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Abstract

Learning in many multi-agent settings is in-
herently repeated play. This calls into ques-
tion the naive application of single play Nash
equilibria in multi-agent learning and sug-
gests, instead, the application of give-and-
take principles of bargaining. We modify
and analyze a satisficing algorithm based
on (Karandikar et al., 1998) that is compat-
ible with the bargaining perspective. This
algorithm is a form of relaxation search that
converges to a satisficing equilibrium without
knowledge of game payoffs or other agents’
actions. We then develop an M action,
N player social dilemma that encodes the key
elements of the Prisoner’s Dilemma. This
game is instructive because it characterizes
social dilemmas with more than two agents
and more than two choices. We show how
several different multi-agent learning algo-
rithms behave in this social dilemma, and
demonstrate that the satisficing algorithm
converges, with high probability, to a Pareto
efficient solution in self play and to the single
play Nash equilibrium against selfish agents.
Finally, we present theoretical results that
characterize the behavior of the algorithm.

1. Introduction

Many multi-agent learning problems can be viewed as
social dilemmas. For example, in (Goodrich et al.,
2003) we presented a multi-robot scenario that illus-
trated the difficulties in creating learning algorithms
for environments where there are multiple learning
agents and where games are non-zero sum. These
difficulties arose because each robot needed to use a
common resource, but if each robot tried to dominate
the resource then every robot suffered. This is typical

of prisoner’s dilemma-like environments with ongoing
interactions; the robots were required to act indepen-
dently, but the solution concept of a single-play Nash
equilibrium was inappropriate for these repeated in-
teractions.

In this paper, we introduce a multi-agent social
dilemma game that has the essential characteristics of
the prisoner’s dilemma, but is broad enough to repre-
sent social dilemmas with more than two actions and
more than two agents. We then present a satisficing
algorithm that allows agents to learn a satisficing equi-
librium to the game. Simulation results are presented
that compare the satisficing algorithm to Q-learning
and a general form of belief-based learning. We eval-
uate the performance of each algorithm from a bar-
gaining perspective and determine (I) whether the al-
gorithm reaches a Pareto efficient solution in self-play,
and (IT) whether the algorithm avoids exploitation by
selfish agents. We demonstrate that the satisficing al-
gorithm satisfies both properties, even when the agents
do not know the game structure or the possible actions
of other agents. We conclude by evaluating some of the
theoretical properties of the satisficing algorithm.

2. Related Literature

The literature in multi-agent choice is vast and space
is limited, so we cite only a few. A more complete ci-
tation list can be found in (Stimpson, 2002). Machine
learning researchers have explored many approaches
to learning in games. (Hu & Wellman, 1998; Claus
& Boutilier, 1997) presented extensions to Q-learning
for stochastic games that converge to Nash equilibrium
solutions, and (Bowling & Veloso, 2000) has extended
one of these algorithms to exploit the naive strategies
of other agents. Complementing these papers is work
from the economics literature (Kalai & Lehrer, 1993;
Fudenberg & Levine, 1998) that describes when and
how model-based agents tend to converge to a Nash



equilibrium. Others (Mundhe & Sen, 2000; Hu & Well-
man, 2000), have explored how reinforcement learn-
ing algorithms proceed when assumptions required for
convergence to a Nash equilibrium are violated.

Unfortunately, a lesson learned from the repeated
play Prisoner’s Dilemma game (Axelrod, 1984) is that
strategies that tend to Nash equilibria are not always
desirable when agents engage in repeated interactions.
Attempts to generate cooperative solutions using al-
gorithms with claims of bounded rationality have of-
fered some insight into when cooperation is preferred
to Nash equilibria (Mor & Rosenschein, 1995). From
a machine learning perspective, augmenting state in-
formation with coordination-specific information can
lead to cooperation (Boutilier, 1999).

Literature on multiple-player or multiple-action social
dilemmas is limited. One formal discussion is pro-
vided in (Hamburger, 1973). (Luce & Raiffa, 1957)
and (Bendor & Mookherjee, 1987) briefly discuss a
multiple-player, two-action prisoner’s dilemma. In
addition to multiple players, the prisoner’s dilemma
has been extended to continuous degrees of coopera-
tion (Frolich & Oppenheimer, 1996).

3. A Social Dilemma

In this section, we introduce the multi-agent social
dilemma (MASD) which is a game with the same es-
sential characteristics as the prisoner’s dilemma, but
which allows for multiple players and actions. This
game is useful for illustrating strengths and weaknesses
of various multi-agent learning algorithms.

Consider a system consisting of N agents. At each iter-
ation, every agent is faced with a decision of allocating
M units of some discrete resource towards two possi-
ble goals S; and G. S; is some purely self-interested
goal for agent i € {1,..., N} and G is some group goal
for all agents. Let u; be the amount contributed by
agent ¢ towards the group goal G (and thus M — u;
is the amount contributed to the selfish goal S;). Let
u = [uy,...,uy] denote the vector of all actions taken
by the agents. For each agent there are M + 1 pos-
sible values for u; € {0,1,2,...M}. Let each agent’s
total utility be represented as a linear combination of
the total amount contributed to the group goal G and
the amount individually contributed to his or her own
selfish goal S;. The utility to agent ¢ given the actions
of all agents is

R;(u) = kg {Zuj} + ksi(M — u;), (1)

Jj=1

where kg; is agent i’s weighting of his or her own selfish

goal and kq; is agent ¢’s weighting of the group goal.

Suppose that all agents have the same kg = kg, and
ke = kg,the relative. Assuming that relative (not
absolute) utilities are important, we can reduce the
number of parameters by letting kg = w5y and kg =
% where k is a positive constant. When k < 1 it means
that each agent values a unit of contribution towards
the selfish goal more than a unit of contribution to
the group goal, and when £ > % it means that there
is a higher potential benefit from the group goal as
long as enough agents contribute to the group. Thus,
attention is restricted to the case where 1 > k > %
Substituting this reparameterization into (1), dividing
by M(1 — k), and dropping a constant term from the
(% D00 wsl—kus

M(1—F) :

end, gives R;(u) =

It will often be useful to examine the situation from the
perspective of a single agent. For these circumstances,
we define u_; € U_; as the joint action of agent i’s op-
ponents. In the MASD, u_; can be reduced to a scalar
integer because the reward function depends only on
the sum of the actions of agent ¢’s opponents whence
Uy = Z;.VZLJ»# u;, whence

(1 — kN)ul +U_;
NM(1—k) @

Ri(n) = Ri(uj,u_;) =

The most important properties of this game are sum-
marized below. These properties illustrate the social
dilemma characteristics of the game.

1. Extreme Individual Rewards The individual
reward for agent 4, R;, is maximized when u; = 0
and u_; = M(N — 1), and is minimized when
u; =M and u_; = 0.

2. Extreme Average Rewards The average re-
ward, R(u) = 7 SOV w;, is maximized at R =
1 by the joint action u where Vi u; = M, and is
minimized at R = 0 when Vi u; = 0

3. Nash Equilibrium The joint action u where
Vi u; = 0 is both strategically dominant and the
unique Nash equilibrium.

4. Nash Bargaining Solution When the fallback
position is defined as the strategically dominant
solution, the joint action u where Vi u; = M is
the Nash Bargaining solution. It is therefore also
Pareto optimal.

This final property is a key for discriminating between
various learning algorithms. We will demonstrate that
many algorithms fail to discover a Pareto efficient solu-
tion in self play. The satisficing algorithm, by contrast,



discovers a Pareto efficient solution with high probabil-
ity given a wide range of initial parameters, and tends
toward the Nash Bargaining solution in self-play.

4. The Satisficing Algorithm

Herbert Simon introduced the term satisficing to mean
“good enough” (Simon, 1996). Although he discussed
satisficing from several perspectives, a frequent per-
spective was one in which an agent searched through
a set of possible decisions until a decision was found
which had utility that exceeded an aspiration level. A
formal treatment of this algorithm was analyzed in a
prisoner’s dilemma context in (Karandikar et al., 1998)
and further analyzed in (Stimpson et al., 2001) for de-
terministic updates. The conclusion of these papers is
that a satisficing algorithm can lead to mutual cooper-
ation in the prisoner’s dilemma under a broad variety
of conditions.

4.1 Extending Karandikar’s Algorithm to the
MASD

(Karandikar et al., 1998)’s algorithm works as follows:
(a) when the aspiration level, «, is not met, the agent
switches actions, and (b) the aspiration level is up-
dated as the convex combination of the old aspiration
and the current reward via learning rate A. In the
prisoner’s dilemma, switching means simply switching
to the other action. In the social dilemma, an agent
must choose between an arbitrary number of actions.
We adopt the simple method of selecting the next ac-
tion randomly; more sophisticated techniques, such as
policy hill climbing, are topics for future work. Fig-
ure 1 states the modified satisficing algorithm in the
MASD context. For simplicity, we suppose that all
agents use the same learning rate .

4.2 An Example of Satisficing Learning in the
MASD

Figure 2 illustrates the satisficing learning process for
two agents. The figure is shown for M = 10 and initial
aspirations are (o, az) = (1.5,2.0). In the figure, each
open circle denotes a possible reward for some joint ac-
tion, where the x-coordinate is Player 1’s reward and
the y-coordinate is Player 2’s reward. At each time
step, one of these rewards is determined from the joint
action. The line that trails down from the upper right
corner of the graph is a plot of the aspiration history
for the agents. The gray area to the northeast of the
aspiration level is termed the satisficing region, mean-
ing that if a reward is selected that is in this region,
both players will be satisfied and aspirations will con-
verge to the chosen reward.

At each iteration t
1. For each agent, compute

[ S0 wy (1)) — kui(t)
M(1—k)

Ri(u(t)) =

2. Update the actions for satisficing agents

o If R;(u(t)) > «;(t) then w;(t + 1) = w;(t)
otherwise select u;(¢ + 1) from a uniform
distribution over all actions.

3. Update the aspirations for satisficing agents

o a;(t+1) = Aay(t) + (1 — AN)R;(u(t))

Figure 1. The satisficing algorithm for the MASD.
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Figure 2. An illustration of the satisficing learning process.
For this example, M = 10, k = 0.6, and A = 0.99 for both
agents.

Initially, all actions produce rewards that are less than
the aspiration levels of the agents. This causes aspira-
tions to drop and, as a result, the agents are choosing
randomly and thus the rewards are also randomly se-
lected from any of the possibilities shown.

At the time shown in the figure, the satisficing region
intersects the area of feasible rewards. It is now possi-
ble that a single agent may be satisfied with an action.
However, because the aspirations are still quite high,
most of those individually satisficing actions are likely
to exploit the other agent. An agent is therefore un-
likely to stay satisfied for more than a few iterations
because the unsatisfied agent will constantly be chang-
ing. During this time, if both agents chose M = 10
then they both receive a reward of (1,1) and they both
continue to play this satisficing action ever after. Once
this action is chosen, the aspiration vector approaches
(1,1) until eventually the only action that is mutually



satisficing is mutual cooperation.

This is the typical manner in which satisficing con-
verges in the two-player, multiple-action MASD. In-
tuitively, we can see that mutual cooperation is the
most probable outcome as long as aspirations start
high and aspirations are updated slowly. In most cases,
u = (M, M) will be the first joint action that is satis-
ficing to both agents.

5. Simulation Results

In this section, we analyze expected average reward in
self-play for (a) a general belief-based learner, (b) the
Q-learning algorithm, and (c) the satisficing algorithm.
Note that we do not present simulation results from
other state-of-the-art algorithms such as the WoLF
PHC algorithm (Bowling & Veloso, 2000) because
these algorithms purport to settle on single play Nash
equilibrium solutions, and these solutions may be inap-
propriate for the multi-agent social dilemma. Further-
more, simple strategies such as random play or play
fixed at a select action, are either subject to exploita-
tion by other agents, or are needlessly pessimistic.

To compare the algorithms, it is useful to have a stan-
dard of comparison. In related work, Bowling and
Veloso (Bowling & Veloso, 2000) state that a good
learning algorithm should reach a Nash equilibrium in
self-play and should find a best-response against infe-
rior opponents. We flip these desiderata to identify two
properties that are desirable from the bargaining per-
spective: a good learning algorithm should (I) reach
a Pareto efficient solution in self-play and (II) should
not be exploited by selfish agents. We will use average
performance in self-play as a metric for measuring how
often Pareto efficient solutions are obtained.

5.1 Belief-Based Learning

In this section, we present and discuss a general form
of belief-based learning described in (Feltovich, 2000).
In this algorithm, player’s beliefs about an opponent’s
play are characterized by a set of weights for each op-
ponent action. At time ¢ player i creates a probabilis-
tic model, ¢;(u_;;t) of all other agents using standard
techniques from fictitious play (Fudenberg & Levine,
1998). Given this opponent model, a player can com-
pute the expected value, Vi(ui;t), for each action wu;
as Vi(uit) = 32, ,cp , Ri(ui,u—i)qi(u—s;t). A prob-
ability, p;(u;;t), of choosing action wu; is then assigned
as follows (thereby producing mixed strategies),

exp()\if/i(ui; t))
Yuweu, exp(\; Vi (uj; 1))

piuist) =

)

where )\; is the Boltzmann parameter that determines
how optimally player ¢ plays according to his beliefs.
Note that this algorithm is a general case of many
well-known belief-based learning algorithms including
standard and cautious fictitious play (Fudenburg &
Levine, 1998).

Consider this learning model applied to the MASD.
Substituting Equation (2) for R; into the probability
of choice and reducing leads to

efA/\iui
. -'t) - -
pl(u“ Zi\io e—AXiz ’
1-kN

NI Note that these probabilities
are completely independent of the opponent’s strate-
gies or the player’s predictions about the probabilities
of the opponents’ play. This means that learning mod-
els of this form are unable to adapt their behavior to
their opponents in the MASD, and essentially reduce
to a purely random strategy with the above distribu-
tion function. Furthermore, it can be shown that any
dependence on state (whether from game history or
player history) is eliminated in the final probability
distribution.

3)

where A =

Consider the expected play for two extreme values of
Ai. When A\; = 0, the expected play is %, and in
the limit as A\; — oo, then the expected play is 0.
When all agents in a society use a learning strategy
of this type, R is bounded in [0, %] depending on the
values for \;. Experiments were conducted for various
parameter values where, in a given game, all agents
used the same \. When N =5, M = 3, and k = 0.6,
the theoretical payoffs R are as follows: A =0 — R =
05, A=1— R =036, and A = 10 — R = 0.012.
Note that since these values are supported with the
average empirical results, plots of the simulations are
omitted.

In terms of the two desiderata, since the belief based
agents act randomly, they will not learn mutual coop-
eration. They can, however, avoid exploitation by an
appropriate choice of parameters.

5.2 Q-Learning

In strict terms, applying Q-learning to multiagent en-
vironments is not mathematically justified due to the
fact that the transition function is not stationary when
the other agents are able to learn and adapt their be-
havior. Such limitations are addressed in algorithms
that adopt a stochastic games framework (such as
WoLF (Bowling & Veloso, 2000)), but these algorithms
emphasize convergence to single play Nash equilibria.
Because of the non-stationarity, Q-learning has been



shown to sometimes converge to Pareto efficient solu-
tions in the prisoners’ dilemma (Sandholm & Crites,
1995), and this is why it is instructive to study Q-
learning in the MASD.

We designed several experiments to evaluate the per-
formance of Q-learners in the MASD. The main results
are presented in Figure 3, which displays the average
rewards R throughout the learning process for three
different systems of Q-learning agents. As can be seen,

Avg. Reward Over Time

Avg. Reward
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Figure 3. The average reward of Q-learning agents over
time in the MASD. The three lines represent three sepa-
rate experiments with N=2, N=3, and N=10. In all cases,
M = 1 meaning that each agent has two choices. Each
experiment consisted of averaging the rewards of all the
agents over 200 trials. The game parameter k was chosen
from a uniform random distribution over its legal range
given N. The Q-learners used a fixed learning rate a« = 0.2,
a discount factor v = 0.9 and Softmax exploration.

in all cases, cooperation was relatively infrequent, al-
though we found that the Q-learners always converged.
In most cases, agents converged to the Nash equilib-
rium, but occasionally mutual cooperation emerged.

We varied both the parameters of the agents («, 7,
state representation) and the properties of the game
(N, M, and k). Except for N, the performance of the
Q-learning agents is not highly dependent on the agent
parameters. For example, there is a wide range of
values for both «, 7y, and M that lead to similar results.
We experimented with different state representations
as well (account for the previous entire joint action, u,
and account for the sum of the joint action, u_;) but
found that it did not have a significant effect on the
frequency of cooperation.

In terms of the two desiderata, the Q-learners tend to
learn best responses to stationary strategies (as evi-
denced by the predominance of Nash equilibrium solu-
tions), so they are unlikely to be exploited. However,
they only rarely learn mutual cooperation.

5.3 The Satisficing Algorithm

Figure 4 displays the average reward produced by the
satisficing algorithm for two agents as a function of
M in self-play. First, note that the performance is
very high, meaning that in self-play the satisficing al-
gorithm is likely to converge to a Pareto efficient so-
lution. Note also that as M increases, the average re-
ward decreases, but stays fairly high, even though the
probability of guaranteed cooperation gets very small
which means that the algorithm degrades gracefully
as complexity increases. This can be accounted for
by considering that mutual cooperation can still occur
even when we cannot guarantee it. Also, the primary
reason that u® becomes more difficult to obtain is not
that bad solutions are found, but that fairly good so-
lutions are found that are close to mutual cooperation.

,,,,,,,,,,,,,,

Avg. Reward

Figure 4. The average reward for 500 games over the soci-
ety of satisficing agents. In all games, £ = 0.6 and initial as-
pirations were randomly selected from the range [1.5,2.0].

Figure 5 compares the average reward over the so-
ciety as N increases for three different values of M.
As M increases, there are more solutions that are not
Pareto efficient and it is therefore more difficult to find
a Pareto efficient solution. We note that R starts high,
but falls of as N increases. By the time N = 10, for
moderate values of M, R has significantly decreased
and begins to approach 0.5.

In terms of the two desiderata, mutual cooperation
is likely to emerge in self-play. Furthermore, we can
prove that the algorithm is likely to converge to a sin-
gle play Nash equilibrium when playing against a so-
ciety of selfish agents, which means that the algorithm
is not likely to be exploited. A corresponding theorem
exists that states conditions that guarantee the algo-
rithm will converge, with high probability, to mutual
cooperation in self-play. In the interest of space, we
present only the first theorem in this paper.
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Figure 5. The average reward for 500 games of a society
of satisficing agents as N increases. k was selected ran-
domly from its legal range. Initial aspirations were chosen

randomly between Rpmax and 2Rmax. All agents used a
A =0.99.

6. Satisficing Against Defecting Agents

If a learning agent is facing agents that always at-
tempt to exploit others, an effective learning algorithm
should be able to learn the single play Nash equilib-
rium. In this section, we evaluate the ability of a satis-
ficing agent to learn u; = 0 in such a society. Observe
that u_,; will always be 0 for the satisficing agent. This
means that the reward to the satisficing agent 4 for
taking action u; is

1—-kN
Note that R; < 0 which implies that a(t) will always
be decreasing until «(¢) < 0. At that point, whenever
R; > a(t), the agent will be satisfied indefinitely. As
long as 0 < A < 1, the aspiration level «(t) cannot
fall below the minimum reward given and thus the
algorithm will always converge to some action u*.

Two points need to be made before continuing. First,
since we have altered Karandikar’s algorithm and since
the game is multi-agent, the proof of convergence
in (Karandikar et al., 1998) does not apply. Second,
showing that the agent converges to a single play Nash
equilibrium against a selfish agent lends credibility to
the argument that the satisficing algorithm will avoid
exploitation, even by clever agents. The reason for this
is that if a clever agent defects initially, the satisficing
agent will tend toward the single play Nash equilib-
rium which means that the clever agent will have no
incentive for changing its strategy. If the clever agent
tends to cooperate initially, the satisficing agent will
tend to cooperate too; if the clever agent then switches
behavior toward exploitation, the satisficing agent will
cease to be satisfied with cooperation and will lower
its aspiration until it learns the single play equilibrium.

Thus, it is unlikely that the satisficing agent will con-
verge to a steady state solution that can be exploited.
It is, however, possible for a coalition of clever agents
to manipulate a satisficing agent.

6.1 Intuition Behind the Argument

The best response for a satisficing agent against u_; =
0 is u; = 0; this is the action that is most likely to
be produced by the satisficing algorithm. This result
requires that the initial aspiration «(0) > R;(0,0) = 0.
This means that the satisficing agent will be initially
unsatisfied for several iterations while aspirations fall
towards zero. Eventually, at some tg, a(tp) < 0, after
which if u;(t) = 0 is chosen for ¢ > ¢( then the agent
will converge to the Nash equilibrium. However, it is
possible at some time t; for aspirations to fall below
R;(1,0) before full defection is chosen. The trick is to
make T' = t; — to large enough that uw; = 0 is chosen
with a high probability.

Figure 6 illustrates this concept. The aspiration starts
well above the reward for mutual defection denoted
by R(0). At each iteration, however, « falls towards
the received payoffs. At some point g, «(t) drops
below the reward for playing the Nash equilibrium.
At this point only the Nash equilibrium is satisficing.
Eventually, at some time ¢ > tg, if the agent does not
play u; = 0, the aspirations will fall below R;(1,0),
after which it is possible to converge to u = 1, and
thus be indefinitely exploited.

R(1)

t

Figure 6. An example of the aspirations of a single satisfic-
ing agent against a society of defecting agents over time.

6.2 Theorem

The critical factor in determining if the algorithm will
converge to the Nash equilibrium is the length of the
interval T' = t; — ty. We can place a lower limit on T'
by identifying the value of T' that causes aspirations
to fall most sharply between R;(0,0) and R;(1,0). We
refer the reader to (Stimpson, 2002) for a complete



derivation. This bound is given by

M-1
T > logA[ i ]—1,

which depends only on A and M. Note that as \ ap-
proaches one, T gets larger and approaches infinity,
but as M goes to infinity, T goes to zero. We can now
state and prove the following:

Lemma 6.1 Assuming «(0) > R;(0,0), then for any
T' > 1, there exists a X € (0,1) such that the shortest
interval T in which a(to +T) > R;(1,0) satisfies T >
T
PRrROOF. Since T > log, [%] — 1 it suffices to find a
A such that logy [2=2] —1 > T'for any T' > 1. Such a
M1
A must satisfy ln(lnf\’ )
M-1)
M

> T’ + 1 which is equivalent to

1
T+1 < X\ < 1. Thus, we can always choose a
A € (0,1) that will make T' greater than any arbitrary
T>1 |

We now know conditions on A such that there is a time
window of at least T iterations in which the one shot
Nash equilibrium action, u; = 0, will be the only satis-
ficing action. During this window, actions are selected
from a uniform distribution where Plu = 0] = ﬁ It
follows, then, that the probability of the Nash equilib-
rium occurring in this window of length T is given by
1-— (Mi_s_1 ). The Nash equilibrium could be reached in
subsequent iterations (after a(t) < R(1,0)), but that
will only increase the probability that v* = 0. Thus,
the probability that the agent learns the Nash equilib-
rium against a society of always-defecting agents can
be bounded by

P[u;‘:O}zl—(M]\frl)T. 5)

Theorem 6.1 Consider a multiagent social dilemma
specified by (N, M, k) played by a single satisficing
agent i when u_; = 0. Suppose that «(0) > R;(0,0).
Then, for any € such that 0 < € < 1, there exists a
learning rate A such that the probability of the single
satisficing agent learning the Nash equilibrium is at
least 1 — €.

PRrOOF. By Equation (5), we know that Plu* = 0] >

)=
1— (MLH)T Thus, if we can show that 1— ML_{_l >

1 — ethen it follows that Plu* = 0] > 1 —e. To satisfy
this inequality, 7" must satisfy T° > log . (¢). But

by Lemma 6.1, we can always choose a T such that
T>T = 1og#(e). Thus, for any e there exists a A
such that Pluf =0] > 1 —e. |

Empirical results confirm that P(u* = 0) is indeed
bounded by this limit. A similar proof can be used to

show that a learning rate A can be chosen such that
a group of N satisficing agents will likely converge to
mutual cooperation (the Nash bargaining solution) if
they all begin with high and similar aspiration levels.

6.3 Graceful Degradation and Convergence
Time

It is desirable for the algorithm to degrade gracefully
in the presence of many possible actions (M). Con-
sider the system at any time ¢ > ¢;. At such times,
the Nash equilibrium is at least as likely to be cho-
sen as any other mutually satisficing action. Thus,
the Nash equilibrium is not only possible earlier than
higher values of u}, but is always at least as likely as
any other uf as well. Furthermore, since R;(u},0) is
proportional to the ratio uﬁ, as M increases the prob-
ability of missing the Nash equilibrium increases, but
the cost of slightly missing v = 0 decreases. Em-
pirical results confirm that the average reward for a
satisficing agent against u_; = 0 degrades gracefully.
The trends are similar to those shown in Figure 4 so
plots are omitted in the interest of space.

Time to converge is also a very important element of
the performance of the satisficing algorithm. The or-

which is obtained

ks
by taking the expected aspiration level at some time
t. Thus, a high X is required to make non-exploitation
likely, but it also significantly increases convergence
time.

der of convergence time is

7. Discussion

We have presented an M-action, N-agent social
dilemma, and evaluated the performance of several
learning algorithms in this dilemma. Q-learning rarely
converges to mutual cooperation in self play, and
belief-based learning generates random actions with-
out regard to the game for this dilemma. The satisfic-
ing algorithm, by contrast, usually converges to mu-
tual cooperation in self-play, but usually avoids being
exploited by selfish agents. A key point in this discus-
sion is the assumption that a clever algorithm should
learn a Pareto efficient solution in self play rather than
the single play Nash equilibrium. This assumption is
based on the observation that learning is often inher-
ently repeated play, so a give-and-take approach to
adaption is more appropriate than insisting on indi-
vidual optimization.

The key parameter in the success of the satisficing al-
gorithm is choosing the learning rate, A. High values of
A make cooperation highly probable, but it may take
a very long time to reach convergence. Essentially, in



choosing A, an agent must resolve a tradeoff between
solution quality and convergence speed. We have as-
sumed in this paper that the game is played for many
iterations and the agents value the future, and thus
solution quality will be more important than speed.

Relaxing an agent’s aspirations is one way to show re-
spect for how an agent’s choices affect other agents,
even in the absence of precise knowledge of the re-
ward structure of the game and the set of possible
choices of other agents. By showing respect in this way,
the satisficing algorithm assumes a bargaining perspec-
tive while avoiding being exploited by selfish agents.
Rather than adopt the Nash equilibrium as the basis
for finding stable solutions to multi-agent learning, we
instead adopt a bargaining-based solution. Bargain-
ing, in this problem, is relaxing the aspiration level
until a satisficing action is chosen. Stirling has argued
that when all agents are “satisficed” then there is no
incentive for any agent to change its choice (Stirling
et al., 2002). In Stirling’s sense, then, the satisficing
algorithm produces stable solutions in self-play.
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