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Abstract
Many robotic tasks require solutions that maximize
multiple performance objectives. For example, in
path-planning, these objectives often include finding
short paths that avoid risk and maximize the infor-
mation obtained by the robot. Although there exist
many algorithms for multi-objective optimization,
few of these algorithms apply directly to robotic
path-planning and fewer still are capable of find-
ing the set of Pareto optimal solutions. We present
the MORRF∗ (Multi-Objective Rapidly exploring
Random Forest∗) algorithm, which blends concepts
from two different types of algorithms from the
literature: Optimal rapidly exploring random tree
(RRT∗) for efficient path finding [Karaman and Fraz-
zoli, 2010] and a decomposition-based approach to
multi-objective optimization [Zhang and Li, 2007].
The random forest uses two types of tree structures:
a set of reference trees and a set of subproblem trees.
We present a theoretical analysis that demonstrates
that the algorithm asymptotically produces the set
of Pareto optimal solutions, and use simulations
to demonstrate the effectiveness and efficiency of
MORRF∗ in approximating the Pareto set.

1 Introduction
Many tasks assigned to robots are complex, can be performed
in several different ways, and must maximize several different
performance objectives. For example, a robot in a search task
may be expected to maximize the area that it covers while
minimizing energy consumption and avoiding risk (see, for
example [Mei et al., 2005; Yi and Goodrich, 2014]). As
another example, a robot manipulator may need to satisfy
performance criteria related to movement, joint velocities,
joint accelerations, etc. [Pires et al., 2004].

A common method for finding a solution to a multi-
objective optimization problem is to optimize a single ob-
jective created by a weighted sum of the multiple objectives.
In path-planning the properties of the path produced by this
method depend strongly on how each objective is weighted.
This means that a programmer, designer, or human teammate
must decide how to assign the weights so that the qualitative
behavior matches what is intended. In addition to the burden

this places on the human operator, optimizing a weighted sum
does not work when the multiple objectives are very difficult
to compare or are expressed in incommensurate units.

In response to these challenges, it is useful to find the set of
Pareto optimal solutions to the multi-objective path-planning
problem, meaning the set of solutions for which there is no
other solution that produces better payoffs for every objective.
If an algorithm could produce the set of Pareto optimal solu-
tions then a human could interactively explore this set to find
one or more solutions that matches his or her expectations.
The objective of this paper is to create an algorithm that effi-
ciently finds the Pareto set in a multi-objective path-planning
problem.

Most popular methods in multi-objective optimization do
not naturally apply to path-planning problems [Zhang and
Li, 2007; Deb and Jain, 2014]. The main reason for this
is that path-planning often represents the problem to be
solved as a semi-structured tree with an exponential num-
ber of possible trajectories through the tree, and the num-
ber of evaluations of the objective function required by ex-
isting algorithms do not scale well when there are an expo-
nential number of solutions. One approach to addressing
this issue is to change the representation for a path by, for
example, coding a path as a sequence of fixed-length line
segments represented by direction [Ahmed and Deb, 2013;
Howlett et al., 2006] or waypoints [Sujit and Beard, 2009;
Pires et al., 2004] so that an evolutionary algorithm can
be applied. This produces an encoding that can be “fed
into” an appropriate evolutionary algorithm to search for the
Pareto set. Unfortunately, these approaches do not scale
well for large problems, because the number of segments
required to represent the paths grows too quickly and es-
timating the required number of segments a priori is very
challenging. Another approach is to represent the path as a
point in a very high-dimensional vector space. In this ap-
proach a path is represented as a point in a n ∗ d dimen-
sional space formed by n d-dimensional way-points. If the
number of way-points can be held constant, we can use stan-
dard approaches to explore the space. However the search
can be more difficult if we allow the number of way-points,
and therefor the dimensionality of the optimization prob-
lem, to vary. Indeed, we will use this to guide our solu-
tion, but the algorithm we present works when the obstacles
in the path-planning space introduce discontinuities in these
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high-dimensional spaces, which limits the applicability of
heuristic-based search approaches [Sujit and Beard, 2009;
Zhang and Li, 2007].

The RRT (Rapidly exploring Random Tree) algorithm is
popular for finding feasible solutions from a start position to
a goal position in continuous or very large search spaces; it
also works well when environments have complex obstacles.
The reason that RRT is popular is that the tree structure tends
to find solutions very efficiently. The RRT∗ algorithm was a
recently introduced modification to RRT that is guaranteed to
find an optimal path given enough sampling time [Karaman
and Frazzoli, 2011; 2010].

The remainder of the paper presents the MORRF∗ (Multi-
Objective Rapidly exploring Random Forest*) algorithm,
which we used to find a set of Pareto optimal paths. MORRF∗
blends concepts from RRT∗ a decomposition-based approach
to multi-objective optimization [Zhang and Li, 2007].

2 Related Work
Prior work has modeled the search space as a graph and ap-
plied a multi-objective A* search to find the solution [Mandow
et al., 2005]. The limitation of this approach is that it requires
an a priori discretization rather than a discretization that is
guided by the objectives as is done in RRT∗; a coarse dis-
cretization throws away potentially valuable information and a
fine discretization increases complexity and adds redundancy
in the resulting graph structures. Obstacles can make it more
difficult to determining which cells in the discretized space are
connected to which others, especially when searching a space
of more than 2 dimensions such as in planning the trajectory
for a robotic manipulator. Another approach that uses an a
priori discretization (and suffers from these limitations) is to
encode a path as a sequence of directions from one cell to
next cell and then using the NSGA-II algorithm to find a set of
Pareto optimal solutions [Ahmed and Deb, 2013]. Constrained
splines have been introduced to interpolate a sequence of way
points into a trajectory that avoids obstacles [Ahmed and Deb,
2011], but the effect of the interpolation on the quality of the
solution has not been evaluated. In addition to the sorting
approach used in NSGA-II, evolutionary algorithms based on
the decomposition method have also been proposed [Deb and
Jain, 2014].

Evolutionary algorithms can be used to fine the Pareto set,
but these approaches tend to be inefficient when applied to
spaces with high dimensions [Marler and Arora, 2004]. For
such spaces, small deviations in possible solutions may need
to be considered in order to find an optimal solution, but this
means exploring many possible solutions for problems with
non-linearities or multiple local maxima. A path in a fixed-
length search tree of depth d can be considered as a point
in <d, so tree-based approaches followed by an evolutionary
”fine-tuning” stage risk running into the problems just listed
with evolutionary approaches.

In contrast to searching through and comparing solutions
in order to find the Pareto optimal set, decomposition-based
methods provide an attractive alternative. In this paper we use
a decomposition-based method similar to MOEA-D [Zhang
and Li, 2007]. MOEA-D is an algorithm that decomposes a

multi-objective optimization problem into a set of subprob-
lems. Each subproblem uses a weighed combination of the
objectives to find specific points in the Pareto set or to guide the
search for such points. Let λ = [λ1, · · · , λK ]T be a weighting
vector such that

∑K
k=1 λk = 1. Let {c1(·), c2(·), . . . cK(·)}

denote the K-element set of objective functions, let c(x) =
[c1(x), c2(x), . . . , cK(x)]T , and let x denote a potential so-
lution. Finally, let zutop = [z∗1 , · · · , z∗K ]T denote the so-
called Utopia reference vector. Three types of decomposition
methods have been used in prior work [Zhang and Li, 2007];
however we will use only the two methods described below,
leaving the third (the boundary intersection method) to future
work.

arg max
x

K∑
k=1

λkck(x) weighted sum (1)

arg min
x

max
1≤k≤K

{λk
(
|ck(x)− zutopk |

)
} Tchebycheff (2)

The solutions generated by each method are a subset of the
Pareto optimal set.

Sampling-based path planning works effectively in con-
tinuous space. The RRT (Rapidly exploring Random Tree)
has been one of the most popular tools, which efficiently
explores the space by randomly sampling the search space;
this algorithm tends to work well in the presence of com-
plex obstacles. Unfortunately, RRT has been shown to fail
in optimality guarantee [Karaman and Frazzoli, 2010]. In
response, the RRT∗ algorithm was proposed, which uses a
Rewire process to gradually update the tree structure when
new samples of the space indicate that this is needed. Thus
RRT∗ is asymptotically optimal [Karaman and Frazzoli, 2010;
2011].

3 Multi-Objective Rapidly exploring Random
Forest∗

In this section, we present an algorithm that explores the so-
lution space using RRT∗-based tree structures but uses multi-
ple trees in the spirit of decomposition-based multi-objective
optimization. Because a set of trees are constructed in the
exploration process, we call the algorithm MORRF∗ (Multi-
Objective Rapidly exploring Random Forest∗).

Consider a multi-objective path planning problem defined
on a bounded, connected open set X ⊂ Rd of possible solu-
tions, and K different objectives {c1(·), c2(·), ...cK(·)}. With-
out loss of generality, assume that the objective is to minimize
these functions. Since the Pareto optimal set is not enumerable,
the goal is to find a representative, finite (M -element) subset
of the Pareto optimal set.

Definition 1. Multi-Objective Path Planning Consider a
bounded, connected open set X ⊂ Rd, an obstacle space
Xobs, an initial state xinit, and a goal region Xgoal. Consider
the set of K objectives determined by a vector function c(·) =
[c1(·), . . . , cK(·)]T defined by c : X → RK . Denote the
obstacle-free space by Xfree = X \ Xobs. Note that c is
defined for all points inX both those in free space and obstacle
space.
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Figure 1: Tchebycheff method of finding Pareto front.

Sampling

Reference

Subproblems

...

... ...

Figure 2: Rapidly exploring process

Define a path in X as a continuous curve parameterized
by s, denoted by σ : [0, s] → X . Define the cost of the path
as the vector-valued function c(σ) =

∫
σ
c(x)ds. The goal

is to find M Pareto optimal paths σ∗ ∈ Σ∗ that (a) ∀τ ∈
[0, s], σ∗(τ) ∈ Xfree ; (b) σ∗(0) = xinit and σ∗(s) = Xgoal;
(c) There does not exist σ that ∀k ∈ K, ck(σ) ≤ ck(σ∗) and
∃k′ ∈ K, ck′(σ) < ck′(σ

∗).
Adopting the idea from the MOEA-D algorithm [Zhang

and Li, 2007], the M elements in the solution set Σ∗ will be
obtained by decomposing the multi-objective problem into M
subproblems. In this paper, we use the Tchebycheff approach
from MOEA-D. The Tchebycheff approach requires us to
define a Utopia reference vector zutop in the fitness space. As
illustrated in Figure 1, the Utopia reference vector is defined
as that point in cost space that would be obtained if it were
possible to find a solution that produced the minimum value
for all objectives, that is the kth element of zutop is given by
zutopk = arg minx∈X ck(x).

We will need one type of RRT∗ structure to explore in an
attempt to find the Utopia reference vector in payoff space and
another type of RRT∗ structure to find paths that minimize
the Tchebycheff condition. Thus, there are two types of tree
structures used for the optimization process.
• Each reference tree explores using a single objective
ck(x), k ∈ K. The cost of each vertex is calculated using
the kth objective function.
• Each subproblem tree explores a subproblem gm(x |
λm, z

utop),m ∈M . The cost associated with each ver-
tex is calculated using gm(x) defined by the correspond-
ing approach.

The K reference trees and M subproblem trees constitute the
exploration forest.

The main flow of the MORRF∗ algorithm is given in Algo-
rithm 1. Each reference and subproblem tree are a collection

of edges and vertices, Gr = (Vr, Er) and Gs = (Vs, Es),
respectively, and the collection of reference trees and subprob-
lem trees are denoted by Gr = {Gr : r ∈ {1, . . . ,K}} and
Gs = {Gs : s ∈ {q, . . . ,M}.

Note that each tree, reference and subproblem, uses the
same set of vertices, meaning they all share the same points in
configuration space. The differences between the trees is the
edge set; each reference tree and each subproblem tree has a
different way of connecting the vertices.

In each iteration, xrand is generated by randomly sam-
pling from the configuration space. The set of vertices is
then searched to find that vertex whose position is nearest to
the random point; since all trees share the same set of vertices,
any tree G ∈ Gr ∪Gs may be used to find the nearest point.
The location of this vertex is labeled xnearest. The process of
finding xnew is represented in the top layer of Figure 2.

The exploration at each iteration is given in Algorithm 1.
Like RRT∗, when the algorithm stops, each reference tree and
subproblem tree returns a path, and the set of all these paths
forms the solution set.

Algorithm 1 Multi-Objective Rapidly exploring Random
Forest∗

1: for each Vr ∈ Vr do
2: Vr ← {xinit}; Er ← ∅; i← 0

3: for each Vs ∈ Vs do
4: Vs ← {xinit}; Es ← ∅; i← 0

5: while i < N do
6: xrand ← SAMPLE (i) ; i← i+ 1
7: G is arbitrary graph from Gr ∪Gs.
8: xnearest ← NEAREST(G, xrand)
9: xnew ← STEER(xnearest, xrand, η)

10: if OBSTACLEFREE(xnearest, xnew) then
11: for each Gr ∈ Gr do
12: Gr ← EXTENDRef (Gr, xnew, xnearest , r)
13: for each Gs ∈ Gs do
14: Gs ← EXTENDSub (Gs, xnew, xnearest , s)

We now define several functions, using appropriately modi-
fied definitions from [Karaman and Frazzoli, 2010].

• SAMPLE(): Returns independent uniformly distributed
samples from Xfree.

• NEAREST(): Returns a position of the vertex whose po-
sition is closest to point x. NEAREST(G = (V,E), x) =
arg minv∈V ‖x− v‖.
• STEER(): Given two points x and y, returns a point z on

the line segment from x to y that that is no greater than η
from y. STEER( x, y, η ) = arg minz∈Rd,‖z−x‖≤η‖z−y‖.

• OBSTACLEFREE(x, x′): Returns True if [x, x′] ⊂ Xfree ,
which is the line segment between x and x′ lies in Xfree .

As illustrated in Figure 2, second layer, edges to the ref-
erence trees are added before the edges to the subproblem
trees. This allows us to compute the Utopia reference vector
using the path costs for each reference tree, each reference
tree returning a path that approximates the minimum cost for
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one objective. The Utopia reference vector is then used to
determine which edges should be added for each subproblem.

Consider the second layer in Figure 2, which shows the ex-
ploration process for the reference trees. When a new position
is obtained (red dot in Figure 2), all reference trees add a ver-
tex that corresponds to this new location. Each reference tree
then connects this new vertex to existing nodes by “rewiring”
a set of neighboring vertices within a specified radius (red
dash circle in Figure 2). The process of rewiring consists of
adding edges between existing vertices and the new vertex.
This is done using the EXTEND method, given in Algorithm 2.

Algorithm 2 EXTENDRef (G, xnew , xnearest , k)
1: if xnew = xnearest then return G = (V,E)

2: V ′ ← V ∪ {xnew}
3: xmin ← xnearest
4: Xnear ← NEAR(G, xnew, |V |)
5: for each xnear ∈ Xnear do
6: if OBSTACLEFREE(xnew, xnear) then
7: c′k ← COSTk(xnear) +ck( LINE(xnear, xnew) )
8: if c′k < COSTk(xnew) then
9: xmin ← xnear

10: E′ ← E′ ∪ {(xmin, xnew)}
11: for each xnear ∈ Xnear \ {xmin} do
12: if OBSTACLEFREE(xnew, xnear) then
13: c′k ← COSTk(xnew) +ck( LINE(xnew, xnear) )
14: if c′k < COSTk(xnear) then
15: xparent ← PARENT(xnear)
16: E′ ← E′ \ {(xparent, xnear)}
17: E′ ← E′ ∪ {(xnew, xnear)}

return G′ = (V ′, E′)

The precise definitions of the methods used in the Algo-
rithm 2 are given below.
• NEAR(G, x, η): Returns a set of all vertices within

the closed ball of radius rn centered at x, in which
rn = min{( γξd

logn
n )1/d, η}. The volume of the ball is

min{γ logn
n , ξdη

d}.
• LINE(x, x′) : [0, s]← Xfree denotes the path defined by

line segment from x to x′.
• COST(v): Returns the cost of the unique path (because
G is a tree) from xinit to the vertex v ∈ V . COST(xinit)
= 0.

Consider the third layer in Figure 2, which illustrates how
the subproblem trees “rewire” to connect to the new ver-
tex. The Utopia reference vector, ẑutopk is defined as the
k-dimensional vector constructed from each reference tree.
The minimum cost of each path from the starting vertex over
any other vertex is computed for each reference tree. Using
the Utopia reference vector, each subproblem tree connects
its new vertex and rewire neighboring vertices in a radius as
well. Algorithm 3 precisely follows Algorithm 2 except that
instead of computing the cost using one of the objectives, the
cost is computed using the Tchebycheff method; each of the
mth subproblem trees corresponds to a different weighting
vector λm. This is performed using the FITNESS method.

Algorithm 3 EXTENDSub (G, xnew , xnearest ,m)
1: if xnew = xnearest then return G = (V,E)

2: V ′ ← V ′ ∪ {xnew}
3: xmin ← xnearest
4: Xnear ← NEAR(G, xnew, |V |)
5: for each xnear ∈ Xnear do
6: if OBSTACLEFREE(xnew, xnear) then
7: c′ ← COST(xnear) +c( LINE(xnear, xnew) )
8: η′ = FITNESS( c′, ẑutop | λm )
9: cnew = COST(xnew)

10: ηnew = FITNESS( cnew, ẑutop | λm )
11: if η′ < ηnew then
12: xmin ← xnear
13: E′ ← E′ ∪ {(xmin, xnew)}
14: for each xnear ∈ Xnear \ {xmin} do
15: if OBSTACLEFREE(xnew, xnear) then
16: c′ ← COST(xnew) +c( LINE(xnew, xnear) )
17: η′ = FITNESS( c′, ẑutop | λm )
18: cnear = COST(xnear)
19: ηnear = FITNESS( cnear, ẑutop | λm )
20: if η′ < ηnear then
21: xparent ← PARENT(xnear)
22: E′ ← E′ \ {(xparent, xnear)}
23: E′ ← E′ ∪ {(xnew, xnear)}

return G′ = (V ′, E′)

Reference trees Subproblem tree

Figure 3: The dependency of the trees in MORRF∗.

The FITNESS method computes costs using one of the
cost functions in Equations (1)-(2). Different values of
λm are obtained using the pattern in the MOEA-D algo-
rithm: (a) pre-deterimining the range of the K-cost functions,
{ck() : 1 . . .K} and (b) sampling from the K-dimensional
hypercube defined by these ranges. The M samples from
this hypercube can be obtained by either creating a uniform
(hyper)-grid or by doing uniform sampling across the space.

4 Analysis
The analysis depends on the following restrictions on the
cost functions and obstacle placement required by the RRT∗
algorithm [Karaman and Frazzoli, 2010]. We claim without
argument that the cost functions and obstacle placements used
in the simulation studies satisfy the restrictions.

Assumption 1. (Additivity of the objective functions) For a
path constructed by composing two other paths (to create a
discontinuous path), ∀k ∈ K,σ1, σ2 ∈ Xfree, ck(σ1 ◦ σ2) =
ck(σ1) + ck(σ2).

Assumption 2. (Continuity of the cost functions) For all k ∈
K, the cost function ck is Lipschitz continuous, that is, for
all paths σ1 : [0, s1] → Xfree and σ2 : [0, s2] → Xfree ,
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there exists a constant κ(k) ∈ R+ ∪ {0} such that |ck(σ1)−
ck(σ2)| ≤ κ(k) supτ∈[0,1]‖σ1(τs1)− σ2(τs2)‖.

Assumption 3. (Obstacle spacing) There exists a constant
δ ∈ R+ such that ∀x ∈ Xfree , ∃x′ ∈ Xfree such that

• the δ-ball centered at x′ lies inside Xfree ;

• x lies inside the δ-ball centered at x′.

Lemma 1. If the Utopia reference vector satisfies
∀k, σ zutopk ≤ ck(σ), then any solution of Eq. (2) is Pareto
optimal.

Proof. The proof is by contradiction. Let the weighting vector
λ be arbitrary subject to ∀k λk ≥ 0, and let σ∗ = σ∗(λ) be a
solution given that weighting vector. By definition,

σ∗ = arg min
σ

max
k∈K

λk|ck(σ)− zutopk |. (3)

Assume that the path σ∗ is not Pareto optimal. Then there exist
another path σo that dominates σ∗ and the Utopia reference
vector that satisfies ∀k ∈ K, zutopk ≤ ck(σ), it follows that
∀k ∈ K, zutopk ≤ ck(σo) ≤ ck(σ∗) and ∃k′ ∈ K, zutopk ≤
ck′(σ

o) < ck′(σ
∗). These equations imply

∀k ∈ K, λk|ck(σ∗)− zutopk | ≥ λk|ck(σo)− zutopk |;
∃k′ ∈ K, λk′ |ck′(σ∗)− zutopk | > λk′ |ck′(σo)− zutopk |;

which yields the following contradiction to Eq (3):

max
k∈K

λk|ck(σ∗)− zutopk | > max
k∈K

λk|ck(σo)− zutopk |.

Lemma 2. If σ∗ is Pareto optimal then there exists a weighting
vector λ, where ∀k λk ≥ 0 and

∑K
k=1 λk = 1, such that σ∗

is a solution of Eq. (2).

Proof. This is a proof by construction over cases. When σ∗ is
Pareto optimal, there exist two cases: (a) ∃k, ck(σ) = zutopk

and (b) ∀k, ck(σ∗) < zutopk .
Case (a): ∃k, ck(σ) = zutopk

Define P (σ∗) = {j | cj(σ∗) = zutopj } and let P =

{1, . . . ,K} \ P . Define the weight vector λ as ∀k ∈
P (σ∗), λk = 1

|P | and ∀k ∈ P (σ∗), λk = 0. For these weights,
Eq. (2) returns a set of solution paths, all of which have the
same cost for the k-cost functions when k ∈ P but different
possible costs for k ∈ P . σ∗ is trivially in this set of solution
paths.

Case (b): ∀k, ck(σ∗) > zutopk

For all k, define the weights as λk = `k∑K
j=1 `j

, where `k =

1
|ck(σ∗)−zutopk | . The Tchebycheff cost (Eq. (2)) becomes

gte(σ∗) = max
k∈K

|ck(σ∗)− zutopk |
|ck(σ∗)− zutopk |

1∑K
j=1 `j

=
1∑K
j=1 `j

Given any other path σ, we can represent the Tchebycheff cost
as follows:

gte(σ) = max
k∈K

`k∑K
j=1 `j

|ck(σ)− zutopk |

=
1∑K
j=1 `j

max
k∈K

∣∣∣∣∣1 +
ck(σ)− ck(σ∗)

ck(σ∗)− zutopk

∣∣∣∣∣
Because σ∗ is Pareto optimal, [∃k′ ∈ K, ck′(σ) > ck′(σ

∗)] ∨
[∀k ∈ K, ck′(σ) = ck′(σ

∗)] for any σ. As ∀k, ck(σ∗) ≥
zutopk , we have ∀k, ck(σ∗) − zutopk ≥ 0. This implies
∃k′ ∈ K, ck′ (σ)−ck′ (σ

∗)

ck′ (σ
∗)−zutop

k′
≥ 0, which, in turn, implies

that maxk∈K

∣∣∣1 + ck(σ)−ck(σ∗)
ck(σ∗)−zutopk

∣∣∣ ≥ 1. Therefore, gte(σ) ≥
1∑K

j=1 `j
= gte(σ∗). Thus, σ∗ is a solution to Eq. (2).

By Lemma 1 and Lemma 2, we have the following:
Theorem 1. A path is Pareto optimal if and only if it is a
solution to Eq. (2) for some weight vector.

Theorem 1 implies that we can use the Tchebycheff method
to find the Pareto set for the multi-objective path-planning
problems. The next question that needs to be answered is
whether the subproblem tree can find the optimal solution of
its assigned subproblem.

The way that the RRT∗ algorithm works is that it incremen-
tally constructs a tree from a root position. The cost of the path
from the position of the root node to the positions of every
other node converges to the minimal possible cost between the
positions as the number of iterations approaches infinity. We
restate this as a lemma, and note that it corresponds exactly to
that given for Theorem 22 in [Karaman and Frazzoli, 2010].
Lemma 3. Given Assumptions 1-3, the cost of the minimum
cost path from the root to any vertex in RRT∗ converges to the
optimal cost almost surely.

Lemma 3 and Theorem 1 imply that each reference tree
converges to the optimal path from the root to any node in the
tree, including a node arbitrarily close to the goal node. This
means that the costs returned by those trees for the path from
the start to the goal for the cost function ck converges to the
kth element of the Utopia reference vector zutop. We state
this as a lemma.
Lemma 4. Given Assumptions 1-3, the cost of the minimum
cost path from the root to any vertex in kth reference tree
converges to z∗k almost surely.

We now turn to the proof that the subproblem trees converge
to paths in the Pareto set. The proof of this claim requires that
we know zutop to compute the Tchebycheff cost associated
with the cost used in the subproblem. If we knew that the
reference trees had already converged to zutop, then we could
simply instantiate Lemma 3. Unfortunately, the reference trees
are converging at the same time that the subproblem trees are
converging. We now address this problem.

Let ẑutop(v; i) denote the approximate Utopia reference
vector for position v on iteration i, estimated by the cost from
the root to position x from the k-reference trees. Recall that
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the mth subtree attempts to generate a solution to Eq. (2) for
a given weight vector λm. Let

cSUB
m (z) = arg min

x
max
k∈K

λm,k|xk − zk| (4)

denote the cost vector in mth subproblem tree given the
reference vector z and let ĉSUB

m (i, z) denote its estimation
at iteration i. A subproblem tree obtains ẑutop(v) for ver-
tex v in the reference trees and generate the corresponding
cSUB
m (v; i, ẑutop(v)). This forms a cascade structure from the

reference trees to the subproblem tree. By Lemma 4, we have
the convergence of the reference trees.

We introduce Assumption 4 to get Lemma 5.
Assumption 4. (Lipschitz continuity) cSUB

m (z) in Eq. (4)
and its estimation ĉSUB

m (i, z) are Lipschitz continuous, i.e.
‖cSUB
m (za)− cSUB

m (zb)‖ ≤ K‖za − zb‖.
Lemma 5. Given Assumptions 1-4 , the cost of the solution
of mth subproblem tree converges to the corresponding cost
of the mth subproblem c∗m almost surely.

Proof. By Lemma 4, we have limj→∞‖z∗ − ẑ(j)‖ =
0. By Lemma 3, we have limi→∞ ĉ(i, ẑ(j)) = c(ẑ(j)).
Thus, limi→∞‖c(z∗) − ĉ(i, ẑ(j))‖ = ‖limi→∞ c(z

∗) −
limi→∞ ĉ(i, ẑ(j))‖ = ‖c(z∗)− c(ẑ(j))‖.

Since c(z) and ĉ(i, z) are Lipschitz continuous;
limi→∞‖c(z∗)− ĉ(i, ẑ(j))‖ ≤ K‖z∗ − ẑ(j)‖. As j →∞,
we have ẑ(j)→ z∗, thus limi→∞‖c(z∗)− ĉ(i, ẑ(j))‖ → 0.
This implies P ({limi→∞

j→∞
cSUB
m (i, ẑ(j)) = c∗m}) = 1.

Now, we can prove that the solution from MORRF∗ almost
surely converges to a subset of the Pareto optimal set.
Theorem 2. Given Assumptions 1-4 , the solution generated
by MORRF∗ converges to a subset of the Pareto optimal set
almost surely.

5 Simulation
We now present a series of simulation studies that provide evi-
dence that MORRF∗ produces a representative set of samples
from the Pareto set. Results from MORRF∗ are obtained for
path-planning problems with two objectives and three objec-
tives, and are compared to a modified version of the NSGA-II
multi-objective path-planning algorithm [Ahmed and Deb,
2013] as well as a variant of MORRF∗ that uses a weighted
sum rather than the Tchebycheff approach. NSGA-II was se-
lected because evidence suggests that it provides more uniform
samples from the Pareto set than other approaches [Deb et al.,
2002]. We modified the NSGA-II algorithm for this problem
to use paths as inputs, represented by a series of waypoints
connected by line segments; the cost calculation is identical
with that in MORRF∗, calling LINE(x1, x2) to calculate the
cost between two way points x1 and x2. The weighted sum
approach was chosen because evidence suggests that it works
well only when all the objectives are convex [Zhang and Li,
2007] whereas the Tchebycheff approach should bring better
diversity in the solutions [Zhang and Li, 2007]. The weighted
sum approach uses the same sampling method for weights as
that used to generate the λi in MORRF∗. Each method was
run for 5000 iterations and restricted to 30 solutions.
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(e) Pareto set: weighted sum (f) Pareto paths: weighted sum
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(g) Pareto set: Tchebycheff (h) Pareto paths: Tchebycheff

Figure 4: Path planning with two objectives.

The first simulation study compares three algorithms in an
obstacle-free world with two objectives: minimize Euclidean
distance, see Figure 4a, and minimize a cost function, see
Figure 4b. The first thing to note is that the convergence of
NSGA-II-based path-planning is very slow. This is indicated
in Figures 4c-4d, which show the approximation to the Pareto
set and corresponding paths, respectively, after 5000 iterations;
observe how the quality of the paths and sampling of the Pareto
set is uneven and unsatisfactory. By contrast, the weighted
sum approach returns a set of high-quality solutions close to
the Pareto optimal set, see Figures 4e and 4f; Finally, note the
somewhat uneven clustering of solutions on Pareto front for
MORRF∗ using weighted sum, and compare this to the slightly
more uniform clustering of MORRF∗ using the Tchebycheff
approach in Figures 4g-4h.

We therefore compared results for the two approaches for
an environment with obstacles, omitting results for NSGA-II
because convergence is so slow. The results are shown in
Figure 5. As before, observe that the Tchebycheff approach
yields a more uniform sampling, albeit one that appears to be
somewhat noisy approximation to the Pareto set.

Finally, we evaluated how MORRF∗ performs three ob-
jectives: Euclidean distance and the two other objectives are
shown in Figures 6a-6c. As shown in Figure 6, the Pareto
front uses the Utopia reference vector (Green point) to better
approximate the Pareto set than the weighted sum approach.
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(c) Pareto set: weighted sum

460 480 500 520 540 560 580 600 620 640

object ive 1

80

100

120

140

160

180

200

220

o
b

je
ct

iv
e

 2

(d) Pareto set: Tchebycheff

Figure 5: Path planning with two objectives and an obstacle.
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Figure 6: Path planning with three objectives.

6 Summary and Future Work

This paper presented the MORRF∗ algorithm for the multi-
objective path-planning problems on continuous spaces. The
algorithm blends principles from the RRT∗ algorithm with
principles from multi-objective optimization to produce an
algorithm that provides a reasonable approximation of the
Pareto set, outperforms a common multi-objective optimiza-
tion problem on a path-planning problem, and has guaranteed
best-case performance.

Future work should extend the algorithm to include not
only the weighted sum and Tchebycheff approach but also the
boundary intersection approach, which results from [Zhang
and Li, 2007] suggest might have even better diversity.
MORRF∗ could also be made more efficient by, for example,
using prior information to improve the set of sample points.

Another area of future work is to combine MORRF∗ with
Bellman’s principle of optimality. This could be done by
setting a goal position as the root node in the algorithm and
then generating a set of Pareto optimal paths. The algorithm
should then converge to the set of Pareto optimal from any
vertex in the tree to the goal.
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