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Abstract—While the design of autonomous robots often empha-
sizes developing proficient robots, another important attribute of
autonomous robot systems is their ability to evaluate their own
proficiency. A robot should be able to assess how well it can perform
a task before, during, and after it has attempted the task. How can
autonomous robots be designed to self-assess their behavior? This
article presents the assumption-alignment tracking (AAT) method
for designing autonomous robots that can effectively evaluate their
own performance. In AAT, the robot a) tracks the veracity of
assumptions made by the robot’s decision-making algorithms to
measure how well these algorithms fit, or align with, its environment
and hardware systems, and b) uses the measurement of alignment
to assess the robot’s ability to succeed at a given task based on its
past experiences. The efficacy of AAT is illustrated through three
case studies: a simulated robot navigating in a maze-based (discrete
time) Markov chain environment, a simulated robot navigating in a
continuous environment, and a real-world robot arranging blocks
of different shapes and colors in a specific order on a table. Results
show that AAT is able to accurately predict robot performance and,
hence, determine robot proficiency in real time.

Index Terms—Assumption-alignment tracking (AAT), autono-
mous robot system, robot proficiency self-assessment.

[. INTRODUCTION

HE design of autonomous robot systems has understand-
T ably emphasized the development of proficient robots—
i.e., robots that can effectively carry out tasks in varying envi-
ronments. Developing proficient robots is an ultimate goal, but
an autonomous robot should also have the ability to identify
and predict when it can and cannot successfully carry out a
task.

Proficiency self-assessment is valuable for several reasons.
First, safety dictates that autonomous systems should identify
when they will fail, are failing, and have failed to accomplish a
task [1], [2] and also be able to explain those failures [3], [4],
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Generator Completeness: The robot has algorithms (or
behavior generators) necessary to perform the task

Expectation Awareness: The robot has a performance
standard that represents acceptable/effective performance

Performance Evaluation: The robot has a performance
estimate, which it compares to the performance standard

Fig. 1. Three components necessary for an autonomous robot to self-assess
its ability to perform a task.

[5], [6]. Second, because autonomous robots typically operate
in the context of a team, knowing one’s competence and limits
can improve teaming and synergistic planning [7], [8]. Third,
knowing one’s limits can be used to improve robot behavior by,
for example, deciding when to continue learning and when to
exploit one’s current knowledge [9], [10]. As such, we argue that
autonomous robot design should simultaneously focus on both
proficiency and self-evaluation of proficiency.

A few papers have directly addressed proficiency self-
assessment [11], [12], [13] but each has limitations. The method
proposed in [11] relies on prior knowledge that is not always
available, while the methods used in [12], [13] are limited
to specific platforms or environments. Robotic introspection
is a research area similar to proficiency self-assessment but
focuses more on identifying atypical operation modes [14] or
input data [15], [16], [17], [18], [19]. Another related direc-
tion is machine self-confidence, which is a robot’s “self-trust
in its functional abilities to accomplish assigned tasks” [20].
One general approach to machine self-confidence is factorized
machine self-confidence (FaM-Sec), which characterizes the
overall confidence of an autonomous system based on a set of
factors that score different parts of the system’s decision-making
process [20], [21], [22], [23], [24]. There is not yet a systematic
method for identifying and accurately assessing all factors and
then properly integrating them to assess the overall confidence
of the robot system.

We propose that task-oriented proficiency self-assessment re-
quires at least three evaluations (see Fig. 1). First, the robot must
determine whether it has a set of decision-making algorithms
(or behavior generators) that can be combined to perform the
desired task [11]. Second, the robot must have a performance
standard, which gives it an understanding of what constitutes
desirable (or acceptable) performance on that task. Finally, the
robot must estimate its performance and compare this estimate
to the performance standard.
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While each component in Fig. 1 is necessary for performing
proficiency self-assessment, this article focuses on the third
component: How can a robot effectively estimate its perfor-
mance at any time during task execution? We then compare this
performance estimate with the performance standard (which we
assume is given) to assess whether the robot can perform the task.
In particular, the approach we propose and analyze for estimating
robot performance is based on the following view of proficiency
self-assessment: Proficiency self-assessment is awareness of
how well one’s “generators” (i.e., decision-making algorithms)
interact and align with the environment(s), robot hardware, and
task(s) under consideration. Based on this view, we propose
the assumption-alignment tracking (AAT) method that allows a
robot to a) measure how well its generators align with its envi-
ronment, hardware and tasks by tracking the veracity of the gen-
erators’ assumptions, and b) estimate the robot’s performance by
adjusting its expected performance under normal circumstances
according to the measurement of alignment (see Section III).
We further propose a data-driven approach to implementing the
AAT framework (see Section IV).

We evaluate AAT through three case studies: a simulated
robot navigating in a maze-based (discrete time) Markov chain
environment, a simulated robot navigating in a continuous en-
vironment, and a real-world robot arranging blocks of different
shapes and colors in a specific order on a table (see Section V).
Empirical results in a) scenarios where configurations remain the
same throughout a task and b) scenarios where configurations
change in the middle of a task demonstrate that AAT can yield
interesting and accurate proficiency estimates (see Section VI).
While AAT is shown to be useful for proficiency self-assessment,
implementing AAT takes extra effort that could have been put
into creating more proficient robot generators. Moreover, reduc-
ing the design effort to AAT could have complex effects on AAT
efficacy. We discuss tradeoffs in how to allocate design effort in
Section VII. Finally, we discuss key interesting observations
from the experiments in Section VIII and present limitations of
this work in Section IX.

This article evolved from the authors’ previous work on the
topic [25]. This version of this article extends the original work in
the three ways: First, this article describes the methodology more
systematically and provides a more generalized framework that
can be applied to any discrete time state-transition system with
an additive performance metric. Included in this formulation is
a further description and analysis of different types of veracity
checkers. Second, this article provides empirical results from
two additional case studies that have different task domains
and environments, including a real-world robot system. Finally,
we evaluate the proposed method not only in scenarios with
consistent configurations but also in scenarios in which the
environment or robot hardware is altered during the mission.

II. RELATED WORK
This section reviews related literature and states how AAT
relates to and differs from prior work.
A. Veracity and Reliability Assessment

The veracity assessment in AAT shares similarities with prior
work. For example, Ramesh et al. [7] advocate for tracking
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so-called robot vitals, which appear to be assessments of as-
sumptions made about generator outputs. Similarly, Das etal. [4]
used assessments of generator outputs to produce explanations
to assist users in fault recovery of a robot system, and Béné
and Doyen create viability tests that compare performance to
predefined thresholds and use the result to estimate the resilience
of an agent [26]. Finally, prior work has also discussed fault iso-
lation to identify causes of task failure [27], wherein fault classes
include “component faults” (hardware or software component
failures during task) and “contextual faults” (faults related to
functional system behaviors). Fault classes can be viewed as
special types of alignment checkers that are restricted to post
hoc assessment of failures.

Reliability [28] has been defined as the duration of time in
which a robot meets performance standards under defined work-
ing conditions. Reliability metrics include mean time to failure,
mean time to repair, and mean time between failures [29], [30].
Parameters needed to compute those metrics, such as failure
time, failure-free time, and repair time can be estimated using
fuzzy logic [31] or probability theory [32], [33]. Reliability is
similar to AAT in that it evaluates actual performance relative to
a performance standard, but restricts assessments of proficiency
to maintenance goal [34]. AAT, by contrast, assesses proficiency
using the probability of completing an achievement-oriented
task or goal [34].

B. Proficiency Self-Assessment

Frasca et al. [11] introduced a general framework for robot
self-assessment which allows a robot to determine what task it
can accomplish and the probability it will accomplish it. Their
work is that the estimated success probabilities for complex tasks
rely on prior probabilities of atomic tasks. By contrast, AAT uses
training data instead of explicit prior probabilities. Future work
should consider how AAT could blend prior probabilities with
observed data to improve assessment.

Dutta and Nelson [12] developed a learning-based method
that enables a robot to measure how similar its current task
is to its previous tasks and to estimate the completion time
of the current task based on its previous experience. Similarly,
Burghouts et al. [13] proposed a method that allows a robot to
conduct self-assessment of competence by assessing whether the
current environment is known followed by 1) asking a human
for feedback about its competence if the environment is not
known or 2) generalizing its competence from earlier experience
if the environment is known. The idea of measuring similarity
between tasks or assessing whether the current environment is
known is similar to the veracity assessment in AAT, though
the veracity assessment in AAT involves not only evaluations
of environment but also evaluations of sensors, actuators, etc.
Moreover, these prior methods [12], [13] only focus on a priori
proficiency self-assessment, while AAT supports both a priori
and in situ proficiency self-assessment.

C. Robotic Introspection

AAT is related to robotic introspection, which was first intro-
duced by Aaron [14] as using data signatures that characterize
robot operational state to differentiate between normal and
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abnormal modes of operation. Grimmett et al. [15], [16] and
Triebel et al. [17] adopted introspection as the capacity of a
model to adjust the confidence of a particular prediction based
on how representative its training data are of the corresponding
test case. Daftry et al. [18] advocated for an introspective model
independent from the underlying robot system. The model learns
hidden latent representations from perceptional inputs with a
spatio-temporal convolutional neural network and then uses a
linear support vector machine that takes the latent representa-
tions as inputs and predicts how likely perceptional inputs would
cause robot failure. Kuhn et al. [19] trained an introspective
model to predict future disengagements of autonomous vehicles.
The model uses state data describing the dynamics of vehicles
as input and learns from the previous experience of the vehicle.
Israelsen and Ahmed defined self-assessment as an introspective
assurance for establishing user trust in an intelligent system [35].
Similar to AAT, each paper previously emphasizes the impor-
tance of identifying underlying assumptions, either explicitly or
through data-driven learning methods. AAT differs from these
papers in how evaluations of the assumptions are used to assess
the probability of success in an achievement-oriented goal [34].

D. Machine Self-Confidence

Another notion similar to proficiency self-assessment is
known as machine self-confidence, which is a robot’s “self-trust
in its functional abilities to accomplish assigned tasks” [20].
Several metrics have been proposed to measure machine self-
confidence. Hutchins et al. [36] represented the self-confidence
of an unmanned vehicle by measuring the uncertainties in its
sensors and planners. Kuter and Miller [37] computed self-
confidence by measuring the ability of an autonomous system
to foresee contingencies that could threaten its performance,
and to adapt its plan to circumvent those conditions. Sweet
et al. [38] proposed three metrics for self-confidence in au-
tonomous systems: success probability, plan robustness, and
quality of meta-knowledge. Zagorecki et al. [39] considered
autonomous systems that consist of multiple Bayesian network
models. They proposed to use the surprise index [40] to de-
termine which model better matches a case to be solved and
to measure the confidence of an autonomous system. Kaipa
et al. [41] considered the bin-picking problem where a robot is
assigned to singulate multiple parts from a bin in a specific order.
Each of these papers uses measures of sensor uncertainties,
predicted plan disruptions, and data-driven diagnostics to assess
self-confidence.

An integrated system of assessing self-confidence, known as
FaMSec, characterizes the overall confidence of an autonomous
system based on a set of factors that score different parts of the
system’s decision-making process [20], [21], [22], [23], [24]. In
that work, five factors were proposed: command interpretation,
model validity, solver quality, outcome assessment, and past
performance [21], [22]. Methods for assessing the outcome
assessment factor [21] and solver quality factor [23], [24] were
developed. FaMSec was extended to assess and express uncer-
tainties through generalized outcome assessments formulated in
terms of task-relevant outcome semantics for UAV ISR applica-
tions [42]. The elements in FaMSec are similar to the process of
identifying assumptions, defining alignment checkers, designing

progress checkers, and training these checkers using controlled
experiments. Future work should evaluate how elements of FaM-
Sec and AAT can be integrated. The self-confidence metrics in
the prior two paragraphs are similar to the progress checkers used
in this article. Indeed, self-confidence metrics could be used as
progress checkers in future work. By contrast to self-confidence
metrics, AAT includes direct assessments of how well explicitly
identified assumptions are satisfied.

E. Metrics for Robot Proficiency Self-Assessment

Various metrics for robot proficiency self-assessment have
been summarized in [43]. Some of those metrics are related to
this work, including alignment of uncertainty and performance,
mission progress, predicted versus actual completion time, and
reliability. For each metric, we review its definition in [43], its
related literature, and how it relates to this work.

Alignment of uncertainty and performance can be measured
as the correlation between the variance and performance of the
model’s output, which was evaluated by Fitzgerald et al. [44].
Similarly, Fleming and Daw [45] correlated the model’s un-
certainty to the actual error incurred by the model’s output.
In this work, we evaluate AAT performance by computing the
average predicted success/failure probability for success/failure
trials [see Fig. 10(a), (d), and (g)].

Mission progress refers to the extent to which a task has been
completed and reflects a robot’s performance and proficiency.
For sequential tasks, mission progress can be measured as the
number or percentage of subtasks completed. In [46], [47], the
estimation of mission progress involves reaching mileposts, sat-
isfying preconditions or postconditions, deviations from scripts,
and timing metrics. The progress checkers in the present article
are application-specific implementations of mission progress.
Future work should explore how additional progress checkers
can be developed and applied.

Assessment metrics can also include the distribution of pre-
dictions and observations to recognize when a system is not
functioning well enough. For example, an approach to measure
the proficiency of a model using a Cramer Rao-like measure of
the expected value of the second moment of a log likelihood
function was studied in [48].

Predicted versus actual completion time indicates the accu-
racy in predicting the robot’s task completion time. Similarly,
Schneider et al. [49] measured the difference between the pre-
dicted and actual time for a failure. The difference between
actual and predicted completion time is post hoc but is used in
this article as the training target of the kNN algorithm in order
to facilitate in situ assessments.

These metrics and methods can be classified as progress
checkers (using the terminology in this article). AAT uses both
alignment checkers and progress checkers, and future work
should evaluate how these more sophisticated progress checkers
could be combined with alignment checkers to better perform
proficiency self-assessment. Of particular interest is exploring
how general patterns of progress checkers can be distilled from
these cited prior works.

III. METHODOLOGY AND FRAMEWORK

Estimating performance in arbitrary environments and sce-
narios is challenging because it is difficult to determine how



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4
4[ Robot Generators ] [ Robot Tasks ]»
0 o N
Assumptions of Assumptions of
Generators’ Inputs Generators’ Outputs -
=
\ﬁ_l g
[Alignment Checkers} [Progress Checkers}
Veracity Assessments
Eq. (1) aj
3
8
Feature Vectors ~
Egs. (2) and (3
Purported - )ar.]_(‘z ________________ _
Performance
Performance Estimation
Eqs. (4) - (10) 3
Performance | £
Standard | &
Proficiency Assessment
EC N I
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environmental characteristics, the robot’s hardware, and the
robot’s decision-making algorithms (or generators) will com-
bine to impact the robot’s performance. This is difficult for post
hoc estimates, but even more difficult for a priori and in situ
estimates. Past work has conjectured that a robot’s performance
is a function of the complexity of the environment in which the
autonomous system operates (e.g., [50], [51]). Unfortunately,
quantifying the effect of environment complexity on a robot’s
task performance remains unsolved.

We assert that robot performance is sensitive to how well
its generators align with its environment and hardware. This
alignment can be determined via a set of metrics that do not
require a direct assessment of the complexity of the environment,
but rather is made by tracking the veracity of the assumptions
upon which the robot’s generators rely. We call this AAT.

Fig. 2 shows the three phases of applying AAT to assessing
robot proficiency. In phase 1, the robot designer identifies as-
sumptions made in the construction of the robot’s generators, and
creates a) alignment checkers that assess the veracity of these
assumptions and b) progress checkers that explicitly estimate
the robot’s progress in completing its tasks. In phase 2, the
outcomes of these checkers over time form a time-indexed set
of veracity assessments of the identified assumptions, which are
then converted to feature vectors. In phase 3, feature vectors are
used to model how to adjust the robot’s purported performance
(expected performance under normal circumstances) to estimate
the robot’s actual performance, which is compared to a perfor-
mance standard to determine whether the robot is proficient or
not. The rest of this section and the next section formalize the
process.

A. Trajectory, Task, and Performance

Let E = S x A x Sbe adiscrete time state transition system
that models the environment as a mathematical relation where S
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denotes a suitable state space and A denotes a robot’s available
actions. Elements of this relation are (present state, action, next
state) triples.

A robot within the environment takes observations of the
environment and generates actions, as described by the robot
generator relation R = S x O x A. Elements of the robot rela-
tion are (state, observation, action) triples, where each state is
associated with one observation and at least one action.

When the robot and environment relations are joined, a set of
time-indexed state and observation trajectories are created with
elements, respectively

st = [s0,51,..., 5] and o, = [0p, 01, ..., 0]

where, s is an initial state and og is an initial observation.

A performance metric can be either a utility to be maximized
or a cost to be minimized that maps a time-indexed state trajec-
tory to a real value. This work considers problems in which a
single task is performed by the robot and in which there is a cost
function defined for the robot metric

C: {St} — R.
This work further assumes that C' is additive, such that
C(st) = C([s0, 815+, 87)) + C([8r,- -, 8¢])

where, 0 < 7 < t. Future work should explore other perfor-
mance metric structures.

In practice, the robot estimates its state trajectory based on
its observation trajectory and then applies the cost function to
the estimated state trajectory to predict its final cost. For sim-
plicity, we explicitly define C' as a mapping from an observation
trajectory to a real value

C:{o}— R

B. Assumptions and Veracity Assessments

As asserted in many No-Free-Lunch Theorems (e.g., [52]),
all decision-making algorithms (or generators) for autonomous
robot systems are based on assumptions or biases that dictate
their performance [53]. When these assumptions and biases are
satisfied in the real world, the robot’s behavior and its impact on
the world satisfy the designer’s intentions. However, when the
assumptions are not met, the robot’s behavior and its impact
on the world are both less predictable and less likely to be
satisfactory. Thus, the ability to differentiate between conformity
to and violation of these assumptions can provide rich insight
into a robot’s performance.

Fig. 2 illustrates two important forms of assumptions related
to a robot’s generators: assumptions about generator inputs and
generator outputs. Assumptions about generator inputs include
assumptions about the robot’s sensors, the robot’s actuators,
and the properties of the environment. For example, a mapping
system for a robot performing a navigation task might assume
that sensor readings have low variance and that the sensor
can detect the objects in the environment. Assumptions about
generator outputs relate to the properties of the outcomes of
generator decisions. For example, a robot navigation system
might be designed under the assumption that the robot’s mapping
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system will compute consistent positions of stationary objects
in the environment.

Once the assumptions made in the design of the robot gen-
erators are identified, the system designer creates assumption
checkers that check assumption veracity. Assumption veracity
assessments can begin before the robot starts to operate in
the environment (i.e., a priori; these assessments are mainly
limited to input assumptions) and then continue throughout the
mission (i.e., in situ assessments). The resulting time series of
assessments over each of the assumptions form the alignment
profile, which is used to evaluate the robot’s ability to perform
the given task in the current environment.

Suppose that there are M assumptions made by the robot’s
generators. In AAT, at least one checker is created for each
assumption. An alignment checker is a generator-specific func-
tion that evaluates the robot’s observations to determine how
well a generator’s assumption is satisfied. Alignment check-
ers can produce boolean or real-valued assessments. For sim-
plicity, assume that there is exactly one alignment checker
per assumption, and denote the M alignment checkers as
{v1(0¢),v2(04),...,vpr(04)}. Note that even though techni-
cally o, is the input to each checker, many of the alignment
checkers implemented in this work require only the current
observation o;, while others (such as those assessing stochastic
properties) use only a limited number of the latest observations.
This approach to alignment checking makes the veracity assess-
ments sensitive to sudden changes during tasks.

Because not all assumptions can be easily checked and be-
cause some assumptions can easily be missed, we create a second
set of checkers known as progress checkers. Progress checkers
are assessments that explicitly estimate the robot’s progress in
completing a task. They aggregate many assumptions and hence
are a sort of catch all checker. Such checkers could be, for
example, how far arobot has traveled, the robot’s average speed,
or how many subtasks have been accomplished [46]. A progress
checker is therefore a generator- and task-specific function that
returns a real-valued estimate of progress. Suppose that there
are K progress checkers, {vnr41(0¢),v2(04), ..., vt i (0r) }.

The assessments made by alignment checkers and progress
checkers are combined to form the veracity assessment at time t

v(ot) = [v1(04),v2(0¢), . . ., Uar+ Kk (O1)]. ))

Because some veracity assessments are noisy and benefit from
temporal smoothing, v(o;) is better represented as a feature
vector, at time ¢, f(o;) = [f1(0y), f2(04), ... far+x(04)] that
includes any temporal blending that must occur. There are
several ways to perform this temporal blending, and this article
uses exponential smoothing, yielding

Ji(o) = A fr(op1) + (1 — A )vr(oy) 2

where, A, € [0, 1]. The initialization condition, fj(0_1), is set
to zero and is used for computing fx(0g). This article uses
progress checkers that explicitly integrate multiple observations
together. Therefore, the feature vectors for the progress checkers
are fi(0:) = vi(04), corresponding to A, = 0. By contrast, this
article uses A, > 0 for alignment checkers, which benefit from
temporal smoothing. Evaluating A, € {0.1,0.3,0.5,0.7,0.9} in

the Markov chain study showed little sensitivity (discriminabil-
ity root mean square error less than 2.14%) so A, = 0.3 is used
in all evaluations.

Feature vectors give rise to the alignment profile at time t,
which is the time series of veracity assessments encoded as
feature vectors up to time ¢

F(o:) = [f7(0g),fT(01),...fT(0y)]" 3)

where, the superscript T denotes “transpose.” The alignment
profile gives insight into how well the robot’s generators will
interact with its environment and hardware systems. It can thus
be used to estimate the robot’s performance.

C. Estimating Performance

The estimate of the final performance is a function of the
observations up to the current time ¢ and projections of obser-
vations in the future. Let C'([og, ..., 0, -]), where the last
ellipsis denotes future observations, denote this prediction of
final task performance made at time ¢. Because the cost function
C is additive, C([og, . .., 0, -]) is estimated from two com-
ponents: estimated performance so far on the mission up to time
t, denoted by C([og, . - ., 0¢]), and the performance predicted in
the future, denoted by C/([oy, - - - ]). Thus

1) =C(loo,....0) + Clor,---]). @)

The second half of (4), specifying estimated future perfor-
mance, is obtained from two parts: purported performance
C([ot, - - -]) and a scaling coefficient 1. Purported performance
can be thought of as a type of expected performance if things go
as planned from the current state. It is computed by the planner
under the assumption that all the generators’ assumptions hold.
The scaling coefficient  depends on the current veracity assess-
ment, f(0;), and is therefore expressed by the function n(f(o;)).
Intuitively, this scaling coefficient indicates how the cost is likely
to change, usually at an increase, as assumptions are violated.
In addition, as demonstrated in the case studies we present later
in this article, purported performance estimates computed by
the planner need not be perfect since scaling can simultaneously
provide corrections to those estimates. Therefore, AAT estimates
the final performance as

CA'([O()7 N

é([Oo,. ..

y Oty "

ot 1) = C([og, - . ., 01])
+C([og, 1) - n(f(0r).  (5)

The next section presents an implementation of (5).

IV. AN IMPLEMENTATION OF THE AAT FRAMEWORK

This section presents an implementation of AAT, including
design choices for the cost function C' and the scaling coefficient
7. First, we define C' as the time-to-complete a task. Then, we
approximate 7 based on the robot’s past experiences, which
consist of feature vectors contained in the alignment profiles
of different past runs (experiences) as well as the known scaling
coefficients associated with those runs. To do this, we implement
a k-nearest neighbor (kNN) algorithm that computes the past
feature vectors that are closest to the current feature vector.
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These nearest-neighbor samples specify a probability distribu-
tion of the current scaling coefficient. Finally, the probability
distribution of the current scaling coefficient is used to compute
a probability distribution predicting the robot’s performance,
which can then be used to make an assessment of the robot’s
proficiency by comparing the predicted performance to the given
performance standard. In Section V, we study the effectiveness
of this implementation of AAT by applying it to three different
systems.

A. Implementing the Cost Function C'

For many tasks, including those considered in the three case
studies we present subsequently, the cost metric is the time-to-
complete the task. The cost up to the current time, ¢, is therefore
the elapsed time

C(Ot) = ‘0t| =1

where, |o;| denotes the number of steps in the trace. Given this
definition, (5) becomes

C(Jog, . .- D =t+C(or,...]) - n(f(o)). (6)

» Oty -«

B. Computing the Scaling Coefficient 1

We compute the scaling coefficient 1) using a kNN algorithm
(we justify the usage of kNN in Section VIII). This algorithm
compares the current veracity assessment vector with feature
vectors from the alignment profiles recorded in the training set.
The training set is formed from past experiences in which the
robot attempted the task in potentially different environments
and under different conditions, some of which violate the as-
sumptions made in the creation of the robot’s generators.

Formally, the training set is formed from a set of trials in
which each trial j yields an alignment profile F7(o;) that con-
tains a set of feature vectors {f’(o;)}. Associated with each of
these feature vectors is a scaling coefficient, which denotes the
robot’s actual performance in the trial relative to the purported
performance at that time in the trial. Let 77 denote the time it

took the robot to perform the task in trial j and let C” ([oy, .. .])
denote the purported performance of the robot at time ¢ in trial
7. Then, the scaling coefficient of this sample is given by
i 17—t 7

" o) @
Training experiments, therefore, yield a set of time-indexed
feature vectors, f7, along with an estimate of the scaling coeffi-
cient 7)7. The combined vectors and scaling coefficients yield a
training set X for the learning algorithm.

The kNN algorithm is used to estimate the scaling coefficient.
The algorithm computes the set N C X as the k samples in X
with the feature vectors that are nearest to the current feature
vector f(o;). A weighted L1 distance (e.g., the Manhattan
distance) is used as the distance metric to compute this set. Given
two feature vectors, f* and f7, the weighted L1 distance is given
by

M+K

D, £y = > Dn-|fi = £ ®)
n=1
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where, D = [Dy, Do, ..., Djry k] is avector used to weight the
relative strength of the dimensions of the feature vector. Each
nearest neighbor n € N then provides an estimate of the scaling
coefficient, n".

To form a probability distribution over the scaling coefficients
71, each n € N is assigned a raw weight, denoted by w/;,,, that
is inversely proportional to the distance between the currently
measured feature vector f(o;) and the feature vector of the
neighbor, f”. From these raw weights, a normalized weight is
computed as

n n

Whnorm = Wraw

k
> Whaw: ©)
i=1
These normalized weights, combined with the scaling estimates
1™, form a probability distribution to define the scaling coef-
ficient 7). In turn, the scaling estimates 1" are used in (6) to
produce an estimate (made by sample n) of final performance

C™([00, .-, 01,...]) =t + C([og,...]) - ™ (10)

Equations (9) and (10) then provide a probability distribution
over the robot’s final estimated performance on the task.

The experiments in the next section consider three distance
functions: Djignment> Dprogress» and Day1 given by

an

Da.ijignment includes nonzero weights for alignment checkers
while zero weights for progress checkers. On the other hand,
Dyogress includes nonzero weights for progress checkers while
zero weights for alignment checkers. The specific three distance
functions and raw weights wy, , used in the three case studies
are described in the next section.

Dall = Dali nment + D rogress -
g prog

C. Assessing Proficiency Requires a Performance Standard

The process of proficiency self-assessment described in Fig. 1
requires not only the performance estimate, but also a perfor-
mance standard. This section considers the latter. Since the
case studies use time-to-completion of an achievement-oriented
task [34] as the performance metric, the performance standard
is a predefined time bound 7},ouna, Which is used to determine
whether robot performance is acceptable. Define the goal func-
tion, denoted by G, that maps cost C' to a boolean value

_ Jtrue if C < Tyound
G(C) = {false otherwise

where, G = true means the robot’s performance is acceptable.
Note that G can be either measured for completed trials or
estimated for ongoing trials. In other words, G is a random
variable with binary outcomes, {true, false}.

Each nearest neighbor n € N provides a performance es-
timate C™ along with a normalized weight wy .. using (9)
and (10). Applying G to each C™ tells whether each nearest
neighbor predicts success or failure. Thus, summing up the
normalized weights of the nearest neighbors that predict success
yields the predicted success probability

k
P(G = true) = Z w’ o, if G(C™) = true.

n=1

(12)
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Fig. 3. Four worlds (or mazes) used in the navigation case study. The blue

(triangle) robot is tasked with getting to its charger (the red square). Black
line segments and other robots (green and pink circles) are obstacles in the
environment.

The predicted failure probability is 1 — P(G = true).

The proficiency assessor is a binary classifier that takes as
input the success probability in (12), compares it to a subjec-
tive threshold 6, and indicates that the system will succeed
if P(G = true)> 6. Varying 6 changes the true positive
and false positive rates of the resulting classifier, yielding the
receiver—operator characteristic (ROC) curves, which are useful
for assessing discriminability.

V. CASE STUDIES

We applied AAT to three case studies: a navigation task, a
maze-based discrete time Markov chain, and a Sawyer robot
manipulating blocks on a table. The case studies were chosen
because they have different task domains and environments.
Consequently, the case studies provide evidence that a straight-
forward and simple implementation of AAT can produce reason-
ably effective estimates of proficiency self-assessment across
many task domains.

Each case study implements study-specific elements of AAT.
However, in accordance with the process of AAT described
in the previous sections, each study consists of the following
steps. First, the assumptions made in the design and implemen-
tation of the robot’s generator(s) are identified. Second, veracity
checkers for the identified assumptions are implemented. Third,
experiments are performed with variations in environment and
system configurations to populate a dataset, which is divided
into training and test set. Fourth, case-specific parameters for
the kNN algorithm are chosen and used to predict the task
success probability of the robot system from the training set.
The resulting predictor is then evaluated on the test set. The
remainder of this section describes these elements for each case
study.

A. Navigation Task

1) Task Domain: The robot is a simulated robot that can
spin in place in either direction or move forward. The robot
is equipped with two sensors: a camera that looks down on the
world from above and a sensor that detects whether or not the
robot is on a charging pad. The robot’s task is to navigate to its
charger within a certain amount of time.

In this case study, we consider the four world environments
shown in Fig. 3. These simulation environments include the
robot (shown as a blue triangle) and its charger (shown as a red
square). All other entities shown in the figures, including black
line segments and pink and green robots (shown as circles),

are obstacles through which the blue robot cannot pass. The
four worlds shown in Fig. 3 are designed to represent different
difficulty levels, determined by the initial distance between robot
and charger as well as the number and placement of obstacles.
Mazes 1-2 were selected to generate training data, while Mazes
3—4 were used to generate test data.

Given that the robot must travel different distances to reach its
charger in each world, we set a different performance standard
for each world. The performance standards in Mazes 1-4 are set
such that the robot should reach the charger within 60, 150, 300,
and 220 s, respectively.

2) Generators and Assumptions: The simulated robot is
equipped with three different decision-making algorithms (or
generators) to perform the navigation task: 1) a mapper, 2) a
path planner, and 3) a controller. The mapper takes as input the
camera image and creates a map of the environment by detecting
and localizing itself and its charger in the world. It also creates
an obstacle map of the world. A new map is created every time
a new camera image is received. Mapper assumptions are:

1) the camera produces up-to-date images;

2) the camera is in the expected location, is oriented down-

ward, and has the assumed view-angle;

3) the camera sees color according to specification;

4) the camera has low noise and distortion;

5) the robot is blue and the charger red, and no other objects

in the environment are those colors;

6) the robot and charger are visible in the camera image;

7) all obstacles are also visible and are not white in color.

The assumed output of the mapper is a consistent and accurate
map of the world.

The planner takes as input the map, created by the mapper
every time a new camera image is received, to plan a path from
the robot to the charger using RRT* [54]. In addition to assuming
the map created by the mapper is correct, the planner assumes:

1) the robot is of the assumed size and shape;

2) the world is stationary (other than robot movement);

3) there is a path to the charger that can be found within 1500

iterations of RRT*;

4) the open space in the world has uniform cost (i.e., the robot

drives as easily through one open space as another).

The assumed planner output is a planned path with a consistent
path length.

The controller takes as input the planned path and outputs
commands to the robot’s actuators, which move the robot along
the chosen path to the charger. In addition to assuming the path
selected by the planner is feasible, the controller assumes:

1) the robot’s actuators are engaged (and react to the con-

troller’s commands);

2) the robot spins at the expected speed;

3) the robot moves straight when going forward;

4) the robot moves at the expected speed.

The expected output of the controller are wheel movements
that move the robot in the expected manner through the world.
Together with the expected output of the other two generators,
the generators are assumed to cause the robot to approach the
charger at an expected rate.

3) Alignment and Progress Checkers: Based on the iden-
tification of these assumptions, Fig. 4 shows the alignment



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Sensor Alignment Checkers
« Camera Updated « Expected Colors
* Low Camera Distortion * Low Camera Noise
« Expected Camera Resolution

Actuator Alignment Checkers

Speed  Distance

Outputs
Progress Checkers

« Expected Spin Speed  * Robot Moves Straight

« Expected Robot Speed  Actuators Engaged o
Environment Alignment Checkers Map
« One Charger « Stationary World Desirable Approaching
« One Robot « Expected Robot Size Path Goal
* Robot Visible « There is a path Expected
« Charger Visible « Uniform Cost Robot
« Charger Bigger « Obstacles Visible Movements

Input Alignment Checkers Output Alignment Checkers

Fig.4. Listof alignment and progress checkers implemented in the navigation
case study.

checkers that were implemented in this study to monitor the
veracity of these assumptions. Note that the experiments did
not include an alignment checker that verified that the camera
was located and oriented as expected. Progress checkers were
also created to monitor two parameters that correlate to the
robot’s performance: 1) the average speed with which the robot
has navigated so far and 2) the proportion of the distance the
robot has covered towards its goal (the charger) from its initial
position.

4) Study-Specific Details: Implementing AAT requires spec-
ifications of study-specific values and mechanisms related to
(8)-(10), including purported performance C([os,...]), raw
weights (w}},,,), and distance functions.

Purported performance. For this navigation task, purported
performance is based on the amount of time we expect the
robot to take to traverse the path computed by the planner under
normal circumstances. The path computed (using RRT*) by the
planner consists of a sequence of segments in the world. For each
segment, the robot must first orient (spin action) in the direction
of segment, and then traverse the segment (straight action).
Given how fast we observed the robot spin and move under
normal circumstances, we compute the purported performance
of the robot as

1.2 dist(P)

Vmax

C(lot,...]) =4|P| + (13)
where, P is a set of segments that define the planned path from
the robot’s current position to its charger, |P| is the number of
segments in the path, dist(IP) is the length of the path P, and
Umax 18 the robot’s assumed maximum speed. The first portion
of (13) (i.e, 4|P|) indicates that it takes the robot approximately
four seconds on an average to orient to the direction of the next
segment after it has navigated a segment. The second half of
this equation specifies the average time required to traverse the
segments of the path when assumptions are met. Because the
robot needs to occasionally reorient (by turning in place) as it
traverses a segment, it does not always travel at full speed. Thus,
the coefficient of 1.2 is added (determined experimentally under
normal conditions) to account for the time spent reorienting as
it traverses a segment.

Raw weight. In this case study, the raw weight for each nearest

neighbor, w},, is given by

wl = maX(07 o — ||Dv f(ot)7f’"‘H1) + ﬁ

raw

(14)
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TABLE I
COMBINATIONS OF ASSUMPTION VIOLATIONS IN THE STUDY

Combination of Variations
Camera noise-Robot bias
Camera noise-Robot speed
Camera distortion-Robot bias
Camera distortion-Robot speed

Range of Parameters

Noise: 0 to 0.3; Bias: -2 to 2

Noise: 0 to 0.3; Speed: 1 to 11m/s
Distortion: -2 to 2; Bias: -2 to 2
Distortion: -2 to 2; Speed: 1 to 11m/s

where, o =5 and = 0.5 are subjectively chosen. (14) is
subjectively chosen to guarantee that the raw weight is posi-
tive and correlates to distance negatively. Pilot evaluations, not
reported in this article, indicate that its parameters, « and 3, can
be changed without substantially affecting AAT efficacy (e.g.,
different values of o and (3 are used for the block manipulation
case study). Moreover, (14) can be replaced with (15), which is
a more common way to compute raw weight.

Distance functions. For D), the coefficient for each align-
ment checkers is set to 1, while the coefficients for the progress
checkers (average speed and proportion of traveled distance) are
set to 2 and 3, respectively. These coefficients are not thoroughly
optimized, but are subjectively set to adequately balance the
impact of alignment and progress assessments in this study;
the other case studies use the same weights. Dajignment and
Dyrogress can be derived using (11).

5) Training and Evaluation: To evaluate the ability of the
robot to perform proficiency self-assessment, the simulator is
configured to allow a human to act as a foil to the robot. The
authors, acting as the foil, varied these scenarios by modifying
the robot’s camera sensor and actuators in two ways each: the
noise and distortion of the camera image, and the speed and
bias of the robot’s wheels (negative bias causes the robot to
drift right when moving straight, while positive bias causes the
robot to drift left). Table I describes how these variations were
randomized and combined together throughout the scenarios.
When the magnitude of variations is large, these variations
produce assumption violations (i.e., the generators were not
specifically designed to handle these scenarios), and hence the
robot is more likely to fail in the task.

The combinations of variations were applied evenly in simula-
tions across the four mazes (see Fig. 3), yielding 41 simulations
in each world. Simulations conducted in Mazes 1-2 were used
for training data, while simulations conducted in Mazes 3—4
were used to test the ability of AAT to discriminate between
successful scenarios and unsuccessful scenarios. In these sce-
narios, variations were kept consistent for the entire time the
robot performed the task.

Many real world scenarios are prone to sudden changes in
the environment and system capabilities. For example, the robot
may suddenly begin to fail in the middle of a mission ifits sensors
or actuators get damaged or its battery begins to fail. Thus, to
further test the efficacy of AAT, we conducted three additional
simulation runs where a sudden change was introduced about
60 s after the task started. The same AAT predictor (trained in
the previously mentioned training scenarios) was used to predict
the task outcome for these additional simulation runs. Table II
lists the configurations for these three sudden-change scenarios
for this case study.
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TABLE II
CONFIGURATION DETAILS FOR THE SIMULATIONS WITH A SUDDEN CHANGE IN
THE MIDDLE

Configuration before
Normal (all assumptions met)
Camera noise was 0.25
Normal (all assumptions met)

Configuration after

Camera noise altered to 0.25
Normal (all assumptions met)
Robot bias altered to -4.5
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Fig. 5. State space used in the maze-based Markov chain study. White cells:

valid states. Black squares: walls. Blue circles: goal states. Red triangles: starting
states.

B. Maze-Based Discrete Time Markov Chain

1) Task Domain: A simulated robot in a maze-based discrete
time Markov chain world (see Fig. 5) attempts to reach a goal
state 1) within a specific number of time steps and 2) with fewer
than a specific number of collisions with walls. The discrete time
Markov chain components are as follows.

1) State space: In the maze world, white cells are valid states,

black squares are walls, and the blue circle is the goal state.
The world is surrounded by implicit walls.

2) Action space: The robot’s action space is moving in the
cardinal directions, {up, down, left, right}.

3) Current state: The state where the robot currently is.

4) Transition: The robot transitions from the current state to
the next state indicated by its action (e.g., moving up if
the action is up) with probability p, and transits to one of
the other three adjacent states with probability (1 — p)/3.
The robot remains in the same state if the transition would
cause the robot to hit a wall.

5) Reward: The robot gets a state-related reward when a
transition happens without a collision. If the robot hits
a wall, it receives a negative reward as a punishment for
the collision.

6) Goal state: a specified state in the world; e.g., the blue cell
in Fig. 5.

The robot is equipped with the following sensors that assist

the robot to complete its task.

1) A simulated GPS that returns the robot’s current state.

2) Anobstacle sensor that indicates which adjacent states are
open and which are obstacles.

3) A collision sensor that indicates whether the robot hit a
wall when it tried to move.

4) A direction sensor that reports the direction the robot
moved.

5) A simulated motor sensor that reports the actual action
(not the intended action) taken by the robot.

6) A goal sensor that indicates whether the robot is in the
goal state or not.

7) A reward sensor that reports the actual reward or punish-
ment that the world gives to the robot when it acts.

The sensors only return correct values with probability 0.99,
and the following information is returned when they give incor-
rect values.

1) The GPS returns a location randomly chosen from the

robot adjacent states.

2) The obstacle sensor returns the false status of the robot
adjacent states; the correctness for each state is indepen-
dent.

3) The collision sensor returns the false outcome.

4) The direction sensor returns a false direction randomly
chosen from all potential false directions.

5) The motor sensor returns an action that is not in the action
space.

6) The goal sensor returns the false outcome.

7) The reward sensor returns the correct reward plus or
minus 1.

2) Generator and Assumptions: The robot does not directly
know any of the components of the actual world described in
the previous section. Instead it assumes a specific configuration
of the world, which may or may not match the actual world. The
robot generates its policy using the value iteration algorithm
(see, for example, [55]) under the assumption that the real
world’s state space, action space, transition probability, and
rewards match the specified configuration. The value iteration
algorithm is applied to the specified configuration rather than
the configuration in which the robot actually operates. When
the robot is in a state not represented in its policy (due to its
assumed state space being different than the real state space),
it takes an action randomly chosen from its assumed action
space. If the intended action is excluded in the real action space,
the robot takes an action randomly chosen from the real action
space.

3) Alignment and Progress Checkers: Since value iteration
is executed given the robot’s assumptions about the world,
alignment and progress checkers are needed; see Fig. 6. The
following Input alignment checkers were implemented.

1) CurrentState checker: whether the state deduced
from GPS information matches with that deduced from
the motion information.

2) StateSpacel checker: whether the validity of the cur-
rent state matches with the assumption.
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Fig. 6. Alignment and progress checkers in the maze-based discrete time
Markov chain case study.

3) StateSpace2 checker: whether the validity of the sur-
rounding states matches with the assumption.

4) ActionSpacel checker: whether the intended action is
valid.

5) ActionSpace?2 checker: whether the action space is
consistent among the state space.

6) Reward checker: whether the reward function matches
with the assumption.

7) GoalsStatechecker: whether the goal state matches with
the assumption.

8) TransitionFunction checker: whether the transi-
tion function matches the assumed transition patterns.

9) Collision checker: whether detected collisions are
correct.

Moreover, two output alignment checkers are implemented
to check the output of the generator: 1) Success checker:
whether the success probability estimated by the robot exceeds
0.5; 2) Approach checker: whether the task completion time
estimated by the robot keeps decreasing.

Three different progress checkers are also created as follows.

1) RobotMeanSpeed checker: the robot’s mean speed,
given by the Manhattan distance traveled from the start
position divided by the moves taken.

2) CollisionProportion checker: actual number of
collisions the robot has experienced divided by the number
of collisions allowed.

3) DistanceProportion checker: the Manhattan dis-
tance the robot has traveled from the start position, divided
by the Manhattan distance from the start position to the
goal position.

4) Study-Specific Details: Purported Performance. The pur-
ported performance is estimated based on the algorithm de-
scribed in [56].

Raw weight. The raw weight in this case study is computed

as follows. If all the distances are nonzero, wy,, is given by

Wraw = 1/[D, £(04), £ |1

raw

(15)

If some of the distances are zero, then wyy,, is assigned one for

zero-distance neighbors and zero for nonzero-distance neigh-
bors.

Distance functions. For D, the coefficients for all alignment
checkers are set to 1, while the coefficients for the progress
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TABLE III
REPRESENTATIVE VARIATIONS CONDUCTED IN THE MAZE-BASED DISCRETE
TIME MARKOV CHAIN STUDY WHEN THE ACTUAL WORLD WAS WORLD 1.
SIMILAR KINDS OF VARIATIONS IN CONFIGURATIONS WERE MADE FOR OTHER
ACTUAL WORLDS. FOR THE ACTION SET: U=UP, D=DOWN, R=RIGHT,
L=LEFT. THE REWARD FUNCTION IS REPRESENTED BY A TUPLE (VALID STATE
REWARD, COLLISION REWARD, GOAL REWARD)

World Index  State Space  Action Set  Trans. Prob. = Reward
1 Fig. 5(a) {u, r} 0.7 0, -1,2)
2 Fig. 5(a) {u, I, r} 0.7 0, -1, 2)
3 Fig. 5(a) {u, r} 0.5 0, -1,2)
4 Fig. 5(a) {u, r} 0.7 0, -3, 2)
5 Fig. 5(c) {u, r} 0.7 0, -1,2)
6 Fig. 5(d) {u,d, I, r} 0.7 0, -1,2)
7 Fig. 5(a) {u,d, 1, r} 0.5 0, -1, 2)
8 Fig. 5(b) {u, r} 0.7 0, -3,2)

checkers (average speed, proportion of traveled distance, pro-
portion of taken collisions) are set to 1, 5, and 1, respectively.
D.tignment and Dyrogress are from (11).

5) Training and Evaluation: We collect data from simula-
tions in three different simulated (actual) worlds with only
slight differences between each other. The first actual world is
configured as World 1 in Table III. The second actual world
differs from World 1 in having a higher transition probability
(0.95) while the third actual world differs from World 1 in having
more walls near the robot start position [see Fig. 5(g)].

For each actual world, we consider two sets of assumed worlds
(i.e., the world the robot initially assumes it is in). The first set
includes a world identical to the actual world and another ten
worlds with only one component varied from the actual world.
While the second set contains ten worlds with two components
varied from the actual world. Table III lists a few representatives
assumed worlds for the first actual world. Note how:

1) World 1 is identical to the actual world;

2) Worlds 2-5 each have one component varied from

World 1;
3) Worlds 6-8 each have two components varied from
World 1.
Similar assumed worlds are used for the other two actual
worlds.

Since the assumed worlds in the second set differ from the
actual world more than the assumed worlds in the first set, we
train the kNN model on data from the first set and test the model
on data from the second set, so that we can check the capability
of the model to generalize from easier scenarios and predict well
in harder scenarios. We conduct 50 simulations for each assumed
world.

As in the other case studies, in addition to evaluating the
ability of AAT to predict success and failure in worlds with static
conditions, we also analyze its effectiveness when conditions
in the world suddenly change. Thus, we consider a scenario
in which a sudden change is introduced about 15 time steps
into the simulation. In this scenario, the actual world is initially
configured as World 1 (see Table III) for the first 15 time steps.
While after 15 time steps, the state space is suddenly altered
to Fig. 5(g) (i.e., more walls are added near the robot’s start
state). Meanwhile, the robot assumes that it is in World 1 during
the entire simulation.
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Fig. 7. Sawyer robot was tasked with organizing blocks on a table in the
block-manipulation case study.

C. Block Manipulation by a Sawyer Robot

1) Task Domain: A Sawyer Robot [57] is tasked with orga-
nizing blocks, each of which has a different color and shape, on
a table. It has a 7 DOF arm for manipulation and a pneumatic
gripper attached to the arm for grasping. The robot uses a Kinect2
camera [58] mounted on the ceiling to perceive the environment
from a bird’s eye view.

Fig. 7 shows the task setup consisting of the robot and a table.
The table has nine blocks of three different colors and shapes.
The robot’s task is to arrange these blocks in the center of the
table in a desired arrangement within a certain amount of time.
The top left inset figure shows the environment as perceived
and expected by the robot. Any other entities on the table other
than the blocks of the three shapes and colors are perceived as
foreign objects. The bottom right inset figure shows the desired
arrangement of blocks at the end of the task.

Task difficulty is controlled in part by varying the initial con-
figuration of blocks on the table. Based on the initial positions
of the blocks, it can require a different number of total swaps to
complete the task, where one swap is defined as one complete
pick and place operation. Thus, at a given time for each visible
block, the calculated number of swaps can be either: a) O : If the
block is already at goal position, b) 1 : If the block is not at the
goal position but the goal position is free, or c) 2 : If the block
is not at the goal position and the goal position is occupied by
another block. We subjectively set the acceptable performance
standard for this task at 300 s (i.e., the robot succeeds if it sets up
the table in less than 300 s), regardless of the number of swaps
required to properly arrange the blocks on the table.

2) Generators and Assumptions: The Sawyer robot uses
three different generators to perform the table setup task: 1) a
mapper, 2) a path planner, and 3) a controller. The mapper takes
as input the camera image and the point cloud (produced by
the distance sensor on the Kinect) and creates a map of the
environment by detecting the table and the blocks and localizing
the blocks in the environment with respect to the robot base.
Mapper assumptions are as follows.

1) The camera produces up-to-date images.

2) The camera sees the colors according to specification.

Sensor Alignment Checkers Accumulated outputs

« Camera Updated « Expected Colors over time
« Expected Brightness  « Calibration ¥

Inputs

Actuator Alignment Checkers Time per

« Robot not in error state * Robot State Syap)
- Expected Gripper State » Joint Movement Outputs Time since
« Expected Robot Speed « No collision detected last swap
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Fig.8. Alignment and Progress checkers for the block manipulation case study.

3) Image brightness of the camera image is according to
specification.

4) The table is visible and is a flat rectangle.

5) There are nine blocks visible on the table of a combination
of three colors (red, blue, purple) and three shapes (square,
triangle and circle), and there are no missing or duplicate
blocks and no foreign objects present on the table.

6) The blocks are being consistently detected and have suf-
ficient spacing between them. The assumed output of the
mapper is a consistent and accurate map of the table.

The colors and shapes of blocks were detected using color
and edge detection techniques using OpenCV [59].

The planner takes as input the map, created by the mapper, and
consists of two subcomponents: the high-level and the low-level
planner. The high-level planner combines a history of the block
attempts with the map and goal specification to plan which block
to move next. Given the selected block and the map, the low level
planner plans a path for the arm to move the gripper from the
current position to the current block location (pick), and then
(once grasped) to move the block to the desired position on
the table (place). The low level planner uses Movelt [60] for
motion planning. In addition to assuming that the map provided
by the mapper is correct, the planner assumes that the 1) world is
stationary (other than the robot movement and the block moved
by the robot) and that 2) the planner output is reasonable given
the task (i.e., there exists a trajectory that can be executed within
a reasonable time-bound given the planner selected from the
Movelt library).

The controller takes as input the planned path and outputs
commands to the robot’s arm and gripper, moving the robot
arm along the chosen path to pick and place selected blocks. In
addition to assuming the path selected by the planner is desirable,
the controller assumes:

1) the robot’s arm moves at the expected speed within the set

bounds;

2) the gripper is working properly;

3) the robot joint movements are expected;

4) up-to-date robot state is available, with robot not being in
an error state;

5) no collision is detected during trajectory execution. The
expected output of the controller is joint movements to
move the robot’s arm.
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3) Alignment and Progress Checkers: Fig. 8§ summarizes
both the veracity and progress checkers we implemented for
this case study. Alignment checkers were implemented for each
assumption with two exceptions. Due to the difficulty in detect-
ing in real time if the robot’s camera is not calibrated properly,
we did not implement a camera calibration checker for this
study. In addition, we did not implement an alignment checker to
evaluate expected planner output. Future work should explore
how such alignment checkers could be implemented to check
both of these assumptions. In addition to the alignment checkers,
we implemented three progress checkers, which monitored the
1) mean speed of the robot (computed as the running average
of time taken per swap), 2) the time elapsed since the last swap
was complete, and 3) the number of completed swaps divided
by the total number of required swaps identified at the start of
the task.

4) Study-Specific Details: Purported performance: The pur-
ported performance for the robot is given by

C([os, - --]) = SwapsRemaining - T (16)

where, SwapsRemaining is the remaining number of swap op-
erations at time ¢ and 7 is the average time for the robot
to complete one swap under nominal circumstances. 7j was
precalculated empirically to be approximately nine seconds.
Raw weight: The raw weight for this case study is computed
using (14), but with values o = 3, 8 = 0.2.

Distance Functions. The weighting vector for all checkers
D,y is the 1-vector of size M + K, [1,...,1] € RM+X where
M and K are the numbers of alignment and progress checkers,
respectively. Therefore, the weighting vectors for alignment and
progress checkers, Dalignment and Dppogress, are the 1-vectors
with size M and K, respectively.

5) Training and Evaluation: For training data, we conducted
30 trial runs with the Sawyer robot setting up the table, each
with a different initial table configuration. In ten of these trial
runs, all conditions were normal (e.g., lighting conditions, block
placement, etc., match robot assumptions, though noisy veracity
checkers still sometimes reported violations). In the other 20
training runs, we varied aspects of the robot’s camera (e.g., hue,
saturation, exposure, brightness) to impact its vision. Many of
these alterations caused violations of the assumptions made by
the robot’s mapper generator, causing the robot to either not
detect blocks or misclassify them.

As in the previous case studies, we evaluate the resulting
predictor (trained on the stated training set) in two conditions:
static scenarios and sudden-change scenarios. For the static
test scenarios, we conducted an additional 30 trial runs (ten in
nominal conditions, 20 with variations in camera parameters),
each with a different initial table configuration.

Two sudden-change scenarios were used. In the first scenario,
the robot operated under nominal conditions for the first 54 s.
At that time, we suddenly altered the hue and brightness on
the robot’s camera. Both the nominal initial conditions and the
conditions after the change in this scenario are representative of
the conditions of some trial runs in the robot’s training data. In
the second scenario, we tricked the robot for the first 60 s of the
run by moving any block the robot reached for before it could
grasp it. After 60 s, we stopped doing this (conditions returned to
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Fig. 9.  Average assumption violations detected per unit time compared with

task completion time in Mazes 2 (left) and 3 (right) in the navigation study.
Similar trends existed in Mazes 1 and 4. Lines depict linear fits to the data for
visualization purposes, but a linear relationship is not implied.

normal). The condition in the first 60 s of this scenario (moving
the block from the robot) is not represented in the training data.

All runs in this study are terminated after either successful
task completion or after 300 s, whichever comes sooner.

VI. RESULTS

This section first demonstrates the correlation between as-
sumption veracity and robot performance, and then evaluates
AAT when sudden-changes occur during task execution.

A. Correlation Between Veracity and Robot Performance

AAT relies on the hypothesis that the ability to evaluate
the veracity of generator assumptions can provide rich insight
into a robot’s performance. Since this hypothesis is intuitive,
we only use the data from the navigation case study to test
it, for simplicity. Fig. 9 shows the correlation between robot
performance (measured as time-to-completion, where higher
time indicates worse performance) and the number of detected
assumption violations per unit time for Maze 2 and 3 in the
navigation study. In each world, task performance was nega-
tively correlated with the number of violations in assumptions.
As the number of detected violations in assumptions per unit
time increases, completion time also tends to increase. Pearson
correlations confirm statistically significant (p < 0.001) and
strong correlations between the number of assumption violations
and completion time in each world, with » = 0.778 in Maze 1,
r = 0.874 in Maze 2, r = 0.802 in Maze 3, and » = 0.890 in
Maze 4 (results for Maze 1 and 4 are not shown in the figure).
Note that simulations were automatically terminated after 400 s,
meaning that completion times marked as 400 s would have been
higher had the simulation been run to completion. These results
indicate that tracking the veracity of assumptions can be useful
for understanding robot performance.

B. Evaluating AAT Given a Consistent Configuration

The ability of AAT to discriminate between success and
failure during task execution across all three case studies is
summarized in Fig. 10. Fig. 10(a)—(c) shows results for the
navigation case study, Fig. 10(d)—(f) shows results for the maze-
based discrete Markov chain, and Fig. 10(g)—(i) shows results
for block manipulation by a Sawyer robot. The figure shows
similar trends across all three case studies.

Fig. 10(a), (d), and (g) shows that when both alignment and
progress checkers are used (i.e., we use the distance function
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discrete time Markov chain; (g)—(i) block manipulation by a Sawyer robot. (a), (d),

AAT effectively discriminates between success and failure in scenarios with a consistent configuration. (a)—(c) navigation task; (d)—(f) maze-based

(g) The average predicted probability of success over time (using the weighting

vector D)) for cases in which the robot completed and did not complete the mission on time. Error ribbons show the standard error of the mean. (b), (e), (h) ROC
curves showing the ability of the performance estimator to determine whether the robot’s performance meets an acceptable threshold at various points in time (using
the weighting vector D,y)). (¢), (f), (i) The discriminability of the predictor (as measured by the area under the ROC curve—0.5 indicates no discriminability) over

time using the three different weighting vectors.

D.1), AAT effectively differentiates between scenarios where
the robot succeeds and scenarios where the robot does not
succeed. In instances in which the robot fails to complete the task
on time, the algorithm predicts substantially lower probability of
success, on average, than scenarios in which the robot eventually
succeeds in the task. These differences in predicted probability
of success begin in the early stages of the mission, suggesting
that the predictor not only makes effective in situ assessments,
but it also can make effective a priori assessments of proficiency
at the onset of the mission.

Fig. 10(b), (e), and (h) shows ROC curves for the binary
proficiency assessor classifier at various times throughout the
mission. In these figures, the percentage of mission elapsed is
calculated according to the respective performance standard,
where the time corresponding to the performance standard is
equivalent to 100% mission time elapsed. Line types (and colors)
indicate elapsed mission percentage. The lower left corner of the
ROC curve corresponds to a success criterion of = 1 and the
upper right corner of the ROC curve corresponds to # = 0 (see

Section IV-C). These figures show high discriminability in all
case studies by the time 50% of mission time has elapsed.
However, high discriminability comes much earlier, on aver-
age, in the navigation and block manipulation case studies than
in the discrete maze study. In the former two studies, the robots’
camera sensors allow them to observe the entire environment at
once, rather than only receiving limited local information about
its current state (as is the case in the discrete maze). This larger
amount of information allows the robot to make more extensive
and comprehensive evaluations about its assumptions at each
time step. For example, the robot can perform assessments
about whether its camera is returning images that meet assumed
specifications and whether or not the entire environment meets
assumptions (with respect to stationarity, recognition of objects,
etc.). For this reason, the robots in the navigation and block-
manipulation studies are often able to detect many violations
of generator assumptions long before the robot’s generators
begin to fail. By contrast, the robot in the discrete maze-based
simulations gets to sense only one state of the environment at
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Fig. 11. Number of violations detected and the predicted probability of success over time for sudden-change scenarios in the navigation study using three different

weighting vectors (see legends). (a) Scenario in which everything is normal for the first 60 s. After that, camera noise begins. (b) Scenario in which there is a large
amount of noise in the camera image for the first 60 s. After that, camera noise is corrected so that all assumptions are met. (¢) Scenario in which, for the first 60 s,
everything is normal. After that, the robot’s wheel is damaged (bias = —4.0) causing it to drift. The extent of the bias produces conditions that are not represented

in the training data, hence predictions do not correct quickly.

a time. It therefore must move more before it is able to reason
about whether assumptions made by the generators are or are
not met.

Finally, Fig. 10(c), (f), and (i) compares the effectiveness of
the three weighting vectors (Dalignment> Dprogress> and Dar)
in the three studies by plotting the area under the ROC curve
over time. In these plots, a discriminability of 0.5 indicates that
the predictor cannot differentiate at all between success and
failure, and a discriminability of 1.0 indicates that the predictor
can fully differentiate between success and failure. While all
predictors eventually produce high discriminability in all three
case studies, predictors that use alignment checkers produce
higher discriminability early in the mission. The distinction
between the effectiveness of alignment checkers and progress
checkers in the first half of a mission is particularly stark in the
navigation and block-manipulation studies.

These results indicate that alignment checkers enable accurate
assessments of robot proficiency using AAT early in a mission.
On the other hand, predictors based on progress checkers are
typically unable to discriminate effectively between success and
failure as soon.

C. Evaluating AAT in Sudden-Change Scenarios

The results in the previous section indicate that alignment
checkers are typically more effective than progress checkers
early in the mission. To more fully understand the strengths and
weaknesses of alignment and progress checkers, we consider
scenarios in which conditions change during the mission. We
present results for these sudden-change scenarios for each case
study separately given the use of only alignment checkers, only
progress checkers, and both kinds of checkers.

1) Navigation Task: The results of the three sudden-change
scenarios described in Section V-AS5 are shown in Fig. 11. These
figures show both the number of assumption violations detected
at each time step (top) as well as the predicted probability of
success by each predictor (predictors vary by which veracity
checkers are used). In the first scenario [see Fig. 11(a)], condi-
tions are normal (i.e., they meet the generators’ assumptions)

for the first 60 s, resulting in few assumption violations being
detected by the alignment checkers, and each of the three predic-
tors predicts a high probability of success. At 60 s, camera noise
is introduced at a level that is within the bounds of samples from
the training data (noise was 0.25; see Table I), leading to the
robot failing to accomplish the task within the allotted time. As
soon as camera quality is changed, the robot immediately starts
detecting assumption violations [see top panel of Fig. 11(a)].
As a result, the alignment-only predictor immediately predicts
a substantially reduced probability of success. However, the
progress-only predictor is biased by the fact that the robot ini-
tially performed very well and, consequently, takes a long time
to adapt its predictions after the change. The combined predictor
adapts slower than alignment-only but faster than progress-only.

Results of a second scenario, shown in Fig. 11(b), tell a similar
story. In this scenario, the camera image quality is poor during
the first 60 s, but is corrected after 60 s. As a result, the robot suc-
ceeds in the task. Once the camera noise is corrected, the align-
ment checkers immediately detect fewer assumption violations.
In addition, the alignment-only and combined predictors almost
immediately estimate a higher probability of success (the in-
crease for the combined predictor is lower due to the impact from
progress checkers), which gradually increases as the scenario
goes on. However, the progress-only predictor takes a long time
to predict success after the sudden change given that the robot’s
performance was so poor during the first 60 s of the mission.

The results of these first two sudden-change scenarios high-
light strength of alignment checkers and a weakness of progress
checkers. Consistent with what we observed in the last sec-
tion, alignment checkers allow AAT to quickly detect whether
conditions are likely to produce task success when conditions
are representative of its past experiences. By contrast, progress
checkers, who are based on the robot’s progress on the task so
far, are often unable to adapt quickly.

A third sudden-change scenario, however, identifies limita-
tions of our implementation of AAT based only on alignment
checkers. In this scenario, depicted in Fig. 11(c), all generator
assumptions are met for the first 60 s (as in the first scenario).
However, at 60 s, the robot’s motors are damaged (i.e., robot
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Fig. 12.  Assumption violations detected and predicted probability of success
for a sudden-change scenario in the discrete maze study. For the first 15 time
steps, the environment is configured as in Fig. 5(a). At time-step 15, more walls
are added near the robots start state [see Fig. 5(g)]. The robot’s generators assume
the initial world configuration at all times.

bias is set to —4.5), which causes the robot to move in circles
when it attempts to go straight. While variations in robot bias
were part of the robot’s training set, this variation is outside
the range of the training data (the variation is more severe;
see Table I). As such, after the change, the robot identifies the
assumption violations, but predicts that it will still be able to
complete the task in time. Only after substantial time does its
prediction of success begin to decrease for all predictors. This
resultindicates that, for predictions based on alignment checkers
to be accurate, conditions must be represented in the robot’s
training data. Future work should explore how to augment AAT
so that it considers whether conditions are within its training
experiences.

2) Maze-Based Discrete-Time Markov Chain: In the single
sudden-change change scenario we consider in the maze-based
discrete-time Markov chain environment, the robot believes
that it is in the world shown in Fig. 5(a). This assumption is
correct for the first 15 moves, and hence relatively few violations
are detected (see Fig. 12). At move 15, the environment is
suddenly altered to the world shown in Fig. 5(c) (i.e., walls are
added to the environment). The change is correctly identified by
one of the alignment checkers at time step 16, specifically the
StateSpace?2 checker (see Section V-B2). Interestingly, the
number of total assumption violations shown in the top panel
remains the same, which is because another alignment checker
(the Approach assumption checker) turns off.

The bottom panel of Fig. 12 shows the predictions made
with the three different weighting vectors. As expected, the
alignment-only predictor estimates a decreased probability of
success once the state-space change is identified. However,
that decrease lasts for only two time steps. After time step 18,
the prediction of the alignment predictor rebounds since, even
though there are extra walls adjacent to the robot, the robot
still manages to keep approaching the goal state, which inhibits
and finally overtakes the effect of the state space assumption
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Fig. 13.  Assumption violations detected and predicted probability of success
for sudden-change scenarios in the block manipulation study using three dif-
ferent weighting vectors (see legends). (a) Scenario in which, for the first 54 s,
everything is normal. After that, camera settings are modified resulting in noise
in the camera image. (b) Scenario in which, for the first 60 s, the block that the
robot was seeking was moved every time the robot tried to grasp it (a condition
that was not represented in the training data). After 60 s, the trickery ended
(conditions became normal).

violation. After time step 29, the robot starts hitting a wall
frequently. However, since the set of alignment checkers did not
include a checker that evaluated the assumption that the robot
should not hit a wall; the alignment-only predictor is not able to
respond to the frequent collisions until time step 36.

On the other hand the progress-only predictor predicts success
until about time step 28, since it is not aware of the change and
the robot still keeps approaching the goal state. After time step 29
when the robot starts hitting a wall frequently, the Collision
progress checker (which counts collisions) starts accumulating,
leading to the progress predictor dramatically decreasing its
prediction. The combined predictor responds to both the sudden
change and the frequent collisions, making it the best predictor
for this trial. The result for this case study not only strengthens
the claim that alignment-only predictors are more sensitive to
sudden change than progress-only predictors, but also indicates
the importance of covering as many assumptions as possible.

3) Block Manipulation by a Sawyer Robot: The results of the
two sudden-change scenarios with Sawyer are consistent with
those of the other two case studies (see Fig. 13). In the scenario
corresponding to Fig. 13(a), conditions were normal for the first
54 s, after which the hue and brightness on the camera sensor
were changed so that they no longer met generator assumptions.
This led to the robot failing to finish arranging the blocks on the
table. Prior to the change, the alignment-only predictor predicted
that the robot would complete the task with near certainty and
the progress-only predictor was less certain. After the change,
all predictors quickly decreased their predictions of success. The
rapid response is possible because the altered conditions were
represented in the training data.

In the second scenario, depicted in Fig. 13(b), a person moved
the block whenever the robot attempted to pick it up during the
first 60 s of task execution. After 60 s, this trickery ended and
conditions became normal, which led to the robot completing
the task in time. Although the robot would have been unable to
successfully complete the task had the trickery continued, the
alignment-only predictor still predicted a probability of success
for the first 60 s for two reasons. First, the initial conditions
were outside the robot’s training data. Second, a key assumption
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checker, one designed to detect a nonstationary world, did not
operate according to specification. Thus, the alignment checkers
were not able to identify assumption violations and the resulting
alignment-only predictor inaccurately predicted success. The
progress-only predictor performed better because the trickery
impacted robot performance resulting in reattempts and/or fail-
ures to pick up the block(s). Thus, both the progress-only and
the combined predictors figured out that the robot would fail
at the task with high probability by about 30-40 s into the
mission. When the human stopped moving the blocks away from
the robot, the robot successfully completed the task less than
100 s later but the progress-only predictor was slow to detect the
changed circumstances, while the combined checker adapted its
predictions more quickly.

This scenario highlights the potential benefits of progress
checkers. Progress checkers, though often slow to diagnose
success and failure conditions (because they need accumulated
data), have an important role in that they can successfully
predict success or failure when alignment predictors fail. This
is important because alignment-only predictors will fail if an
assumption is missed, if an alignment checker fails, or if the
training data insufficiently covers a failure condition. Thus, an
effective combination of alignment and progress checkers can
be useful in performing proficiency self-assessment with AAT.

VII. DESIGN TRADEOFFS

A. Proficient Behavior Versus Proficient Assessment
of Behavior

The case studies demonstrate that AAT can effectively per-
form proficiency self-assessment. However, it took more effort to
implement AAT in these systems than it took to create the robot
generators. For example, we implemented the generators for the
navigation case study using about 1100 lines of computer code,
while our implementation of AAT (including assessing input
and output assumptions and defining the prediction function F’)
required over 2700 lines of code. Although lines of code do not
perfectly represent effort; the number of lines of code in this case
study coincides with our observation that it took more effort to
implement AAT than to implement the generators themselves.

This subjective observation about effort highlights a potential
tradeoff in designing autonomous robot systems: Should system
designers focus more on developing proficient autonomous be-
havior or on creating proficient assessments of behavior? This
tradeoff is visualized in Fig. 14(a), which illustrates several
hypothetical systems including an ideal system that is both
proficient and capable of self-assessing proficiency. System A
represents a system in which designers spent all of their time
developing proficient robot behaviors and ignored the problem
of proficiency self-assessment. Such a system would be accept-
able in scenarios in which either the robot never fails or when
it is unnecessary to identify failures. However, in situations in
which failing to identify failures has large implications, Sys-
tem B (in which system designers focus more extensively on
developing proficiency self-assessment capabilities) might be a
better choice. System C illustrates a potential middle ground in
which the robot has neither ideal behavior generation nor ideal
behavior assessment, but design effort is allocated to produce
reasonable proficiency in both behavior generation and behavior
assessment.

B. Implementation Effort Versus Efficacy of AAT

In AAT, one way to save the design effort to proficient assess-
ment of behavior is limiting the number of assumptions that are
tracked, which we argue has complex effects on AAT efficacy.
On the one hand, appropriate simplifications of checkers would
not hurt AAT efficacy too badly, since some checkers correlate
with others. On the other hand, checker redundancy would help
to compensate for false outputs of unstable checkers, therefore
making AAT more robust.

1) Checker Simplification: We observed that veracity assess-
ments among assumption checkers tended to correlate with each
other. For example, in the navigation case study, changes in
the veracity of assumptions made about the robot’s sensors
and actuators subjectively correlated with (and likely caused)
assumption violations about generator outputs. In this example,
violated assumptions about generator output are symptoms of
violated input assumptions. In addition, we observed that as-
sessments of some input assumptions seemed to correlate with
each other. For example, in the navigation case study, violating
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assumptions about the amount of sensor noise often caused the
robot to believe that its actuators were not behaving according
to assumptions. These anecdotal observations give credence to
the idea that not all assumptions need to be tracked for the robot
to self-assess its proficiency.

We explored that idea by evaluating how well AAT estimated
robot performance in the navigation case study given various
subsets of checkers identified in Fig. 4. Since these subsets
require different amounts of effort to implement, as measured
both by the useful (though imperfect) metrics of lines of code and
number of alignment checkers [see Fig. 14(b)], it is informative
to evaluate how different subsets impact the ability of the robot
to assess its performance.

Fig. 14(c) uses the area under the ROC curve to compare
the ability of each subset of checkers to accurately discriminate
between success and failure over the initial stages of the robot’s
mission. The figure shows that all subsets of checkers differ-
entiate between success and failure substantially better than
random guesses even at the start of the task. After 10% of the
mission is completed, all subsets of checkers produce high dis-
criminability, though with some small variations. However, the
subsets of output and actuator alignment checkers (see Fig. 4)
initially produced lower discriminability than the other subsets
of checkers, suggesting that assessment accuracy is affected
by which checker subset is chosen but that some subsets can
be very accurate. These results indicate that not all generator
assumptions need to be tracked in order for the robot to do a
reasonably good job of assessing its own proficiency, but that
the subset of checkers chosen is important.

The tradeoftf between the implementation effort and discrim-
inability of AAT in the navigation case study is plotted in
Fig. 14(d). Ideally, the system would produce full discriminabil-
ity at no effort to the system creator, which would produce a
point in the upper right-hand side corner. In practice, the set of
sensor alignment checkers (see Fig. 4) seems to provide a good
tradeoff in producing high discriminability with relatively low
implementation effort in the scenarios tested.

2) Checker Redundancy: When some checkers are not robust
or require extra implementation effort to be robust, redundancy
in checkers can help improve the overall stability of AAT. For
example, in the block-manipulation case study, a robust
implementation of the ExpectedBrightness and Ex-
pectedTableState alignment checkers would require con-
siderable effort. Even if these alignment checkers yield incor-
rect veracity assessment, some robust and easier-to-implement
checkers, such as the BlocksVisible and NoMissing-
Blocks checkers, will likely yield accurate results that could
compensate for those errors. Fig. 15 illustrates that situation in
a specific robot trial in the block-manipulation case study. In
the first 20 s of the trial, nominal conditions prevailed. After
20 s, there were slight and unintentional changes in lighting,
causing a few alignment checkers to indicate assumption vio-
lations, particularly ExpectedBrightness and Expect-
edTableState. Since complementary alignment checkers
(NoMissingBlocks and BlocksVisible) did not indi-
cate assumption failures and since training data included such
cases, the predictors still indicated likely success. Indeed, the
robot completed the task in just under a minute.

ption
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Fig. 15. AAT assessments in a single run of the block-manipulation task under
normal conditions.

VIII. DISCUSSION

In our implementations, we used the kNN algorithm to make
proficiency assessments from past experiences since kNN is
reasonably effective given limited data, such as the scenarios we
consider in this article. Furthermore, the solutions of the kNN al-
gorithm are easily interpreted when explanations of proficiency
self-assessment are required. That said, other, potentially more
powerful, machine-learning algorithms could be chosen to learn
7 in future work.

Results in Section VI demonstrates that AAT can produce
reasonably accurate assessment of proficiency across many task
domains. This provides some evidence that AAT appears to
generalize better than the methods presented in [12], [13]. AAT
is purely data-driven and does not require a priori probabilities of
the primitive tasks needed in [11]. Finally, FaMSec [20], [21],
[22], [23], [24] uses only progress checkers, while AAT uses
both alignment and progress checkers.

The three case studies demonstrate that alignment and
progress checkers have different strengths and weaknesses. It
is not always clear how violations in assumptions detected by
the alignment checkers will impact robot proficiency. The case
studies also suggest that alignment assessments tend to respond
more quickly to potential issues that arise, which can lead to
earlier detection of potential failures than assessments made by
progress checkers. On the other hand, the case studies suggest
that a successful system might require only a small number
of progress checkers since they effectually make aggregate
assessments of the behavior of multiple generators. However,
the progress checkers used in this article do not provide de-
tailed knowledge for the reasons for failure or success, nor do
they tend to detect potential issues as quickly as alignment
checkers. Importantly, results in Section VI-C3 suggest that
progress checkers act as a catch all that can compensate for
missing assumptions, alignment checker failures, and failure
conditions uncovered in training data. Therefore, proficiency
self-assessment benefits from using both forms of checkers.
Future work should address best balance design effort in creating
these two forms of checkers.

Observe that the resultin Section VII-B does not suggest a spe-
cific “optimal” tradeoff choice for implementing AAT, such as
only implementing sensor-based alignment checkers. Different
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systems and scenarios will likely produce different results with
respect to these tradeoffs. However, these results demonstrate
that identifying effective subsets of checkers to implement can
substantially reduce the effort required to implement AAT while
keeping the efficacy of AAT high. Moreover, we emphasize that
the tradeoff between time spent generating quality behaviors
and performing quality assessment can be misleading. The
metaphor of writing test cases for computer code is applicable.
Frequently, doing unit testing in software engineering produces
better code in less time. We hypothesize that something similar
will likely occur with creating alignment checkers in parallel
with creating behavior generators. Explicitly identifying and
tracking assumptions made in the implementation of decision-
making algorithms can help to produce more effective robot
behavior.

IX. LIMITATIONS

First, AAT requires the system designer to have a deep
understanding of the robot system to be designed and to put
in extra implementation effort. This could be limiting if the
designer is integrating a set of off-the-shelf algorithms in the
robot system. Moreover, it can be difficult or even infeasible
to identify all assumptions. We think that using straightforward
and easy-to-implement progress checkers that aggregate many
assumptions could ease this issue. Moreover, we hypothesize
that many checkers could be designed to be reusable across
tasks and robot systems. If checkers can be designed to be
easily tuned or modified, the implementation effort and difficulty
of implementing AAT would be reduced. Many off-the-shelf
robotic systems use common tools and libraries, such as ROS as
amiddleware, the Movelt library for planning and manipulation,
and the ROS navigation stack for navigation applications. If
these common tools were labeled with the list of assumptions
that they make or paired with appropriate alignment checkers
then generalizability to new tasks and robots could be facili-
tated. In addition, systems with similar generators or applica-
tions have similar assumptions, which make it easier to reuse
checkers across applications. Second, the two simulated robot
systems both involve simplifications that are not very realistic
in a real-world case. Such simulation-reality gaps could make
veracity checking more challenging for real-world applications
of AAT. Indeed, we notice that it is more difficult to implement
checkers for the block manipulation study than the two simulated
studies. As discussed previously, we hypothesize that keeping
a certain level of checker redundancy could ease such issues.
We also hypothesize that some existing algorithms for robot
perception could be adopted to implement real-world checkers,
such as algorithms described in [61], [62], [63]. Nevertheless,
we acknowledge that general application of the AAT framework
may be challenging in large, real-world systems.

Third, the three case studies have relatively simple tasks
with achievement-oriented goals [34]. Applications of AAT to
complex tasks such as autonomous driving or long-duration
autonomy could be challenging. When a complex task can be
decomposed into simple subtasks, then it is conceivable that
the composition of AAT components designed for each subtask
could yield an AAT system for the complex task.
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Fourth, the proposed AAT framework assumes single-robot
systems. We envision two potential ways of adapting AAT to
collaborative robot teams. One way is to implement AAT for
each robot in the team and then create mechanisms that combine
proficiency assessment of each robot to assess the team’s profi-
ciency. The other is identifying assumptions and implementing
checkers for the whole team.

Finally, the proposed AAT framework assumes additive cost
functions. For nonadditive cost functions, the framework could
potentially be adapted by adjusting (4)—(5).

X. SUMMARY AND FUTURE WORK

This article formalizes a method for designing robots that per-
form proficiency self-assessment. This method, called AAT, is
developed from the perspective that proficiency self-assessment
is awareness of how one’s generators (i.e., decision-making
algorithms) interact and align with the environment(s), robot
hardware, and task(s) under consideration. In AAT, the robot
continually monitors the veracity of input and output assump-
tions made in the construction of its generators, and then use
these assessments to estimate the robot’s ability to perform
the task. Three case studies (a simulated robot navigating in
a discrete maze environment, a simulated robot navigating in
a continuous environment, and a real robot arranging blocks
on a table) demonstrate that AAT can perform informative
proficiency self-assessment often even before a task has been
started. However, results also show that the quality of AAT’s
performance predictions do vary based on the coverage and
quality of assumption checkers that are created, as well as how
representative training data is to the current scenario. Results
also demonstrate opportunities and challenges for integrating
explicit evaluations of assumptions with evaluations of profi-
ciency that are based on robot progress on its task.

Future work is needed to better establish AAT’s usefulness as
a systematic approach to proficiency self-assessment. This in-
cludes designing more general and reusable checkers, applying
AAT to more complex robot systems (including collaborative
robot teams with more complex tasks and nonadditive cost
functions), better understanding the design tradeoffs between
generator quality and alignment checker coverage, and using
assumption tracking to develop explanations [64] about profi-
ciency assessments. Further work is also needed to establish
benchmarks for proficiency self-assessment [65].
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