] 0.315
T3 Extended (Ours) 0.450
T5 Extended (Ours) 0.325
AC1 [15] 0.425
AC2 [15] 0.420
HT [15] 0.410

T 3 Extended algorithm, i.e., when T = 3, which improves
on the previous best tripartite graph-based algorithm, i.e.,
T 5 Original [7], on the Recall@N score by around 9.5%,
which is statistically significant (p < 0.01) [9]. Figure 4
also shows the results of Yin’s Hitting Time algorithm, HT ,
and absorbing cost algorithms, AC1 and AC2, which are
outperformed by the T 3 Extended algorithm.

The diversity score for the extended tripartite algorithm
and the scores from other algorithms are shown in Table I.
The T 3 Extended algorithm beats the previous best score of
AC1 by 2.5%, which is statistically significant (p < 0.05).

C. The Rankshift Test on Long-Tail Items

Recall that the long-tail problem describes the difficulty
of making appropriate recommends to users and for items
we have little data about. To further test the effectiveness
of the extended tripartite graph recommender on long-tail
items, we design a new rankshift test, which measures how
the relative recommendation strength of an item changes as
we change it from a short-head item to a long-tail item. The
test generates recommendations using the extended tripartite
graph algorithm and measures where in ranking a short-head
item falls. Rating data is then removed from the initial data
set to make the short-head item a long-tail item. Recom-
mendations are then generated again, and the rankings of the
newly-created long-tail items are compared with the original
rankings, which yields a measure of how much weighting the
algorithm gives to less-popular items, and provides insight
into how the system treats long-tail items. We have seen
based on the recall and diversity tests that the extended
tripartite graph system is able to recommend long-tail items,
which are items with little to no data associated with them,
again relying on latent information to fill in gaps in the data.

In order to better understand how the extended tripartite
graph algorithm handles recommendations of long-tail items,
we provide the rankshift algorithm (given below) which
measures how the recommendation strength for an item
changes when most of its rating data is removed.

1. Select an item to perform the rankshift test on.

2. Determine all users who have not rated this item, and
designate them as test users.

Table II
SHIFT IN RANK FOR VARIOUS ITEMS

Item ID Original Percentile New Percentile Change
534 40.41 95.73 55.32%

1000 61.84 98.11 36.27%
1196 30.28 99.02 68.74%
2236 38.76 92.85 54.09%
3068 41.34 97.20 55.86%

3. Generate item recommendations for all test users.

4. Alter rating information so that only one rating remains
for the item being tested.

5. Generate item recommendations for all test users, using
the altered rating data.

6. For each user, compare where the item falls in recom-
mendation ranking using the original data versus the
altered rating data.

7. Take an average of these comparison values.

The comparison values from Step 7 provide insight into
whether the extended tripartite algorithm treats the low-
rated data items differently than their regular counterparts.
If ranking does not change significantly between the two, it
could be concluded that whether an item is a long-tail item
or not does not affect how strongly it is recommended.

The data in Table II, which was collected by running the
extended tripartite algorithm at T = 3, shows the change
in rank by percentiles, where the “New Percentile” column
refers to the average ranking of the item when it is a long-
tail item. The higher the percentile, the stronger an item is
recommended to a user, i.e., an item recommended at the
100th percentile is the item the algorithm recommends most
strongly to a user.

Table II shows that the extended tripartite graph recom-
mender system very heavily favors recommending items
with less ratings. Regardless of what percentile the item
started at, changing it to be a long-tail item gives it a
huge boost in rankings—the item very often ends up in the
top 5th percentile of recommendations. One of the design
goals of the extended tripartite graph recommender is to
suggest long-tail items to users, as explained in Section I,
and just recommend the same popular items to all users is
not desirable. The results show that the algorithm is indeed
favoring long-tail items over items which are more popular.

In order to have a better idea of how the ranking of
an item changes as the number of ratings decreases, we
tweak the original rankshift algorithm. Instead of keeping
one rating, we keep a subset of ratings. We also skip Steps 6
and 7, which compares how much the percentile changed,
and instead look at the current percentile. Let’s consider
data item 1196 for the subset of ranges between 150 and 1
rating(s) as shown in Figure 5.

As seen in Figure 5, the item percentile gradually in-

Figure 5. Ratings versus Item Ranking

creases as the number of ratings decreases. Once the number
of ratings falls below 25 or so, the change in percentile
accelerates climbing. The item approaches the 100th per-
centile as the number of ratings approaches 1. This further
confirms that the extended tripartite graph algorithm prefers
recommending long-tail items over items with more ratings.

D. The Recall, Diversity, and Rankshift Tests

Consider what the results of the recall, diversity, and
rankshift tests impose on the extended tripartite algorithm.
The recall test shows that the algorithm is correctly learning
the preferences of users, and is recommending items that fit
that preference. The diversity test shows that the extended
tripartite algorithm is not just recommending the same items
over and over again. Instead, it recommends a wide set of
items across users. This implies that the algorithm is not
just looking at what items are highly rated, but individu-
alizes recommendations based on the user it is generating
recommendations for. Finally, the rankshift test shows that
the algorithm has a strong preference for long-tail items over
more popular items. The results of the three tests validate
that the extended tripartite algorithm learns the preferences
of the users and makes individualized recommendations.

V. CONCLUSIONS

The works of Yin et al. [15] and Shang et al. [13] have
shown that a graph-based approach is a potential solution
to the long-tail problem. The tripartite recommendation
algorithm proposed by Johnson et al. [7] have improved
upon the results of Yin’s, and our extended tripartite recom-
mender have further enhanced the performance of Johnson
et al.’s recommendation approach. Our improvements come
from carefully considering the original tripartite algorithm
introduced by Johnson et al. and treating the data for finding
long-tail items. We introduce the concept of “basic genres”
to create more paths in the tripartite graph, and we switch
from using a simple average to a Bayesian average to avoid
giving too much weight to lesser-rated genres. By reworking
the original algorithm proposed by Johnson et al. to better

utilize the user and item data, we improve the recall and
diversity scores beyond the work already done.

Furthermore, we have also proposed to adopt Singular
Value Decomposition used in Latent Semantic Indexing to
solve the long-tail recommendation problem. The proposed
solution to the long-tail recommendation is elegant, since
it relies on the notable technique in matrix decomposition,
using the latent semantic analysis approach to utilize the
latent information to fill in gaps in the user-item data.

The goal of our recommender is to make good long-tail
suggestions. Item should be suggested not because it is a
long-tail item, but because it is a long-tail item that matches
a user’s preferences.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the Next Generation
of Recommender Systems: A Survey of the State-of-the-Art
and Possible Extensions. IEEE TKDE, 17(6):734–749, June
2005.

[2] M. Berry, S. Dumais, and G. Brien. Using Linear Algebra for
Intelligent Information Retrieval. SIAM Review, 37:573–595,
1995.

[3] C. Clarke, M. Kolla, G. Cormack, O. Vechtomova, A. Ashkan,
S. Buttcher, and I. MacKinnon. Novelty and Diversity in
Information Retrieval Evaluation. In ACM SIGIR, pages 659–
666, 2008.

[4] A. Eberle. Markov Processes. University of Bonn, Institute
for Applied Mathematics, 2015.

[5] J. Herlocker, J. Konstan, and J. Riedl. An Empirical Analysis
of Design Choices in Neighborhood-based Collaborative Fil-
tering Algorithms. Information Retrieval, 5:287–310, October
2002.

[6] T. Hofmann. Probabilistic Latent Semantic Indexing. ACM
SIGIR Forum, 51(2):211–218, July 2017.

[7] J. Johnson and Y.-K. Ng. Enhancing Long Tail Item Recom-
mendations Using Tripartite Graphs and Markov Process. In
IEEE/WIC/ACM WI’17, pages 761–768, 2017.

[8] V. Klema and A. Laub. The Singular Value Decomposition:
Its Computation and Some Applications. IEEE Transactions
on Automatic Control, 25(2):164–176, April 1980.

[9] C. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge, 2008.

[10] M. McLaughlin and J. Herlocker. A Collaborative Filtering
Algorithm and Evaluation Metric that Accurately Model the
User Experience. In ACM SIGIR, pages 329–336, 2004.

[11] Y.-J. Park and A. Tuzhilin. The Long Tail of Recommender
Systems and How to Leverage It. In ACM RecSys, pages
11–18, 2008.

[12] F. Ricci, L. Rokach, B. Shapira, and P. Kantor. Recommender
Systems Handbook. Springer, 2011.

[13] M. Shang, Z. Zhang, T. Zhou, and Y. Zhang. Collabora-
tive Filtering with Diffusion-based Similarity on Tripartite
Graphs. Physica A: Statistical Mechanics and Its Applica-
tions, 389(6):1259–1264, 2010.

[14] X. Yang and Z. Zhang. Combining Prestige and Relevance
Ranking for Personalized Recommendation. In ACM CIKM,
pages 1877–1880, 2013.

[15] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the
Long Tail Recommendation. In VLDB Endowment Vol. 5, No.
9, pages 896–907, 2012.

