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Abstract In this paper, we study human-robot interaction with the goal of learn-
ing how teams of semi-independent, semi-autonomous robots are best
served by human input in a map-building situation. In our experiments
we use multiple combinations of three interaction schemes to control
three robots as they build a topological map of an indoor environment.
The results from our experiments show the tradeoffs of the various in-
teraction schemes in terms of workload and performance.
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1. Introduction

Modern research has given mobile robots the ability to solve a variety
of interesting problems. By efficiently integrating human creativity, in-
tuition, and high-level reasoning into a human-robot system, robots will
be able to solve much more difficult problems. In this context, an inter-
esting question to answer is how can human abilities best be used in a
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team of semi-autonomous, semi-independent robots. One purpose of our
research is to develop human-robot team organization concepts that en-
hance a multi-agent team over all-robot-teams. The specific objective of
this paper is to study how teams of semi-independent, semi-autonomous
robots are best served by human input in a map-building situation. Re-
search in this area will help identify and understand parameters that
constitute effective human interaction with teams of semi-autonomous,
semi-independent robots.

1.1 Previous Work

Arkin and Ali’s work has been useful to our research (Ali00). In their
work, they present experimental results for hundreds of test subjects of
a shared-control system that allows a human to interact with a team of
simple behavior-based robots. In measuring the effectiveness of human-
machine interaction, much work has been done on operator workload.
Of particular relevance is Boer’s work relating workload and entropy
(Boer99). In addition, Boer has used secondary tasks to help evaluate
the cognitive workload placed on human operators. We have studied
the effects of human neglect on robot performance for different types of
interaction, and used these studies to design robot autonomy levels and
human interfaces that facilitate high robot performance with minimal
human input. We call this the study of neglect tolerance (Crandall02).

In order to perform the experiments we are interested in, we use a
behavior-based topological map-building algorithm in (Nielsen02). In
the behavior-based map-buliding algorithms, a robot recognizes a set
of afforded behaviors, which are loosely based on navigational primi-
tives such as “turn right” and “turn left”, and uses these behaviors to
define landmarks in the environment. This approach extends Sebastian
Thrun’s work (Thrun98) by adjusting his probabilistic map-building and
localization algorithms to perform in topological environments.

2. The Experiment Framework
2.1 The Interface

We have designed an interface that permits a human to observe the
movement of both individual robots and teams of robots, and then direct
the control of each robot from a workstation. The interface has a view of
the sonar measurements around the robot, a compass, a video feed, a list
of robots currently in the system, and a mapping area. The mapping
area contains information about dead-reckoning and topological maps
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and affords the human the ability to disambiguate topological landmarks
via drag and drop algorithms. The interface we use is shown in Figure 1.
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Figure 1. The interface with which we perform our experiments.

Via the interface, humans can interact with the robots by voice,
mouse, keyboard, or joystick. In addition, we have implemented an
adjustable interaction control system that affords humans and robots
different levels of interaction. The interface acts as a centralized agent
where the robots report their findings to the interface, which then passes
the information to the other robots in the system. In the experiment
herein, human input devices are limited to mouse and joystick.

2.2 Interaction Schemes

We are interested in experiments that study the behavior-based map-
building problem in a situation where a human interacts with robots via
three different interaction schemes. The human has two areas of input
to the robot: 1) control of the movement of the robot, and 2) disam-
biguation of landmarks. The three interaction schemes we will use are
now described.

2.2.1 Teleoperate and Landmark (TOL). The robot is con-
trolled via tele-operation through the environment. When the robot
reaches a landmark the user must tell the robot that it has reached
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a landmark by clicking a button on the joystick, similar to Sebastian
Thrun’s work in (Thrun98). When the user clicks a button the robot
recognizes the set of afforded behaviors at the place of interest and cre-
ates a landmark that corresponds to the afforded behaviors. (An afforded
behavior is a direction of possible travel.) When similar appearing places
are found in the environment, it is the responsibility of the human to
determine whether or not the places are the same or distinct (i.e., land-
mark disambiguation). If the landmarks represent the same place in the
environment, the user drags the landmarks together via the graphical
interface.

2.2.2 Point to Point and Human Snapper (PTP). The
robot is controlled via point-to-point commands (e.g. “left at next in-
tersection”, “right at next intersection”). When the robot completes a
command it resets the control to “Go forward” and the robot will pro-
ceed forward until it cannot continue, at which point it will wait for
another directive from the user. As the robot moves throughout the en-
vironment it autonomously identifies afforded behaviors and uses the set
of afforded behaviors to classify the landmarks. Similar to the TOL in-
teraction scheme, in the PTP interaction scheme, the user is responsible
for distinguishing between similar places in the environment.

2.2.3 Region of Interest and Sealing (ROI) . The human
directs the robot to regions of interest via the graphical interface. When
the robot is near the region of interest it will perform its own exploration,
landmark detection, and landmark disambiguation algorithms described
in (Nielsen02). In essence, the algorithms use a wall-following heuristic
to estimate where the robot should move in order to learn or confirm
map information about the environment. As the robot explores, it builds
a map that contains sealed areas; i.e., areas that have been explored and
cannot be “re-discovered” by accident. The robot uses the known part of
its map for localization and can incrementally add new discoveries about
the environment to the map. With the ability to localize itself on its own
map, the robot can now accurately perform landmark disambiguation
without human intervention.

We will conduct experiments using three robots with various combi-
nations of these three interaction schemes.

2.3 Measuring Performance and Workload

In order to determine the effectiveness of an interaction scheme, we
use two metrics: 1) the performance of the human-robot system and
2) the workload on the human.
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2.3.1 Performance. The performance of the human-robot sys-
tem is measured as the time it takes for the system to complete an
accurate map of the environment. Other metrics could be used such
as robot idle time, time of human attention to each individual robot,
or re-traversal of places in the environment. However, we determined
that the measurement of time to completion encompasses a number of
other performance criteria, which implies that this criterion is useful for
calculating performance.

2.3.2 Workload. In order to measure the workload on the user,
we use four metrics: 1) entropy of the joystick, 2) velocity of the mouse,
3) number of button clicks on the mouse and joystick and 4) the number
of times the user switches between robots.

The workload from joystick entropy is found by using a strategy de-
veloped by Boer et al., which calculates steering entropy for evaluating
driver workload (Boer99).

The workload from mouse movement is found by calculating the av-
erage velocity of the mouse movement during an experiment. Mouse
movement is calculated in pixels per second and normalized by the size
of the interface to a value between 0 and 1. Instantaneous mouse velocity
is weighted according to .9*previous velocity 4+ .1*current velocity be-
cause rapid mouse movements indicate periods of high workload instead
of a single instant of high workload.

The partial workload from the total clicks of the mouse and joystick
and switching between robots, is added to the total workload as a square
pulse measuring 10% of the maximum workload over a 10 second interval.
The reason for the length of the square pulse is due to the effects of
a context switch when the human changes control of robots and the
dexterity involved with disambiguating landmarks and snapping similar
landmarks to each other.

The average human workload for an experiment is the sum of the
joystick entropy, the average mouse velocity and the average total clicks
over the time for completion of the experiment. A possible area for
future research is to find the best way to combine the various activities
of human input to balance the workload throughout an experiment in
comparison to the current model of interleaving moments of extreme
workload with moments of minimal workload.

2.4 Experiments

In our experiment, we controlled the robots in the environment shown
in Figure 2 with the robots starting in the middle of the map facing east.
Note that the human knows the starting positions of the robot but the



Figure 2. A topological representation of the environement we use for our experi-
ments.

robots do not; the robots do, however, know that each robot started in
the same landmark facing the same direction. This allows the robots to
understand each others maps.

The goal of the robot system is to have the robots build a topological
map in the shortest amount of time with minimal human workload.
Table 1 shows the experiments we are interested in. Note, the TOL
interaction scheme is never implemented more than once per control
scheme because the workload on the human would be too high.

Control Schemes Interaction Scheme Interaction Scheme
All the same PTP, PTP, PTP ROI, ROI, ROI
Two the same PTP, PTP, TOL ROI, ROI, TOL
one Different PTP, PTP ROI ROI, ROI, PTP
All Different ROI, PTP, TOL

Table 1. The seven control schemes we used in our experiments.

3. Results
3.1 Instantaneous Workload

The instantaneous workload on the human is useful for showing how
the workload changes with different interaction schemes. Figures 3 to 7
show the workload for various control schemes.

It can be seen from these figures that as the number of PTP interaction
schemes increase, the workload increases because of the amount of mouse
movement and mouse clicks that become necessary. Additionally, when
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Figure 3.  Typical instantaneous workload when using three ROI interaction schemes
for control of the three robots.
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Figure 4.  Typical instantaneous workload when using two ROI and one PTP inter-
action schemes. As we increase the number of PTP interaction schemes, we increase
workload and performance.
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Figure 5. Typical instantaneous workload when using two PTP and one ROI inter-
action schemes.
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Figure 6. Typical instantaneous workload when using three PTP interaction
schemes. Note the continued increase in workload and performance.
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Figure 7. Typical instantaneous workload when using ROI, PTP, and TOL interac-
tion schemes. When a TOL interaction scheme is used, there is a significant increase
in workload and a slight increase in performance.

the TOL interaction scheme is used, the workload takes a significant
jump because of the constant need to tend to the teleoperated robot.

The data gathered from the experiments presents clear evidence in re-
gards to the performance and workload of the various control schemes.
Figure 8 shows the average results of each control scheme with the el-
lipses representing one standard deviation in the performance and work-
load. The data used to construct Figure 8 is shown in Table 2.

Control Schemes Average Performance Average Workload
PTP PTP TOL 525 .6297
PTP PTP PTP 569 .2289
ROI PTP TOL 610 6171
PTP PTP ROI 675 .2000
ROI ROI PTP 773 .0898
ROI ROI TOL 775 .5906
ROI ROI ROI 984 .0641

Table 2. The average performance, measured in seconds until completion, and aver-
age human workload for each of the control schemes.
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With these experiments, the tradeoffs between the various control
schemes becomes clear: As the human gives the robots more autonomy,
the performance with respect to time of completion decreases and the
human workload decreases. As the human takes more control of the
robots, the performance is increased as the workload increases. The
control scheme with the highest workload is the (PTP, PTP, TOL) con-
trol scheme, and correspondingly, this same control scheme has the best
performance in relation to time of completion. Likewise, the (ROI, ROI,
ROI) control scheme has the lowest workload and the worst performance.
An interesting observation in the distributions of the performance and
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Figure 8.  Distributions of the various control schemes. The ellipses represent the
standard deviation in the performance and human workload over four subjects and
five experiments of each control scheme.

workload is that in all the control schemes, as more PTP interaction
schemes are used, the time for completion decreases fairly consistently
with a similarly consistent increase in human workload. Furthermore, as
more ROT interaction schemes are used, the performance decreases fairly
consistently along with the workload. Additionally, when the TOL inter-
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action scheme is used, the workload on the human increases drastically,
with a slight gain in the performance of the system. It is remarkable
that changes in the three interaction schemes are consistent in how they
affect the performance of the system and the workload on the human.

A notable result from Figure 8 is that the variance in the time as
well as the variance in workload is largest in the joystick experiments
in comparison to the other experiments. Occasionally, a user less expe-
rienced with the joystick and the interface would become overwhelmed
and perform poorly on the experiments. However, it is of interest that
the weak performances, when they happened, only occurred when one
of the interaction schemes was TOL. This is a valuable result because
it shows that the PTP and ROI interaction schemes can be used with
minimal instruction and an untrained human can perform comparable
to a human trained in the various interaction schemes.

In essence, we have learned the following about each of the interaction
schemes presented:

1 As the number of PTP interaction schemes is increased, we see an
increase in performance and human workload.

2 As the number of ROI interaction schemes is increased, we see a
decrease in performance and human workload.

3 When a TOL interaction scheme is used, we see a dramatic increase
in workload accompanied by a slight increase in performance.

4. Conclusions

Behavior-based mapping is a topological map-building algorithm that
facilitates sharing information about an environment between robots and
humans. We have designed a task that uses one human and three robots
to build a behavior-based map of an environment. The human inter-
acts with the robots via three interaction schemes: 1) teleoperate and
define landmarks, 2) point-to-point and human snapper, and 3) Region
of interest and sealing. We have studied the performance and human
workload of the human-robot system using various combinations of the
three interaction schemes. The results show clear tradeoffs as the level
of interaction is adjusted. When the human assumes more responsibil-
ity, the human workload increases, but performance increases as well.
When the human relinquishes control to the robots, human workload
and performance both decrease. Note that the performance increase
happens up to a certain point dependent on the skills of the human. If
the workload saturates (e.g., with TOL), team performance is sensitive
to many factors and can actually decrease. We also show the instanta-
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neous workload for a variety of interaction schemes to show the actual
increase in human workload as the user assumes more responsibility.
An intersting direction for future work is to adjust the number of
robots interacting with a human. As we change the number of robots,
we could use the new information to improve our workload vs. perfor-
mance figure. In essence, we want to learn the optimal number of robots
a human can control via different control schemes and then determine
the optimal ratio of interaction schemes between the robots and the hu-
man with respect to performance and human workload. This is similar
to Dudenhoeffer’s research (Dudenhoeffer 01) but includes human work-
load. This information would be valuable in determining the tradeoffs
in various compositions of human-robot interaction schemes.
Additionally, we are interested in performing the experiments pre-
sented in this paper in environments of varying complexity and with
more subjects in order to gain a more accurate understanding of the
relationship between workload and performance of human-robot teams.
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