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t In this paper, we study human-robot intera
tion with the goal of learn-ing how teams of semi-independent, semi-autonomous robots are bestserved by human input in a map-building situation. In our experimentswe use multiple 
ombinations of three intera
tion s
hemes to 
ontrolthree robots as they build a topologi
al map of an indoor environment.The results from our experiments show the tradeo�s of the various in-tera
tion s
hemes in terms of workload and performan
e.Keywords: Adjustable intera
tion, Human-robot teams, topologi
al map-building1. Introdu
tionModern resear
h has given mobile robots the ability to solve a varietyof interesting problems. By eÆ
iently integrating human 
reativity, in-tuition, and high-level reasoning into a human-robot system, robots willbe able to solve mu
h more diÆ
ult problems. In this 
ontext, an inter-esting question to answer is how 
an human abilities best be used in a1



2team of semi-autonomous, semi-independent robots. One purpose of ourresear
h is to develop human-robot team organization 
on
epts that en-han
e a multi-agent team over all-robot-teams. The spe
i�
 obje
tive ofthis paper is to study how teams of semi-independent, semi-autonomousrobots are best served by human input in a map-building situation. Re-sear
h in this area will help identify and understand parameters that
onstitute e�e
tive human intera
tion with teams of semi-autonomous,semi-independent robots.1.1 Previous WorkArkin and Ali's work has been useful to our resear
h (Ali00). In theirwork, they present experimental results for hundreds of test subje
ts ofa shared-
ontrol system that allows a human to intera
t with a team ofsimple behavior-based robots. In measuring the e�e
tiveness of human-ma
hine intera
tion, mu
h work has been done on operator workload.Of parti
ular relevan
e is Boer's work relating workload and entropy(Boer99). In addition, Boer has used se
ondary tasks to help evaluatethe 
ognitive workload pla
ed on human operators. We have studiedthe e�e
ts of human negle
t on robot performan
e for di�erent types ofintera
tion, and used these studies to design robot autonomy levels andhuman interfa
es that fa
ilitate high robot performan
e with minimalhuman input. We 
all this the study of negle
t toleran
e (Crandall02).In order to perform the experiments we are interested in, we use abehavior-based topologi
al map-building algorithm in (Nielsen02). Inthe behavior-based map-buliding algorithms, a robot re
ognizes a setof a�orded behaviors, whi
h are loosely based on navigational primi-tives su
h as \turn right" and \turn left", and uses these behaviors tode�ne landmarks in the environment. This approa
h extends SebastianThrun's work (Thrun98) by adjusting his probabilisti
 map-building andlo
alization algorithms to perform in topologi
al environments.2. The Experiment Framework2.1 The Interfa
eWe have designed an interfa
e that permits a human to observe themovement of both individual robots and teams of robots, and then dire
tthe 
ontrol of ea
h robot from a workstation. The interfa
e has a view ofthe sonar measurements around the robot, a 
ompass, a video feed, a listof robots 
urrently in the system, and a mapping area. The mappingarea 
ontains information about dead-re
koning and topologi
al maps



Experiments in Human-Robot Teams 3and a�ords the human the ability to disambiguate topologi
al landmarksvia drag and drop algorithms. The interfa
e we use is shown in Figure 1.

Figure 1. The interfa
e with whi
h we perform our experiments.Via the interfa
e, humans 
an intera
t with the robots by voi
e,mouse, keyboard, or joysti
k. In addition, we have implemented anadjustable intera
tion 
ontrol system that a�ords humans and robotsdi�erent levels of intera
tion. The interfa
e a
ts as a 
entralized agentwhere the robots report their �ndings to the interfa
e, whi
h then passesthe information to the other robots in the system. In the experimentherein, human input devi
es are limited to mouse and joysti
k.2.2 Intera
tion S
hemesWe are interested in experiments that study the behavior-based map-building problem in a situation where a human intera
ts with robots viathree di�erent intera
tion s
hemes. The human has two areas of inputto the robot: 1) 
ontrol of the movement of the robot, and 2) disam-biguation of landmarks. The three intera
tion s
hemes we will use arenow des
ribed.2.2.1 Teleoperate and Landmark (TOL). The robot is 
on-trolled via tele-operation through the environment. When the robotrea
hes a landmark the user must tell the robot that it has rea
hed



4a landmark by 
li
king a button on the joysti
k, similar to SebastianThrun's work in (Thrun98). When the user 
li
ks a button the robotre
ognizes the set of a�orded behaviors at the pla
e of interest and 
re-ates a landmark that 
orresponds to the a�orded behaviors. (An a�ordedbehavior is a dire
tion of possible travel.) When similar appearing pla
esare found in the environment, it is the responsibility of the human todetermine whether or not the pla
es are the same or distin
t (i.e., land-mark disambiguation). If the landmarks represent the same pla
e in theenvironment, the user drags the landmarks together via the graphi
alinterfa
e.2.2.2 Point to Point and Human Snapper (PTP). Therobot is 
ontrolled via point-to-point 
ommands (e.g. \left at next in-terse
tion", \right at next interse
tion"). When the robot 
ompletes a
ommand it resets the 
ontrol to \Go forward" and the robot will pro-
eed forward until it 
annot 
ontinue, at whi
h point it will wait foranother dire
tive from the user. As the robot moves throughout the en-vironment it autonomously identi�es a�orded behaviors and uses the setof a�orded behaviors to 
lassify the landmarks. Similar to the TOL in-tera
tion s
heme, in the PTP intera
tion s
heme, the user is responsiblefor distinguishing between similar pla
es in the environment.2.2.3 Region of Interest and Sealing (ROI) . The humandire
ts the robot to regions of interest via the graphi
al interfa
e. Whenthe robot is near the region of interest it will perform its own exploration,landmark dete
tion, and landmark disambiguation algorithms des
ribedin (Nielsen02). In essen
e, the algorithms use a wall-following heuristi
to estimate where the robot should move in order to learn or 
on�rmmap information about the environment. As the robot explores, it buildsa map that 
ontains sealed areas; i.e., areas that have been explored and
annot be \re-dis
overed" by a

ident. The robot uses the known part ofits map for lo
alization and 
an in
rementally add new dis
overies aboutthe environment to the map. With the ability to lo
alize itself on its ownmap, the robot 
an now a

urately perform landmark disambiguationwithout human intervention.We will 
ondu
t experiments using three robots with various 
ombi-nations of these three intera
tion s
hemes.2.3 Measuring Performan
e and WorkloadIn order to determine the e�e
tiveness of an intera
tion s
heme, weuse two metri
s: 1) the performan
e of the human-robot system and2) the workload on the human.



Experiments in Human-Robot Teams 52.3.1 Performan
e. The performan
e of the human-robot sys-tem is measured as the time it takes for the system to 
omplete ana

urate map of the environment. Other metri
s 
ould be used su
has robot idle time, time of human attention to ea
h individual robot,or re-traversal of pla
es in the environment. However, we determinedthat the measurement of time to 
ompletion en
ompasses a number ofother performan
e 
riteria, whi
h implies that this 
riterion is useful for
al
ulating performan
e.2.3.2 Workload. In order to measure the workload on the user,we use four metri
s: 1) entropy of the joysti
k, 2) velo
ity of the mouse,3) number of button 
li
ks on the mouse and joysti
k and 4) the numberof times the user swit
hes between robots.The workload from joysti
k entropy is found by using a strategy de-veloped by Boer et al., whi
h 
al
ulates steering entropy for evaluatingdriver workload (Boer99).The workload from mouse movement is found by 
al
ulating the av-erage velo
ity of the mouse movement during an experiment. Mousemovement is 
al
ulated in pixels per se
ond and normalized by the sizeof the interfa
e to a value between 0 and 1. Instantaneous mouse velo
ityis weighted a

ording to .9*previous velo
ity + .1*
urrent velo
ity be-
ause rapid mouse movements indi
ate periods of high workload insteadof a single instant of high workload.The partial workload from the total 
li
ks of the mouse and joysti
kand swit
hing between robots, is added to the total workload as a squarepulse measuring 10% of the maximumworkload over a 10 se
ond interval.The reason for the length of the square pulse is due to the e�e
ts ofa 
ontext swit
h when the human 
hanges 
ontrol of robots and thedexterity involved with disambiguating landmarks and snapping similarlandmarks to ea
h other.The average human workload for an experiment is the sum of thejoysti
k entropy, the average mouse velo
ity and the average total 
li
ksover the time for 
ompletion of the experiment. A possible area forfuture resear
h is to �nd the best way to 
ombine the various a
tivitiesof human input to balan
e the workload throughout an experiment in
omparison to the 
urrent model of interleaving moments of extremeworkload with moments of minimal workload.2.4 ExperimentsIn our experiment, we 
ontrolled the robots in the environment shownin Figure 2 with the robots starting in the middle of the map fa
ing east.Note that the human knows the starting positions of the robot but the



6
Figure 2. A topologi
al representation of the environement we use for our experi-ments.robots do not; the robots do, however, know that ea
h robot started inthe same landmark fa
ing the same dire
tion. This allows the robots tounderstand ea
h others maps.The goal of the robot system is to have the robots build a topologi
almap in the shortest amount of time with minimal human workload.Table 1 shows the experiments we are interested in. Note, the TOLintera
tion s
heme is never implemented more than on
e per 
ontrols
heme be
ause the workload on the human would be too high.Control S
hemes Intera
tion S
heme Intera
tion S
hemeAll the same PTP, PTP, PTP ROI, ROI, ROITwo the same PTP, PTP, TOL ROI, ROI, TOLone Di�erent PTP, PTP ROI ROI, ROI, PTPAll Di�erent ROI, PTP, TOLTable 1. The seven 
ontrol s
hemes we used in our experiments.3. Results3.1 Instantaneous WorkloadThe instantaneous workload on the human is useful for showing howthe workload 
hanges with di�erent intera
tion s
hemes. Figures 3 to 7show the workload for various 
ontrol s
hemes.It 
an be seen from these �gures that as the number of PTP intera
tions
hemes in
rease, the workload in
reases be
ause of the amount of mousemovement and mouse 
li
ks that be
ome ne
essary. Additionally, when
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Figure 3. Typi
al instantaneous workload when using three ROI intera
tion s
hemesfor 
ontrol of the three robots.
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Figure 4. Typi
al instantaneous workload when using two ROI and one PTP inter-a
tion s
hemes. As we in
rease the number of PTP intera
tion s
hemes, we in
reaseworkload and performan
e.



8

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROI, PTP, PTP Instant Workload

Performance (Seconds)

W
or

klo
ad

Figure 5. Typi
al instantaneous workload when using two PTP and one ROI inter-a
tion s
hemes.
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Figure 6. Typi
al instantaneous workload when using three PTP intera
tions
hemes. Note the 
ontinued in
rease in workload and performan
e.
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Figure 7. Typi
al instantaneous workload when using ROI, PTP, and TOL intera
-tion s
hemes. When a TOL intera
tion s
heme is used, there is a signi�
ant in
reasein workload and a slight in
rease in performan
e.the TOL intera
tion s
heme is used, the workload takes a signi�
antjump be
ause of the 
onstant need to tend to the teleoperated robot.The data gathered from the experiments presents 
lear eviden
e in re-gards to the performan
e and workload of the various 
ontrol s
hemes.Figure 8 shows the average results of ea
h 
ontrol s
heme with the el-lipses representing one standard deviation in the performan
e and work-load. The data used to 
onstru
t Figure 8 is shown in Table 2.Control S
hemes Average Performan
e Average WorkloadPTP PTP TOL 525 .6297PTP PTP PTP 569 .2289ROI PTP TOL 610 .6171PTP PTP ROI 675 .2000ROI ROI PTP 773 .0898ROI ROI TOL 775 .5906ROI ROI ROI 984 .0641Table 2. The average performan
e, measured in se
onds until 
ompletion, and aver-age human workload for ea
h of the 
ontrol s
hemes.



10With these experiments, the tradeo�s between the various 
ontrols
hemes be
omes 
lear: As the human gives the robots more autonomy,the performan
e with respe
t to time of 
ompletion de
reases and thehuman workload de
reases. As the human takes more 
ontrol of therobots, the performan
e is in
reased as the workload in
reases. The
ontrol s
heme with the highest workload is the (PTP, PTP, TOL) 
on-trol s
heme, and 
orrespondingly, this same 
ontrol s
heme has the bestperforman
e in relation to time of 
ompletion. Likewise, the (ROI, ROI,ROI) 
ontrol s
heme has the lowest workload and the worst performan
e.An interesting observation in the distributions of the performan
e and

Figure 8. Distributions of the various 
ontrol s
hemes. The ellipses represent thestandard deviation in the performan
e and human workload over four subje
ts and�ve experiments of ea
h 
ontrol s
heme.workload is that in all the 
ontrol s
hemes, as more PTP intera
tions
hemes are used, the time for 
ompletion de
reases fairly 
onsistentlywith a similarly 
onsistent in
rease in human workload. Furthermore, asmore ROI intera
tion s
hemes are used, the performan
e de
reases fairly
onsistently along with the workload. Additionally, when the TOL inter-
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tion s
heme is used, the workload on the human in
reases drasti
ally,with a slight gain in the performan
e of the system. It is remarkablethat 
hanges in the three intera
tion s
hemes are 
onsistent in how theya�e
t the performan
e of the system and the workload on the human.A notable result from Figure 8 is that the varian
e in the time aswell as the varian
e in workload is largest in the joysti
k experimentsin 
omparison to the other experiments. O

asionally, a user less expe-rien
ed with the joysti
k and the interfa
e would be
ome overwhelmedand perform poorly on the experiments. However, it is of interest thatthe weak performan
es, when they happened, only o

urred when oneof the intera
tion s
hemes was TOL. This is a valuable result be
auseit shows that the PTP and ROI intera
tion s
hemes 
an be used withminimal instru
tion and an untrained human 
an perform 
omparableto a human trained in the various intera
tion s
hemes.In essen
e, we have learned the following about ea
h of the intera
tions
hemes presented:1 As the number of PTP intera
tion s
hemes is in
reased, we see anin
rease in performan
e and human workload.2 As the number of ROI intera
tion s
hemes is in
reased, we see ade
rease in performan
e and human workload.3 When a TOL intera
tion s
heme is used, we see a dramati
 in
reasein workload a

ompanied by a slight in
rease in performan
e.4. Con
lusionsBehavior-based mapping is a topologi
al map-building algorithm thatfa
ilitates sharing information about an environment between robots andhumans. We have designed a task that uses one human and three robotsto build a behavior-based map of an environment. The human inter-a
ts with the robots via three intera
tion s
hemes: 1) teleoperate andde�ne landmarks, 2) point-to-point and human snapper, and 3) Regionof interest and sealing. We have studied the performan
e and humanworkload of the human-robot system using various 
ombinations of thethree intera
tion s
hemes. The results show 
lear tradeo�s as the levelof intera
tion is adjusted. When the human assumes more responsibil-ity, the human workload in
reases, but performan
e in
reases as well.When the human relinquishes 
ontrol to the robots, human workloadand performan
e both de
rease. Note that the performan
e in
reasehappens up to a 
ertain point dependent on the skills of the human. Ifthe workload saturates (e.g., with TOL), team performan
e is sensitiveto many fa
tors and 
an a
tually de
rease. We also show the instanta-



12neous workload for a variety of intera
tion s
hemes to show the a
tualin
rease in human workload as the user assumes more responsibility.An intersting dire
tion for future work is to adjust the number ofrobots intera
ting with a human. As we 
hange the number of robots,we 
ould use the new information to improve our workload vs. perfor-man
e �gure. In essen
e, we want to learn the optimal number of robotsa human 
an 
ontrol via di�erent 
ontrol s
hemes and then determinethe optimal ratio of intera
tion s
hemes between the robots and the hu-man with respe
t to performan
e and human workload. This is similarto Dudenhoe�er's resear
h (Dudenhoe�er 01) but in
ludes human work-load. This information would be valuable in determining the tradeo�sin various 
ompositions of human-robot intera
tion s
hemes.Additionally, we are interested in performing the experiments pre-sented in this paper in environments of varying 
omplexity and withmore subje
ts in order to gain a more a

urate understanding of therelationship between workload and performan
e of human-robot teams.Referen
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