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Abstr act

The prisoner’s dilemma is a useful model for
studying the balance between self-interest and group-
interest in multi-agent systems. Although many
strategies have been developed that perform well,
most of these strategies make strong assumptions
about the information available to the agent. It is in
this context that we describe a satisficing learning
strategy for the prisoner’s dilemma and present
evidence that stable outcomes other than the Nash
equilibrium are possible. In addition, we offer
empirical evidence that under typical circumstances,
mutual cooperation is the most likely outcome and
identify conditions under which two satisficing
agents will learn to cooperate.

1 Introduction

In situations involving several interacting agents, each agent
is often forced to choose between two types of behavior:
those that benefit the group as a whole, and those that lead to
rewards for the individual at the expense of the group. The
situation becomes interesting when, in the long run, poor
outcomes for the group lead to negative consequences for
each individual.

The iterated prisoner’s dilemma is an elegant and well-
known example of such circumstances that has been studied
in a wide variety of disciplines. A typical payoff matrix for
the prisoner’s dilemma is given in Figure 1. The dilemma is

Agent B’s Choice

(A’s payoff, B’s payoff)

Cooperate Defect

Agent A’s Cooperate 3,3) 1,4
Choice

Defect “, 1) 2,2)

Figure 1: A typical payoff matrix for the prisoner’s dilemma.

that every pair of actions is either unstable or sub-optimal.
Formally stated, the unique Nash equilibrium is the only
outcome that is not Pareto optimal. Mutual defection is the
dominant strategy in the sense that a player will be better off
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by defecting regardless of what his or her opponent does. Yet
if both players make this “rational” decision to defect, both
receive less than if they had cooperated.

In searching for an effective strategy in the prisoner’s
dilemma, we look for a strategy exhibiting flexible behavior.
It should cooperate whenever mutual cooperation is
possible, but it must be able to defect when it is apparent that
its opponent is unwilling to cooperate. Many such strategies
have been developed and studied, but often these strategies
involve at least one of the following assumptions:

® players are aware of the structure of the game such
as the other players, the other player’s possible
actions, and the relationship between the actions
and the payoffs,

* players are immediately aware of other player’s
decisions,

* players are aware of the other player’s payoffs,

® players are aware that they are in a game situation,
meaning that they are aware that the actions of
other agents are affecting their outcomes

In computer simulations these requirements are easily
met, but in real-world situations they may be quite limiting.
For example, the prisoner’s dilemma can be extended to
multiple players. If there are many players choosing from
many actions, keeping track of the game structure may be
unrealistic in terms of storage requirements and
computational capacity. In other cases, information about
the structure of the game may not even be available to the
decision maker. Finally, although situations analogous to a
prisoner’s dilemma are common occurences, they are rarely
thought of in terms of game theory. Instead, we are more
interested in meeting specific goals.

Removing these assumptions from the prisoner’s
dilemma takes the problem out of game theory and into areas
of machine learning. It is in context of these types of
situations that we consider a satisficing strategy for the
prisoner’s dilemma. Specifically, the purpose of this paper is
to present the strategy and then (1) show that stable
outcomes other than the Nash equilibrium frequently occur
and (2) describe the circumstances under which two agents
employing a satisficing strategy will learn to cooperate.



2 Redated Literature

The prisoner’s dilemma was conceived in the 1950s to
question some of the basic tenets of game theory. Standard
rational decision mechanisms, such as minimax, lead to
mutual defection and poor outcomes for both players. Since
then there have been numerous attempts to “solve” the
prisoner’s dilemma by showing that mutual cooperation is
rational after all. The most influential of these has been
Axelrod’s work in the repeated prisoner’s dilemma [1984].
He shows that mutual cooperation is rational and stable
when the following conditions hold: (1) the future is
important, (2) there is sufficient difference between payoffs
for mutual cooperation and mutual defection, and (3) one is
facing an adaptive opponent. In summary, Axelrod shows
that rationality in repeated-play games is not tantamount to
Nash equilibrium.

The idea of applying game theory to learning in multi-
agent systems is far from new. For example, Minimax-Q
[Littman, 1994] is a reinforcement learning algorithm that
learns the Nash equilibrium in zero-sum, or purely
competetive, stochastic games. Further work such as [Hu
and Wellman, 1998] has attempted to extend the same idea to
general-sum stochastic games. Typically, the focus of this
literature has been towards learning the Nash equilibrium.
While this may be a desirable property in many
circumstances, this approach has drawbacks. First, these
algorithms usually require significant assumptions and
knowledge about the game structure that can be quite
limiting. Second, in light of Axelrod’s work, in a repeated-
play situation, the Nash equilibrium may not be the only
stable solution with desirable properties.

Like much of the work done in the prisoner’s dilemma,
the concept of satisficing came about as a modification of
rationality. Traditional rational choice theory holds that an
agent faced with a decision will choose the alternative that
maximizes a utility function. However, as noted in [Conlisk,
1996] and others, there is little empirical evidence that
people make decisions in this manner; indeed evidence
strongly suggests otherwise. As a replacement, Herbert
Simon has proposed satisficing. He explains the difference
between optimizing and satisficing: “A decision maker who
chooses the best available alternative according to some
criteria is said to optimize; one who chooses an alternative
that meets or exceeds specified criteria, but that is not
guaranteed to be either unique or in any sense the best, is
said to satisfice” [Simon, 1997]. Rather than calculating
optimal actions, a satisficing agent simply selects an
alternative that meets a set of aspiration levels. As long as
these aspiration levels are being met, the agent can continue
to act without expending any search costs. When aspiration
levels are not met, a search is executed until a satisfactory
alternative is found.

In order to handle a variety of environments, aspiration
levels can be adaptive. According to Simon, “if it turns out
to be very easy to find alternatives that meet the criteria, the
standards are gradually raised; if search continues for a long
while without finding satisfactory alternatives, the standards
are gradually lowered” [Simon, 1997].

We see several advantages in applying satisficing to

multi-agent systems. First, because satisficing is simple and
flexible, it can be applied when information, storage space,
and execution time are limited. This means that agents do
not need complex models of other agents. Satisficing is also
robust—even if the environment changes (or initial
information about the environment is wrong), a satisficing
algorithm can typically adapt.

3 A Satisficing Strategy For the Prisoner’s
Dilemma

Applying Simon’s satisficing algorithm to the prisoner’s
dilemma is straightforward. In this paper, we adapt the
algorithm and notation presented in [Karandikar, et al.
1998]. The state at time t for an agent using this strategy is
given by the pair (A,0) where A, is an action in {C, D} and
0; is the current aspiration level. The players’ actions
determine the payoffs, T[tA and T[tB. After receiving a payoff
T, an agent employing a satisficing strategy updates its state
in two steps. First, if m=a,then Ay, = A, otherwise
A, #A.. Then, aspirations are updated as a weighted
average between the current aspiration level and the received
payoff. This update rule is given by equation (1) where
0sA<l1.

Oy = Ao+ (1-A)m @)

It is worth pointing out that the decision algorithm
makes no use of the payoff matrix or the actions of the other
players. Thus it can be applied to situations where this
information is either complex or unknown. All that is
needed is the ability to associate a payoff with an action. In
addition, it is important to note that this algorithm requires
three parameters for each agent: the update rate A, an initial
action Ag and an initial aspiration 0.

Before moving into an analysis of the algorithm, a
simple illustration is worthwhile. Given that A =0.5, Ag=C,
and O = 4.0, consider the example in Figure 2.

t Tit-for-Tat Ay A (of
0 C C 3 4

1 C D 4 3.5
2 D D 2 3.75
3 D C 1 2.87

Figure 2: A brief example of a satisficing strategy against a tit-
for-tat strategy

In this example, a satisficing agent is playing against a tit-
for-tat strategy that simply cooperates on the first move and
then repeats its opponent’s last move on subsequent
iterations. Initially, both players cooperate, receiving a
payoff of 3. However, because this payoff is less than the
satisficing agent’s aspiration of 4, A; = D and the aspirations
are updated as an average of the old aspiration and the new
payoff.



4  Cooperation Among Satisficing Agents

Before describing our results in detail, we make two
observations. First, reinforcement learning has been applied
to the prisoner’s dilemma with mixed results. In [Sandholm
and Crites, 1996], several types of Q-learners were shown to
play optimally against a fixed tit-for-tat strategy. However,
due to the interaction of their learning, these Q-learners had
difficulty playing optimally against each other. =~ Second,
although the satisficing algorithm described in the last
section is simple, the dynamic interaction between two
agents is difficult to theoretically characterize. Thus, in this
paper we restrict our analysis to two satisficing agents
playing against each other. In addition, we focus on
presenting empirical evidence of circumstances under which
these two agents will learn to cooperate.

In order to extend the notation to a two-player game, we
introduce B; and B; as the second player’s action and
aspiration level respectively. For simplicity, A is set to the
same value for both players. We also generalize the payoff
matrix by setting the off-diagonal payoffs to (0,1) and (1,0)
and then use 0 as the reward for mutual cooperation and d as
the reward for mutual defection with the constraints that 0 <
0<0<1ando>0.5. This modified payoff matrix is shown
in Figure 3.

Agent B’s Choice
(A’s payoff, B’s payoft)

Cooperate Defect

Agent A’s Cooperate (o, 0) 0, 1)
Choice

Defect (1,0) 4, 0)

Figure 3: Generalized payoff matrix for the prisoner’s dilemma
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4.1 Convergenceand Sability

Before presenting our results, we discuss the possible
outcomes of a repeated prisoner’s dilemma played by
satisficing agents. The simplest outcome is convergence to a
pair of actions (A, B). This occurs when a, < T[[A and B, s T
meaning that both players are satisfied with their current
payoffs and thus both players will repeat their actions
indefinitely. At subsequent iterations, a will asymptotically
approach ™ and B will asymptotically approach 1. This
can be seen as an equilibrium in the sense that neither player
has an incentive to change, given their goals and what they
have learned about their environment.

A second possible outcome is convergence to some
action cycle, meaning that both players repeat a sequence of
action pairs indefinitely. As a formal definition we say that
the players have converged to a cycle of duration N at time T,
if for all t > 1, and all Ksuch that 0 < k< N—1, Ay = AcrisN
and Byyy = Bpaan-

A third and final possibility to consider is that the
interaction between two agents is entirely chaotic. This is at
least very unlikely, as throughout our research the process
has always converged to some stable outcome regardless of
the payoff matrix or initial conditions. However, this
remains to be shown theoretically.

Figure 4 is a brief illustration of the complexity of the
process. It depicts the outcome as a function of the initial
aspirations for three possible game structures and initial
actions. Clearly there is no simple mathematical
characterization of the relationship between game structure
and initial parameters and convergence to cooperation.
However, empirical results presented in the next section do
allow us to identify conditions under which these agents will
learn to cooperate.
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Figure 4: These three graphs show the relationship between initial aspirations and the final outcome for three different game structures. For

each pair of initial aspirations in the graph, the outcome of the game was recorded. White indicates convergence to mutual cooperation, black
indicates convergence to mutual defection, and gray indicates convergence to some cycle. In Figure 4a, Ag =D, By =D, 0=0.8,0=0.7, and A
=0.9. In Figure 4b, Ag=C, By =C, 0=0.8, 0=0.5, and A = 0.5. In Figure 4c, A; =D, By =C, 6 =0.6,5=0.5,and A = 0.8.



4.2 General Results

We set up a simulation that randomly selects the parameters
for a game from uniform distributions as described in Table

1.
Parameter | Min. Value | Max. Value
g, Bo 0.5 2.0
A 0.1 0.9
o 0.51 1.0
be) 0.1 o
Ag, Bg 50%=C, 50% =D

Table 1: Distribution of parameters for simulations

The simulation then runs a repeated prisoner’s dilemma until
the process converges to some action pair or some action
cycle. The final outcomes of 5,000 of these simulations are
displayed in Figure 5.

DD-CC-DC
0%

DD-DC-DD-
CD
25%

DD
1%

74%

Figure5: Frequencies of each of the possible outcomes from 5,000
trials. Parameters were randomly selected as described in Table 1.

It is interesting to note that every game converged to one of
four possibilities: mutual cooperation, mutual defection,
some variation on DD-DC-DD-CD, or some variation on
DD-CC-DC.

4.3 FactorsLeading to Cooperation

As shown previously, convergence to mutual
cooperation is the most frequent outcome in a prisoner’s
dilemma played by two satisficing agents. Several factors
influence this learning process between interacting agents.
These are:

initial aspirations,

structure of the payoff matrix,
learning rate, and

initial actions

The remainder of this section focuses on analyzing how each

of these affect to mutual

cooperation.

parameters convergence

Initial Aspirations

Figure 6 shows a contour plot of the frequency of
mutual cooperation as a function of initial aspirations. It is
clear that high aspirations are more likely to lead to
cooperation. At first this may appear counter-intuitive—
players with high aspirations might be unwilling to settle for
cooperation. However, in most circumstances, both players
are able to learn that they cannot expect more than mutual
cooperation in the long run. On the other hand, players with
low aspirations tend to remain satisfied with mutual
defection or settle into cycles.
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Figure6: A contour plot of the percentage of trials out of 1,000 that
converged to mutual cooperation as a function of initial aspirations.
Light colors indicate that in most of the trials with the given initial
aspirations, the agents learned to cooperate. Dark colors indicate
that few of the trials led to mutual cooperation. Parameters other
than a and B, were selected randomly as described in Table 1.

Sructure of the Payoff Matrix

The structure of the payoff matrix can also have
considerable influence over the ability of the agents to
converge to learn to cooperate. Figure 7 shows the
frequency of mutual cooperation as a function of ¢ and .
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Figure 7: A contour plot of the percentage of trials out of 1,000 that
converged to mutual cooperation as a function of each (6, 0) pair.
Light colors indicate that most of the trials converged to mutual
cooperation, while dark colors indicate that few of the trials
converged to cooperation. Parameters other than & and O were
chosen randomly according to Table 1.



Note that cooperation is most likely when & is small and o is
large. This is expected because the distinction between
cooperation and defection blurs when 0 and & are close
together. This type of behavior seems typical of non-
optimizing algorithms. In describing his work in modeling
human behavior, Arthur writes that human behavior (and his
algorithm), “appear to ‘discover’ and exploit the optimal
action with high probability, as long as it is not difficult to
discriminate. But beyond a perceptual threshold, where
differences in alternatives become less pronounced, non-
optimal outcomes become more likely” [Arthur, 1991].

Initial Actions

To study the effects of initial actions on cooperation, we
ran four sets of simulations, holding different initial actions
constant each time. The percentages of samples that
converge to cooperation for each group are shown in Table 2.

Initial Actions % of Cooperation
Random 73.7 %
CC 81.6 %
DD 81.6 %
DCor CD 66.7 %

Table 2: Percentage of cooperation out of 1,000 trials as a
function of initial actions. Parameters other than A and By,
where chosen according to Table 1.

While initial actions do not appear to be as significant as
other factors, note that cooperation occurs with the same
percentage regardless of whether the initial actions are
cooperation or defection as long as both players choose the
same action.

Learning Rate

The rate at which the aspirations are updated also has a
considerable effect on whether mutual cooperation is
learned. Figure 8 shows the relationship between A and the
percentage of trials that converged on mutual cooperation.
As A increases, the frequency of cooperation increases as
well. The only exception is when A = 1 (and thus aspirations
are not updated at all), leading to virtually no cooperation.

100

% of Cooperation

0 0.2 0.4 0.6 0.8 1

Lambda

Figure 8: Percentage of trials out of 1,000 that converged to mutual
cooperation as a function of the update rate, A. Parameters other
than A were selected randomly as described in Table 1.

5 Conclusionsand Further Work

To summarize the results of the previous section, we restate
five important factors that increase the likelihood that two
satisficing agents will learn to cooperate:

*  Agents should learn, but slowly.

*  The difference between payoffs for mutual
defection and mutual cooperation should be
maximized.

*  Agents should have high initial aspirations.

*  Agents should start out with similar behavior.

As a test of these principles, we ran a final set of simulations
enforcing the following conditions: Ag= Bg, 0-06>0.4,1 >
A > 038, ay > 0, and By > 0. Under these conditions, the
agents learn to cooperate in 100% of 5,000 trials.

These results make a promising case for the use of
satisficing in multi-agent systems as a way of balancing self-
interest and common good when little information about the
environment is available. Because agents do not directly
model each other, the approach is fast, simple, and scalable
to many players.

As a final note, we recognize that there are several
directions for further work that should prove useful and
interesting to researchers in multi-agent systems. We have
limited our discussion of this satisficing algorithm to the
prisoner’s dilemma. However, because no assumptions
about the relationships between the payoffs have been built
into the algorithm, it should extend easily to other domains.
In addition, the algorithm we have presented is limited to
two-action decision problems with immediate feedback.
Thus, the addition of a satisficing search algorithm for
multiple actions is necessary and an extension to sequential
decision problems would prove wuseful for many
applications.
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