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ABSTRACT

Increased use of autonomy also increases the need for hu-
mans to interact with or manage autonomy. We propose a
new variation of sliding autonomy useful for planning prob-
lems over a spatial region. With this approach, the user
can influence the behavior of the autonomous system via
spatial constraints and temporal constraints. We present
a set of user interface designs to implement sliding auton-
omy for Unmanned Aerial Vehicle path-planning to support
Wilderness Search and Rescue. Interactivities along these
new dimensions allow the user to allocate degrees of author-
ity and flexibility to the robot’s algorithms. We evaluate
the usefulness of the approach against manual and simple
pattern path-planning methods with a user study. Results
show that the sliding autonomy approach performs signifi-
cantly better than the other two methods without increas-
ing the users’ mental workload, and the performance of the
human-autonomy team outperforms either human or auton-
omy working alone.
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1. INTRODUCTION

With the rapid advancement in technology, people are see-
ing increased use of autonomy to augment human abilities
and support human decision-making in many application do-
mains (e.g., [13, 11, 32, 38]). At the same time, increased
use of autonomy means increased need for humans to inter-
act with or manage autonomy [2]. Even for so-called fully
autonomous systems, human input can potentially improve
the system’s performance and safety [9]. The humans in
such interactions manage autonomy because “only people
are held responsible for consequences...and only people de-
cide on how authority is delegated to automata” [45].

When humans manage autonomous systems, their respon-
sibilities often include monitoring the safety of the system,
supervising autonomy to achieve acceptable performance,
and making sure autonomy is working toward the collective
goal of the overall system. In many emerging domains, the
human operators are domain experts who can use domain-
specific knowledge to assist the autonomous system when
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it deals with changing environments, uncertainty, and case-

specific scenarios. Therefore, it is necessary to design tools

and interfaces that enable humans to manage the autonomous
behaviors of the system efficiently and effectively; such tools

can improve task performance and the experience of the hu-

man operator in human-autonomy interaction. Wilderness

Search and Rescue (WiSAR) is one such domain that could

benefit from autonomy management tools when a mini-UAV

(Unmanned Aerial Vehicle) is used in search.

Camera-equipped mini-UAVs can be useful tools in WiSAR
operations by providing aerial imagery of a search area with
quick coverage of large areas, access to hard-to-reach areas,
and lower cost than manned aircraft [33, 21]. UAV path-
planning is important because a good path can increase the
probability of finding a missing person by making efficient
use of the limited flying time. Various algorithms have been
developed to support UAV path-planning (e.g., [5, 29, 31]),
but the question remains how best to incorporate searcher
expertise in such a way that the UAV path-planning is as effi-
cient and effective as possible without requiring the searcher
to understand how the autonomy works “behind the scenes.”

We propose a new autonomy management approach where
the human can influence the behavior of an autonomous sys-
tem along two new dimensions: 1) Spatial Constraints:
add constraints or priorities to different spatial regions, there-
by affecting how the robot plans and performs its task; and
2) Temporal Constraints: impose time limits for a sub-
task or impose ordering constraints on a subtask. We refer
to this approach as Sliding Autonomy because, properly de-
signed, it can allocate degrees of authority and flexibility to
the robot’s algorithms by adding or removing constraints.
Indeed, we will explicitly use a slider as one GUI tool for
managing UAV path-planning.

As the human adds priorities or changes constraints, the
sliding autonomy tool shows instant feedback on how those
changes influence the UAV’s plan, which enables the searcher
to perform “what-if” analysis and see how the action changes
autonomous behavior. This interactive approach lets au-
tonomous algorithms perform tasks that algorithms are good
at and humans do tasks that humans are good at, but in a
collaborative and interactive way that avoids the pitfalls of
simple task allocation [41, 9, 25]. Properly done, the human-
robot team should perform better than a human or robot
working alone.

Many approaches to autonomy management already ex-
ist and are called different things, such as supervisory con-
trol [41], mized-initiative [23], collaborative control [20], ad-
Justable autonomy [17, 18] (also referred to as sliding auton-
omy [16] or adaptive automation [39, 26]). The approach
we propose falls under the category of adjustable autonomy.
The dimensions we identified are in addition to dimensions
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Figure 1: Sliding autonomy tool showing a 20-
minute path segment with a probability distribution
map (3D surface), the startpoint (UAV icon), and
the endpoint (sphere on the right).

of adjustable autonomy identified by Bradshaw et al. so
we design tools and algorithms that operate in a particular
place in Bradshaw’s taxonomy [8].

Previous work [32] organized the challenges of autonomy
and management tool design along two dimensions: attributes
of an intelligent system (capability, information manage-
ment, performance evaluation) and organizational scale (in-
dividual versus group). In this paper we extend the guide-
lines to include attributes needed when a human-autonomy
work collaboratively, and analyze how our proposed sliding
autonomy approach fits in the guidelines. By applying slid-
ing autonomy to the UAV path-planning task, we argue that
this approach:

e enables the domain expert user to incorporate information
only available to or understandable by the expert;

is easy to understand;

lets the human do what the human is good at (plan-
ning strategically and balancing performance tradeoffs)
and autonomy do what autonomy is good at (planning
tactically), resulting in better performance than human
or autonomy working alone; and

improves the human’s experience in the human-autonomy
interaction.

To evaluate the usefulness of the proposed approach, we
performed a user study and compared the sliding autonomy
method against two other planning methods (manual and
simple pattern path-planning) in two WiSAR scenarios (one
synthetic and one real). We measured each user’s perfor-
mance with each method on both the primary and secondary
tasks. Experiment results show that the sliding autonomy
method performed significantly better than the manual or
simple pattern planning methods with no increased mental
workload. The performance of the human-autonomy team
outperforms either human or autonomy working alone.

2. AUTONOMY DESIGN GUIDELINES AND

NEW DIMENSIONS

In this paper we extend the taxonomy described in [32]
by adding attributes needed when multiple agents work col-
laboratively, and add new dimensions for sliding autonomy.

2.1 Autonomy Design Guidelines

When a human-autonomy team works, the autonomous
component needs to provide interfaces so the human can in-
teractively influence the autonomous behavior (Interactiv-
ity); the human should be able to manage how autonomy
works in order to jointly find a solution by utilizing infor-
mation only available to the human and/or feed information
to autonomy in a representation that the autonomy can un-
derstand (Manageability); and when performance is eval-
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uated, the human operator can judge whether the individual
goal aligns with the collective goal of the system [25].

This paper focuses on intelligence of collaborative agents
in a path-planning problem. Our path planner interface is
designed to accept human input. The human can incor-
porate information from various sources and influence the
behavior of path-planning autonomy by allocating degrees
of authority and flexibility.

2.2 Spatial Constraints

The searcher should be able to influence the behavior of
path-planning autonomy by setting/changing spatial con-
straints, which can be in the forms of start/end points of
the path segment or task-specific zones (see Section 3).

Setting an endpoint in an area is a way for the searcher to
indirectly tell path-planning autonomy that the area should
have higher priority. For example, if a piece of clothing is
found by the ground team, the searcher can force the path-
planning autonomy to go visit that area by setting an end-
point there. Because the UAV must allocate part of the
fixed-length flight time to reach that area, areas that had
good payoffs before can become relatively costly and, there-
fore, no longer attractive to path-planning autonomy. Im-
portantly, since we have assumed a fixed flight duration, set-
ting an endpoint not only directly causes the UAV to focus
search effort around that location but also indirectly causes
the UAV to avoid other areas because the budget does not
allow them to be searched well. In Figure 1, the UAV icon
in the middle indicates the start point of the path segment
and the sphere on the right indicates the desired endpoint.

In the GUI, the endpoint can be dragged around the
search region and path-planning autonomy suggests differ-
ent paths accordingly. This capability enables the user to
adjust how much freedom is granted to autonomy. When the
endpoint is close to the start point, autonomy has greater
authority and flexibility in creating paths. If the endpoint is
far from the start point, authority and flexibility for auton-
omy is reduced because a part of path-planning is moving
the UAV toward the endpoint with the shortest path.

The interactive ability to move the endpoint around and
see immediately how the change affects the UAV path rec-
ommended by autonomy enables the user to perform “what-
if” analysis and lets the user see the causal effect between
his/her action and changes in autonomous behavior.

Spatial constraints are easy to understand, so the searcher
can interpret how these constraints will affect the behavior of
path-planning autonomy. By managing autonomy along this
dimension, the searcher can incorporate additional infor-
mation (e.g., missing person profile) into the path-planning
task, improve task performance, and align the task goal with
the overall goal of finding the missing person quickly.

In our user study we fixed the start point of the path to
the center of the map (last know position of the missing per-
son). The searcher can set the endpoint for the current path
segment anywhere on the map, and this endpoint automat-
ically becomes the start point for the next path segment.
We disabled the ability to move an endpoint once a path
segment is planned to reduce computation, but we let users
reset an entire plan, effectually allowing them to try different
combinations of starting and ending path segments.

2.3 Temporal Constraints

In the UAV path-planning problem, temporal constraints
include a time limit for a subtask (path segment), subtask
ordering, and valid time window (see Section 3).



With the time limit constraint, the searcher can decide
on how much flight time to allocate to a path segment out
of the total flight time. This enables the searcher to break
the path-planning task into multiple subtasks and then plan
each path segment separately. In our interface design we
let the searcher control time allocation using a slider; as
the searcher moves the slider, the path-planning autonomy
shows how the suggested path segment changes. Similar to
the spatial constraints, this instant feedback enables “what-
if” analysis on the causal effect between searcher action and
changes in autonomous behavior.

For example, for a 60-minute total flight with an endpoint
set to the probability hill on the right (Figure 1), the searcher
can move the slider to set time limits and see immediately
what path segment the autonomy would suggest. The path
segment shown is when 20 minutes are allocated. If the
searcher is happy with the suggestion, he or she approves
the path segment. The UAV moves toward the endpoint and
“vacuums up” the probability along the path (how much can
be vacuumed up is determined by the task-difficulty map).
Then the searcher works with the autonomy to plan the
path for the remaining 40 minutes. The two (or more) path
segments are joined to form the final path.

By managing autonomy along the temporal constraint di-
mension, the searcher can break the path-planning task into
subtasks and incorporate additional information into the
path-planning task. The user study described in this pa-
per includes the time limit constraint.

In the example shown in Figure 1, the path covers the
middle area well before moving right. If no endpoint is set,
autonomy might decide to move left, instead. Less time allo-
cation forces autonomy to focus more on the local area; more
time allocation increase authority, so autonomy has more
flexibility deciding what areas to cover. Instant feedback on
path changes when constraints change lets the searcher in-
teractively review multiple options and select the path seg-
ment that fits best with his/her strategic planning. This
design theoretically enables the human to plan more strate-
gically (prioritizing areas in the entire region) while auton-
omy works more tactically (covering the current area well),
using strengths of each when they work collaboratively. Ide-
ally such a human-autonomy team should work better than
either human or autonomy working alone.

3. RELATED WORK

Drucker defines automation as a “concept of the organi-
zation of work [19].” Goodrich and Schultz define the HRI
problem as “understanding and shaping the interactions be-
tween one or more humans and one or more robots” [22].
In their 1978 seminal paper, Sheridan and Verplank propose
the idea of a level of autonomy spectrum [42], which Parasur-
aman et al. extended to four different broad functions [35].
Autonomy management approaches include top-down phi-
losophy of supervisory control [41], mized-initiative [23] where
tasks can dynamically shift when necessary, collaborative
control, a robot-centric model [20], where the robot is treated
as a peer, and Adjustable autonomy [18] (also referred to as
sliding autonomy [16] or adaptive automation [39]) that en-
ables the human-automation team to dynamically and adap-
tively allocate functions and tasks among team members.
This paper proposes a new variation of sliding autonomy
useful for planning problems over a spatial region.

Many implementations of adjustable autonomy exist. Do-
rais et al. discuss a framework for human-centered autono-
mous systems for a manned Mars mission [17] that enables
users to interact with these systems at an appropriate level
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of control but minimize the necessity for interaction. Kaber
et al. describe an experiment simulating an air traffic con-
trol task where manual control was compared to Adaptive
Automation (AA) [27]. Results suggest that AA is supe-
rior to completely manual control. Adjustable autonomy
can also be applied to teams of agents and humans. Tambe
et al. introduced the notion of a transfer of control strat-
egy to adjustable autonomy and evaluated the approach in
a real-world, deployed multi-agent system [44]. Cummings
et al. investigated the impact of automated planning rates
for single operator control of multiple unmanned vehicles in
a decentralized network and conclude that rapid replanning
can cause high operator workload, ultimately resulting in
poorer overall system performance [15]. Alan et al. carried
out a field trial to study notions of flexible autonomy in the
context of tariff switching [1].

The human is an integral part of the human-autonomy
team. Bainbridge points out that automation requires the
human operator to take additional management responsibil-
ities [2], and Sartar identified two automation management
policies: management by consent and management by ex-
ception [40]. For complex automation, the human tends to
rely on his/her mental models [34] to manage the system.

Many adjustable autonomy design guidelines have been
proposed. Dias et al. identified six key capabilities for over-
coming challenges in enabling sliding autonomy in peer-
to-peer human-robot teams [16]. Bradshaw et al. discuss
principles and pitfalls of adjustable autonomy and human-
centered teamwork, and then present study results on so-
called “work practice modeling” and human-agent collabo-
ration in space applications [10]. Bradshaw et al. propose
two dimensions of Adjustable Autonomy (descriptive and
prescriptive) to address the two senses of autonomy (self-
sufficiency and self-directedness) [8]. They also summarized
some widespread misconceptions on autonomy and listed
seven deadly myths of “autonomous systems” [9, 25].

UAV technology has emerged as a promising tool in sup-
porting WiSAR [33, 5]. The goal of our research is to sup-
port fielded missions in the spirit of Murphy’s work [11].
Many path-planning algorithms in the literature address ob-
stacle avoidance while planning a path to reach a destination
using A* [37], LRTA* [24], D* [43], Voronoi diagrams [4, 3],
or probability roadmaps and rapidly-exploring random tree
(RRTs) [36]. Bourgault et al. [7, 6] describe how to use a
Bayesian model to create paths for a single UAV or multi-
ple coordinated UAVs to maximize the amount of probabil-
ity accumulated by the UAV sensors. Clark and Goodrich
present in [14] an algorithm where a user can incorporate
spatial constraints such as task-specific zones (no-fly zone,
coverage zone, a sampling zone) and temporal constraints
such as subtask ordering and valid time window to path
planning tasks. The algorithms we used in this paper are
algorithms from [29, 31], which significantly outperform [6].

4. USER STUDY AND EVALUATION

We performed a user study to evaluate the usefulness of
several aspects of the sliding autonomy approach. It follows
a 2x3 within-subject design with 2 scenarios (easy vs. dif-
ficult) and 3 path-planning methods (manual, pattern, and
sliding autonomy). All participants completed all 6 exer-
cises. The order of the scenarios and planning methods was
counterbalanced to reduce learning effect. We recruited a to-
tal of 26 college students (14 males and 12 females) between
the age of 19 and 30 (average 22.89).

We evaluate the following hypotheses:



Figure 2: Top: Simulation interface with the slid-
ing autonomy method showing the probability dis-
tribution map for scenario 1. Middle left: Probabil-
ity distribution map for scenario 2. Middle Right:
Task-difficulty map for scenario. Bottom: The three
patterns with the pattern planning method.

H1: The sliding autonomy method performs better than
either a manual method and a semi-autonomous method
that uses standard search patterns to cover an area.

H2: The sliding autonomy method performs better than
autonomy working alone.

H3: The sliding autonomy method does not increase the
mental workload of the operator when compared against the
manual and pattern methods.

4.1 Primary and Secondary Tasks

Each participant is given a probability distribution map of
where are likely places to find the missing person and a task-
difficulty map representing detection difficulty in different
areas of the search region. The primary task is to plan a
path for the UAV with fixed flight time to maximize the
probability of finding the missing person.

In each exercise, each participant also performed a sec-
ondary task. This allows us to measure mental workload.
In a group chat window (see Figure 2 top) when the user’s
code name appeared, the user had to type answers to sim-
ple questions. Roughly every 3 seconds a message was sent
to the chat window, and every 5th message asked the user
a simple question (4 per minute). The number of questions
and the frequency remain the same across all conditions. For
the same scenario and the same planning method, all users
received the same set of chat messages.

We chose to use a group chat window as the secondary
task because this is typical in WiSAR operations. We de-
signed the chat messages to simulate a real WiSAR search
for ecological validity. The user was asked to acknowledge
connection and report path-planning status periodically.

After the demographic survey, each participant completed
four 5-minute long non-skippable training sessions (one for
each planning method with no task-difficulty map, and one
for the manual method with a task-difficulty map) and then
completed the 6 exercises. For each exercise, the partici-
pant has 5 minutes to plan the path. If the participant was
happy with the path generated, he/she could finish the exer-
cise early. We chose this design because we did not want the
user to put all effort into completing the secondary task once
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he/she considers the primary task completed, which would
skew the measurements on secondary task performance. At
the end of each exercise, the participant completed a par-
tial NASA TLX survey. Then at the very end of the user
study, the participant filled out a survey describing his/her
subjective preference with the three planning methods.

4.2 Simulation Environment

The user study was conducted in a 3D simulation environ-
ment (see Figure 2) where both the probability distribution
map and the task-difficulty map were displayed as 3D sur-
faces with a color map (red means high and blue means
low). The user could switch between the two maps at any
time and rotate/pan/zoom a map at will. The UAV was a
hexacopter capable of flying in all directions or hovering in
the same spot. The UAV start point is set at the center of
the search region because that was the Last Known Position
(LKP) for the missing person.

With the manual planning method, the user flew the
UAV with the arrow keys in a sped-up fashion so he/she
can plan each 60-minute flight in two minutes. The user
could switch between two flying modes (turn and strafe)
and four camera views (global, behind, bird’s eye, and free
form). The user could also pause/resume the flight for the
secondary task or better planning.

With the pattern planning method, the user chose from
spiral, lawnmower, and line patterns (see Figure 2 bottom)
and joined them to form the final path. The endpoint of
the previous path segment (LKP if at the very beginning)
automatically became the start point of the current selected
pattern. As the user moved the cursor around, the size of the
pattern changed with the cursor position marking the end-
point of the pattern. The start/end points pair determined
the radius of the spiral pattern, the diagonal of the rectan-
gle for the lawnmower pattern, and the start/end points for
the line pattern. Once the user was happy with the loca-
tion, shape, and size of the pattern, he/she could approve
the pattern with a left click. The user could also undo the
last path segment (pattern) planned. This planning method
was “semi-autonomous” because the patterns were generated
automatically without manually setting waypoints.

With the sliding autonomy method (see Figure 2 top),
the user can set an endpoint (optional), and then drag the
left slider to change the amount of time allocated to auton-
omy. The path suggested by the autonomy changed as the
slider moved. The slider’s max value always reflected the
remaining flight time (in minutes). If the user was happy
with the current path segment, he/she could approve it, the
UAV moved to the end of the path segment, and the process
repeated until a path had been planned that accounted for
all of the available flight duration. The path-planning algo-
rithm used was the LHC-GW-CONYV algorithm [29] because
it is the fastest algorithm and produces superior sub-optimal
performance when compared to other state-of-the-art algo-
rithms for the problem.

With all three planning methods, the user could choose to
start over at any time during the exercise, and could restart
multiple times within the total time given. We recorded the
best path out of all tries.

4.3 Scenarios

The user study contained two WiSAR scenarios, a syn-
thetic case (see Figure 2 top) with no task-difficulty map (as-
suming uniform detection probability), and a real WiSAR
scenario (see Figure 2 middle) with a task-difficulty map,
in which an elderly couple was reported missing near the



Table 1: Comparing across planning methods (SE
stands for standard error)

Full Autonomy  m sliding Autonomy

M P SA SE Significance

% Score 59.40 72.75 94.60 1.39 F[2,50] = 223.03,p < .0001
Time spent 243.35 240.02 228.37 12.06 F[2,50] = 1.16,p = .32
Try count 1.75 3.56 3.31 0.43 F[2,50] = 9.47, p = .0003
Clicks/try 13.01 35.64 25.58 2.90 F[2,50] = 19.47,p < .0001
NASA TLX 61.51 49.18 48.86 2.81 F[2,50] = 14.15, p < .0001
% Q. missed 52.94 56.69 55.04 5.17 F[2,50] = 1.26,p = .29
Chat latency 10.39 11.17 10.92 0.65 F[2,50] = 0.46,p = .63

Table 2: Percent of participants outperforming au-

tonomy with each method for each scenario
Manual (M) Pattern (P) Sliding Autonomy (SA)
0% 0% 88.46%
0% 19.23% 92.21%

Sce. 1 (Low)
Sce. 2 (High)

Grayson Highlands State Park in Virginia [28]'. Scenario 2
is clearly more complex than scenario 1 because the user also
had to consider the different detection probability defined by
the task-difficulty map. We refer to scenario 2 as the high-
information scenario and scenario 1 as the low-information
scenario. These two scenarios exhibited significantly differ-
ent amounts of workload in a pilot study and gave us confi-
dence that the results scale to different types of scenarios.

4.4 Measures

Five metrics were used for the primary path-planning task:
Percent score: Computed by summing the amount of
probability collected by the UAV if it followed the path
planned. The user’s best score for each exercise (multiple
tries) was normalized by dividing the best score from all
users for the same scenario. This way we could compare
planning methods across scenarios.

Time spent: Time spent with each exercise.

Try count: How many tries in each exercise. Since the
manual planning method takes much longer to plan a path
than the other two methods by design, this measurement
is used mainly to compare the pattern method and sliding
autonomy method.

Mouse clicks per try: Left mouse clicks within a try.
This measurement compares pattern and sliding auton-
omy methods because the manual method does not re-
quire a lot of mouse clicks by design.

NASA-TLX raw score: The sum of the user subjective
evaluation of cognitive workload in six dimensions nor-
malized to a 100-point scale.

Two metrics were used for the secondary task:
Percentage of questions missed: What percentage of
questions directed to the user were missed before the user
completed the exercise?” Here we did not measure the
percentage of questions answered correctly because all the
questions are very simple and all users answered the ques-
tions correctly.

Chat latency: The number of seconds between the time
a question was presented to the user and the time when
the user answered the question.

IThe probability distribution map used (Figure 2 middle
left) was generated using a Bayesian model [30J. The map
has been evaluated at George Mason University’s MapScore
web portal [12] and performed better than most other mod-
els evaluated, scoring 0.8184 on a [-1,1] scale where the
higher the score the better. http://sarbayes.org/projects/.
The task-difficulty map (Figure 2 middle right) was gen-
erated using vegetation density data downloaded from the
USGS web site and categorized into three difficulty levels
(sparse, medium, and dense, with detection probability of
100%, 66.67%, and 33.33% respectively).
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Figure 3: Three methods performance differences.

S. RESULTS AND ANALYSIS

We analyzed the user study data with a mixed measures
analysis of variance (ANOVA) and report results below.

5.1 Comparing Across Scenarios

To reduce learning effect, half of the participants started
on scenario 1 first and vise versa. Mouse clicks per try
for the two scenarios are significantly different (F[1,25] =
28.65,p < .0001) indicating scenario 2 required participants
to be more active than in scenario 1. This result supports ob-
servations in the pilot study that scenario 2 imposed higher
workload on participants than scenario 1. User activity logs
show that participants created more path segments (for pat-
tern and sliding autonomy planning methods) in scenario 2
than scenario 1.

NASA TLX scores are also significantly different between
the two scenarios (F[1,25] = 31.35,p < .0001). The average
score difference is 9.98 (out of a total of 100 points), almost
a full “pip” on the TLX survey, indicating that on average
each participant felt his/her cognitive workload was much
higher in the high-information scenario.

The percentage of questions missed is almost identical be-
tween scenarios (54.88% and 54.90%), and the chat latency
is also very close (10.39 and 11.17 seconds). This shows
that participants on average performed about the same with
the secondary task across scenarios. No statistically sig-
nificant differences were found across scenarios for percent
score, time spent, and try count.

5.2 Comparing Across Planning Methods

For each scenario, three path-planning methods were used
(manual, pattern, and sliding autonomy). Order of the
methods was randomly drawn without replacement from
all permutations of method order to reduce learning effect.
For example, no statistically significant difference in per-
formance is found when comparing participants who used
pattern first to those using sliding autonomy first (F'[1,6] =
0.0030,p = 0.9567). Table 1 lists comparison among these
three methods.

Percent score differences across methods are statistically
significant (F[2,50] = 223.03,p < .0001) with sliding au-
tonomy (94.60%) performing better than pattern (72.75%)
and manual (59.40%). The difference is also significant when
comparing between sliding autonomy and pattern (F[1, 25]
53.32,p < .0001). As shown in Figure 3, this trend is clear in
both scenario 1 and 2 (high vs. low-information) individu-
ally, suggesting some robustness of the result across a range
of scenarios. Therefore, user study results support our first
hypothesis: the sliding autonomy method performs better
than either the manual method or the pattern method.

Statistically significant differences (F'[2,50] = 19.47,p <
.0001) were also found in mouse clicks per try (starting over
means having another try). The manual method uses arrow
keys to fly the UAV around and only uses mouse clicks when
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Figure 4: Box plots of the NASA TLX scores for
each scenario.

switching camera modes or stopping the timer in order to
perform the secondary task. By design, this method does
not use a lot of mouse clicks. Pattern and sliding autonomy
methods both use mouse clicks for the actual path-planning
task, and the pattern method clearly generated more mouse
clicks per try (35.64) than the sliding autonomy method
(25.58). Two factors might have contributed to this dif-
ference: First, the pattern method allowed a participant to
“undo” a path segment (in additional to reset and start over)
whereas sliding autonomy did not allow this. Second, slid-
ing autonomy allowed a participant to drag a slider, which
produced different suggested paths; this accomplishes the
same type of “what if” interaction as “undo” in the pattern
method, but required fewer mouse clicks.

It is informative to compare these interactive planning
methods with a fully autonomous path. This is useful be-
cause, due to the computational complexity of the plan-
ning problem, only suboptimal solutions can be generated
by the planning algorithms. Completely autonomous path-
planning (without human input) produces paths with a score
of 96.13% for scenario 1 and 78.33% for scenario 2. It is in-
structive to compare these values to those produced by the
different planning methods in the different scenarios (see
Figure 3). This places the performance of full autonomy
ahead of manual and pattern planning methods but behind
sliding autonomy in both scenarios. This indicates that the
sliding autonomy approach outperforms manual, pattern,
and full autonomy approaches to the problem.

As shown in Table 2, for scenario 1, no participants were
able to outperform full autonomy using manual or pattern
approaches, but 23 of 26 participants (88.46%) were able to
outperform full autonomy using sliding autonomy. For sce-
nario 2, no participants were able to outperform full auton-
omy using manual control, but 5 of 26 participants (19.23%)
and 24 of 26 participants (92.21%) were able to outperform
full autonomy using pattern and sliding autonomy, respec-
tively. Thus, results of the study support the second hy-
pothesis: sliding autonomy methods perform better than a
fully autonomous approach given state-of-the-art planning
algorithms for this problem. The full autonomy we refer to
here is the specific path-planning algorithm we used in the
user study (LHC-GW-CONV) [29]. In Section 6.2, we dis-
cuss how the sliding autonomy approach compares to other
path-planning algorithms.

NASA TLX raw scores show significant differences
(F[2,50] = 14.15,p < .0001) among the three methods, with
the manual method showing the highest cognitive mental
workload (61.51), a full “pip” more than the other two meth-
ods on the TLX survey. The average score difference be-
tween the pattern method and the sliding autonomy method
is not significantly different. Figure 4 shows the box plots
of the NASA TLX scores for each scenario.
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For all three planning methods, participants performed
about the same on the secondary task, as shown by per-
centage of questions missed and chat latency in Table 1.
Combining this with percent score and NASA TLX we can
conclude that sliding autonomy performed best without in-
creasing participants’ mental workload, which supports our
third hypothesis: the sliding autonomy method does not in-
crease the mental workload of the operator when compared
against manual and pattern methods.

5.3 Additional Factors

We also performed ANOVA analysis on additional factors
that might create differences: gender, experience in video
games, order of the scenarios, and whether participants used
full autonomy with the sliding autonomy method. No signif-
icant differences were found for these factors overall, across
scenarios, or across methods. There is also no significant
correlation (-0.23) between percentage of questions missed
in the secondary task and the NASA TLX raw scores.

6. DISCUSSION

In this section we present observations from the user study
and discuss possible explanations for the user behaviors.

6.1 Planning Methods Characteristics

Manual Method

With the manual method, the participant uses arrow keys
to move the UAV around to create a path, so by design the
method is very intuitive, flexible, and participants were re-
quired to plan each 60-minute flight time in two minutes.
This allowed them at least two attempts during the five
minutes allotted to complete the task. Many participants
reported that the arrow keys were too “sensitive” and rec-
ommended slowing down the UAV.

In practice the time pressure made it too costly to start
over. Although it is possible to pause the simulation to allow
for participants to plan, participants reported that they did
not feel that they had the the luxury to do so. Naturally,
when this continuous process is interrupted by the secondary
task where the participant has to pause planning and answer
questions in the group chat window, frustration is high.

More physical work, higher frustration, and lower perfor-
mance score are the main factors contributing to a much
higher NASA TLX score for the manual method. During
training, participants had one extra session with the man-
ual method, but this method still performed the worst.

Pattern Method

With the pattern method, the participant joins a mixture
of three patterns (spiral, lawnmower, and line) together to
form the final path. This is more of an episodic process, so
it is very easy to pause in the middle of the planning and
shift attention to the secondary task. There is also less time
pressure because the participant can quickly plan for the
remaining time with just one big spiral (or lawnmower) in
one click. Therefore, the participant has plenty of time for
many tries with different strategies.

In the post-user study survey, many participants com-
mented that with the spiral and lawnmower pattern it is
really easy to run out of flight time. They suggested adding
the ability to allocate time to the patterns similar to the slid-
ing autonomy method. This means that with this method,
a participant enjoys the systematic coverage of an area but
has a hard time estimating how much time it takes the UAV
to cover the area following the pattern. Several participants
also suggested adding more patterns to the method.



The pattern method is the only one that allows a partic-
ipant to “undo” a plan. This ability increased the number
of mouse clicks per try for the pattern method, and likely
made the participants’ feel that the pattern method was
easier compared to the other two. Although undo doesn’t
make sense in manual method, making the function avail-
able in sliding autonomy might have mitigated the effect.
Another interesting observation is that participants seemed
to be overly optimistic about their performance using the
pattern method. For example, although sliding autonomy
created better paths than pattern in all scenarios for all par-
ticipants, 46.15% of participants (as measured in the NASA
TLX with the performance dimension) and 26.92% (as re-
ported in the post study survey) reported that the pattern
method created best paths.

Sliding Autonomy Method

Similar to the pattern method, the sliding autonomy meth-
od is also episodic. Therefore, stopping in the middle of the
planning to answer questions for the secondary task was
easy. Since it only takes a few clicks to let autonomy plan a
path for the remaining time, there is not much time pressure
and the participant can have many tries.

Because the participant does not know how the autonomy
works behind the scenes, many participants were surprised
by the path recommended by autonomy and felt that au-
tonomy did not do what they wanted it to do. For example,
when a participant sets the endpoint in region A, autonomy
might plan a path that spends most of its time in a seem-
ingly unrelated region B and only goes toward region A at
the end of the path, because such a path is more efficient
(scores higher). In such cases, the slider becomes the only
tool that lets the participant “force” autonomy to do what
the participant wants, and path-planning turns into a fight
between the human and autonomy. However, the instant
feedback (displaying the path and the predicted “vacuuming
effect”) does help the participant figure out why autonomy
would suggest something different, and some participants
were glad that autonomy suggested better paths they had
not considered.

Most participants were generally happy with the path seg-
ment recommended by autonomy covering a local region,
even when the region is in an irregular shape (not a cir-
cle or rectangle). Many participants also expressed that
they did not have enough control over the path generation
and recommended adding the ability to include constraints
such as “middle points” where the path segment has to go
through these middle points. In fact, such “middle points”
can already be achieved with the current method by setting
multiple endpoints, effectually creating a multi-segment ap-
proach. Several participants complained that this method
does not have the undo function. This is an oversight on
our end. Experiment results show that sliding autonomy
still performed the best even without the undo function.
Therefore, the most important conclusions from the experi-
ment are not invalidated by this. With both the pattern and
sliding autonomy methods, many participants expressed the
desire to be able to modify the path after it is generated.

User Preferences

In scenario 2 where a task-difficulty map was used, most
participants switched between map views. The probabil-
ity map used is similar to a uni-modal distribution (see
Figure 2 middle left). For the first part of the planning,
they viewed the probability distribution map and “covered”
the high mode. They then switched the view to the task-
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Percent Score

Scenario 1 Scenario 2 Both

Figure 5: Comparing sliding autonomy performance
against various markers.

difficulty map for the remaining time, only occasionally switch-
ing back to the probability distribution map view. This
pattern of behavior was seen in each of the three planning
methods. Some participants suggested showing both maps
side by side or have a way to combine the two maps into
one. These ideas are worth exploring in future user studies.

In the post-user study survey, the majority of the partic-
ipants think manual is the easiest to learn (53.85%), pat-
tern is the easiest to use (57.69%), and sliding autonomy
performed the best (65.38%). However, most participants
preferred the pattern method (69.23%) out of all three. We
believe the lack of undo function and operator-induced os-
cillation when moving the slider had negative impacts on
participants’ opinion of the sliding autonomy method. This
is relevant for the design of future sliding autonomy systems,
suggesting that some combination of pattern-based planning
and sliding autonomy, augmented with the ability to undo
decisions and flexibly alter or constrain paths, will produce
a high-performing GUI with high user acceptance.

6.2 Reliance on Autonomy

We have claimed that a human interacting with an au-
tonomous algorithm via sliding autonomy outperforms full
autonomy, but this claim naturally depends on the quality
of the autonomous algorithm. The algorithm we used was
selected from a comparison of various algorithms in prior
work [29, 31] because it worked in real-time and produced
high-quality paths, but there exist other algorithms that
produce higher-quality paths if we allow more time for path-
planning. It is useful to compare performance of the sliding
autonomy algorithm with these other algorithms.

As a basis for comparison, we consider an evolutionary
algorithm (EA) that takes the output of several real-time
planning algorithms, including the one we used in the user
study, as seeds for the evolutionary process. Thus, the EA
approach takes high-quality solutions and then adds further
optimizations. As shown in Figure 5, when such optimiza-
tion is applied to scenario 1 and scenario 2, the optimiza-
tion produces a path that is only slightly worse than slid-
ing autonomy for scenario 1 and a path that is much better
than sliding autonomy in scenario 2. This suggests that bet-
ter path-planning might be more important than interactive
path-planning.

Because we are arguing that human-plus-autonomy is bet-
ter than either alone, we explored how the number of hu-
man inputs can affect the output of the sliding autonomy
approach. Results indicate that the sliding autonomy algo-
rithm we used in the user study can generate high-quality
paths with only one point of human input (specifying an end-
point). We call this approach the Autonomy+1 approach.
Note that we arbitrarily picked one point to represent min-
imal human input. This does not imply that Autonomy+2
or Autonomy+3 will perform worse.



Table 3: Percentage of participants outperforming

autonomy performance markers

Full Autonomy
88.46%
92.21%

EA
88.46%
26.92%

Autonomy-+1
7.69%
15.38%

Scenario 1 (Low)
Scenario 2 (High)

Using the best score out of 3 tries (roughly equal to the
average number of tries in the user study), we computed
the percent score for this Autonomy-+1 human input ap-
proach: 99.47% for scenario 1 and 98.58% for scenario 2.
Using the EA and Autonomy-1 scores as additional mark-
ers, we plotted participants’ average performance in each
scenario against these markers. Figure 5 shows the result.

First, sliding autonomy (human-autonomy team) outper-
formed nominal autonomy in both scenarios. Sliding auton-
omy also outperformed EA in scenario 1 (low-information).
In scenario 2, the performance of sliding autonomy is not
very far from EA (5.36%), and the difference is even smaller
(1.85%) when averaged over both scenarios. However, the
most interesting observation is that Autonomy+1 actually
outperformed all others in both scenarios (99.47% for sce-
nario 1 and 98.58% for scenario 2). Although a few partic-
ipants did score higher than Autonomy+1, the difference is
less than 1.5%. Table 3 lists what percentage of participants
outperformed full autonomy, EA, and Autonomy-1.

What Figure 5 suggests is that the sliding autonomy meth-
od does not need a lot of human input to perform really well.
Instead of spending the effort creating many path segments
and setting many endpoints, it may be more effective to
search in the right region by setting just a few constraints.
However, 88.68% of the participants gave more than 1 in-
put when they used sliding autonomy (81.13% for 2 inputs
and 69.81% for 3 inputs). In the post-user study survey,
only 46.15% of the participants acknowledged trying full au-
tonomy with the sliding autonomy method: they did not
specify any endpoints and simply relied on the autonomous
path-planner to do all the planning. When using the slid-
ing autonomy method, a good strategy is to start with full
autonomy (as the worst scenario) and then see how addi-
tional human input can improve the path, but this leads to
questions of over- and under-reliance on autonomy [9].

6.3 Why a Human-Autonomy Team Performs
Better?

User study results show that the human-autonomy team
outperformed both human or autonomy working alone, but
how were they able to achieve this? We hypothesize that
this is because the sliding autonomy approach enabled the
human to focus on what the human is good at and auton-
omy to focus on what autonomy is good at. Bradshaw et
al. point out [9]: “Humans, though fallible, are functionally
rich in reasoning strategies and their powers of observation,
learning, and sensitivity to context.” Our observation sug-
gests that a human may be better equipped than autonomy
to think strategically and to recognize bad path segments.

The sliding autonomy method lets the user plan at a
higher abstract level by specifying priorities in search sub-
regions and how well each sub-region should be covered.
Autonomy, on the other hand, can generate a path that
covers a sub-region (or some nearby sub-regions) precisely
and quickly, and can handle all kinds of irregular sub-region
shapes. Therefore, the sliding autonomy method combines
the strengths of both human and autonomy.

Observations from the user study suggest that humans are
very good at recognizing bad moves in solutions suggested by
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path-planning autonomy. The sliding autonomy approach
enables the human to select from a bunch of suggested paths.

6.4 Why Similar Secondary Task Performance
in All Three Methods?

The pattern and sliding autonomy methods are episodic,
suggesting that it is easier for the user to pause planning
and shift attention to the secondary task of answering ques-
tions in the group chat window. However, user study data
show that there is no significant difference in secondary task
performance across all three path-planning methods.

The manual method requires a lot of continuous keyboard
interaction (great physical demand and temporal demand)
to move the UAV around. However, it does not actually
require much mental demand and effort because the plan-
ning process is more sporadic and spontaneous. Observa-
tions show that if a mistake is made, because there is no way
to correct it, the user quickly stops worrying about it and
moves on. The low mental demand and effort make monitor-
ing the group chat window an easy task, even though some
users complained that switching back and forth between pri-
mary task and secondary task is very frustrating.

With the pattern and sliding autonomy methods, path-
planning is more like piecing together a puzzle. The user
appears to be deeply drawn into problem-solving, constantly
comparing tradeoffs, which actually requires more mental
involvement. With the sliding autonomy method, the user is
interacting with complicated algorithms, so while planning a
path, the user is also trying to build a mental model of how
autonomy works. As a result, the user actually paid less
attention to the secondary task. Fighting with autonomy
when human and autonomy had disagreements also drew
user attention away from the group chat window. But when
the group chat window catches the user’s attention, he/she
can perform the secondary task leisurely.

7. CONCLUSIONS

We propose a new autonomy management approach, a
variation of sliding autonomy, which lets the user influence
the behavior of the autonomous system along two new di-
mensions: spatial constraints and temporal constraints. We
present interface designs that let the user allocate degrees of
authority and flexibility to the robot’s algorithms through
interactivities along these new dimensions. Experiment re-
sults show that the sliding autonomy method performs sig-
nificantly better than either the manual or pattern path-
planning method without increasing the user’s mental work-
load, the human has a better interaction experience, and
human-autonomy collaboration outperforms either human
or autonomy working alone.

We used algorithms in [31] as seeds to the EA algorithm.
These algorithms are our early attempts at incorporating
strategic planning in autonomy. Further investigation on
how improved strategic planning algorithms might change
the dynamics of the human-autonomy collaboration is a nat-
ural extension of the present work.
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