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Model Predictive Satisficing Fuzzy Logic Control

Michael A. Goodrich, Wynn C. Stirling, and Richard L. Frost

Abstract—Model-predictive control, which is an alternative
to conventional optimal control, provides controller solutions to
many constrained and nonlinear control problems. However, even
when a good model is available, it may be necessary for an

u*

expert to specify the relationship between local model predictions E"S“é‘;ﬁ (c*,u%)

and global system performance. We present a satisficing fuzzy

logic controller that is based on a receding control horizon,

but which employs a fuzzy description of system consequences

via model predictions. This controller considers the gains and

losses associated with each control action, is compatible With iy 1 steps of inference: observation to action.

robust design objectives, and permits flexible defuzzifier design.

We demonstrate the controller's application to representative

problems from the control of uncertain nonlinear systems. given explicit model. Specifying the cost function is left to
Index Terms—Decision-making, intelligent control, predictive the designer (an implicit expert); from experience, quadratic

control, satisficing. costs are often used because they yield computable solutions

and, in the case of positive definite cost matrices, produce

unigue minimizing solutions.

o In conventional fuzzy logic control, the predicted system

ALTHOUQH many useful optimality-based controller degonsequences are implicit in the rules, where the model is
signs exist, it is sometimes difficult to define and find ogmplicit in the rules too. Rules are obtained explicitly from an

timal solutions to highly nonlinear highly complex problemseypert and presumably have been compiled from the following
This places controller design for such systems in the C|3§équence of inferences (see Fig. 1):

of ill-formed problems wherein there is a lack of sufficient )
information, time, or resources to define or to find the optimal
solution [1]. lll-formed problems motivate the search for 2)
intelligent solutions, the success of which rests, to some
degree, upon the belief that finding the optimal decision is 3) given observatiof, controlu® — arg, o {c(6,u) — ¢}
not necessanfor making justifiable decisions [2]-[4]. The should be used: ' uelt ’

search for intelligent solutions necessarily addresses: 1) the4) given observatic; ®. do u*

definition and computation of acceptable solutions; 2) the ' . , .
identification of models (whether implicit in expert rules ofINce expert rules are not easily obtained foaluzzy logic
explicit in differential equations); and 3) the robust synthesfge_thOdS are used to interpolate among a grid of sele¢ted

of information from multiple sources. To generate intelligerﬁo'ms' ) i
controllers, each issue in this noninclusive list demands aConventional optimal control assumes not only that an
formal and justifiable treatment. In this paper, we address th&&®licit modelof the plant exists, but also that amplicit

issues from a perspective that employs strongly satisficiigPertis available to prescribe a cost function that can be
decision theory and fuzzy logic. solved using optimization methods. Though frequently effec-

tive for controller design, some problems are not appropriately
addressed by optimality-based methods [5]. In contrast to
optimal control, conventional fuzzy logic control assumes that

In conventional optimal control, explicit models describan explicit expertexists who can construct a rule base that
possible system consequences and these possible consequerstesforms observations into plant controls via iamplicit
are ordered using a cost function. For well-formed problemsiodel of the system. Again, though frequently effective for
minimizing this cost function determines the optimal globalontroller design, useful information may be unnecessarily
solution with respect to the specified cost function and thitscarded by compiling steps 1)-3) into 4).

There exist problems that can benefit from the best of
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if control v € U is applied given observatiof € ©,
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the system exists and axplicit expertis used to transform ¢ from «» and # and then usec to determine actionu.
local model predictions into global evaluations of gains arnithese applications are primarily motivated by the desire
losses. Such an approach is necessary when complexity &mastablish the provable stability of fuzzy logic controllers
uncertainty prevent precise predictions about global plaabd to formulate systematic methods for controller design.
behavior, but when useful information is available from loc&uch approaches seek to combine objective mathematical
plant predictions. knowledge with subjective fuzzy knowledge [25], [26]. In
Evaluating the gains and losses of a control action usitigis paper, we combine the objective knowledge produced by
model predictions is based on the comparative “cost/benefitiathematical models of nonlinear systems with a subjective
structure of strongly satisficing decision theory (SSDT) [4]nterpretation of how local model predictions imply global
[7], [8]- SSDT modifies the objective of finding the optimakystem consequences. The use of local model predictions
control (with respect to a given model structure and cosiay free the expert from some of the burden of performing
function) by including the less ambitious (and perhaps moneental simulations of the plant [6] and instead allow the
robust) objective oavoiding error[4]. This design paradigm expert to identify consequences as beneficial or costly, even
employs the comparative rationality that is suggested lbgr unintuitive plants [21].
Simon’s satisficing principle [9], [10], the domination principle Satisficing presents a decision-making paradigm that differs
from multi-attribute utility theory and the mathematics ofrom the de facto paradigm of optimality [27]-[30]. Many
Levi's error avoidance principle [11]. Employing fuzzy logiccognitive scientists recognize that insistence on optimality is
in the synthesis of SSDT-based model predictive controlleas misplaced requirement in situations of limited resources
produces a method for systematically designing fuzzy logéd information and that optimality inadequately describes
controllers that avoid error. observed behavior in naturalistic settings [10], [31]-[33].
A useful property of employing the satisficing principleAdditionally, the definition of and reliance upon an optimal
in fuzzy logic controller design is the effect upon defuzzisolution has been questioned by Zadeh [5], [34] and other
fier specification. Usually, the rationality behind defuzzificashilosophers, scientists, and researchers concerned with prag-
tion—a process which has been described as “an art rathaatic decision-making [2], [3], [35], [36]. The relationship
than a science” [12]—is that of finding the best decisiobetween fuzzy logic-based satisficing and set-valued maxi-
or control. This is typified not only by efforts to formulatemization is further explored in the companion paper [14].
the defuzzification problem as “the problem of optimal selec- Our treatment of uncertainty relies on higher order un-
tion” [13, p. 38], but also by interpretations of fuzzy logiccertainty [37] and, specifically, set-based Bayesianism [38].
systems as universal function approximators [12]. For tt&et-based Bayesianism permits a set of probabilities to de-
cost/benefit-based satisficing fuzzy logic controller specifietribe uncertainty and under certain conditions subsumes
herein, defuzzifier design is motivated by the acceptability @fempster—Shafer theory as a special case [39]. Rather than
multiple controls and, hence, enjoys a degree of flexibility thadopting a risk-averse stance such as minimax or a risk-neutral
is useful for the design of robust controllers. stance such as expectation, set-based Bayesianism allows an
intermediate stance to be taken. This intermediate stance takes
expectations with respect to a set of probabilities; a control is
B. Related Literature justified only if it is acceptable for each expected consequence.

In this section, we briefly review related literature. A mord his is similar to requirements for robustness in set-theoretic
extensive review can be found in the companion technicgstimation, including other developments of the satisficing
report [14]. Model predictive control (MPC), also known agoncept [27], [28], [40]-[43].
moving horizon and receding horizon control, is a method for
designing controllers that operate in nonlinear, constrained, Il. STRONGLY SATISFICING DECISION THEORY
and uncertain environments. Successes in application are sup- . . . .
ported by theoretical advances, such as the characterization arf%is, d |scusfsed. in the review of 'rel'evant I|teratur¢, many
specification of sufficient conditions for stability [15]—[18],°°9r!'“"e Sc'ent'StS_ recognize t_hat |_nS|stence_ on optimality is
and by algorithms that are computationally efficient and ensd?em_splaced_ reqw_rement In_situations of_||m|ted resources
disturbance rejection through state feedback [19], [20]. In t ?Qd mformapon. $|mon [9]. gddressed t.hellssue of limited or
paper, we significantly extend the results from [4], [7] t ounded rationality by defining an aspiration level such that

include considerations and contributions from fuzzy logic ancaﬁcetthls Ie\;'elf.ls.m?t;he' corretspct)ndr:ng sct)lu'tutaln |sfd§eme(’:i ad-
to include the ability to deal with conflicting information oreduale oialisticing: An Important characteristic of simon s
multiple experts. satisficing principle is that decisions are deemed adequate on

Increasingly, fuzzy logic researchers are addressing tw(g_ba_as of a comparison. any decision Wh.'Ch exceeds_ the
implicit compilation of steps 1)-3) into 4). For example, | Spiration Ie.vel is adm|SS|b!e. We employ this ch_aracterl.snc
both [21] and [22], explicit models are used to determin constructing and comparing two set membershlp functlo_ns
system behavior, which is then used to generate fuzzy contr ||g1|lar to the_way beneflt and cost are compared in economics
via conventional fuzzy and classical control methods, resp %@rature. This comparison Ie_aqls_ natural_ly_ to a constrgctwe
tively. An alternative to these approaches generates a fui)zr)gcedure for identifying satisficing decisions in nonlinear

mpde_'l and then employs Stab“.ity as the sole performanceAterm employed by Simon. A convenient mnemonisagisfice= satify
criterion [23], [24]. In terms of Fig. 1, such approaches infer sufice
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system controller design contexts using receding plannik@r each decisiom € U and for each state of natutec O,

horizons. The key to this development lies in partitioning consequence resuitthat is the effect of making decision

the consequences into a generalized type of benefit calledvhen nature is in staté. The accuracy:4: U x © — IR

accuracyand a generalized type of cost callébility. These and liability .: 7 x © — IR set membership functions are

two decision attributes may be operationally characterized @gsfined for each consequence (i.e., action/state-of-nature pair).

follows. In SSDT, the set of all decisions which cannot be justifiably
Accuracy: A natural characterization of the benefit of @liminated is called thesatisficing setand is linguistically

decision is accuracy, meaningpnformity to a standardin defined as

practical contexts, the standard corresponds to whatever goal

or objective is relevant to the problem and accuracy corre- SATISFICING = ACCURATE and not(LIABLE).

sponds to the degree of success in achieving that goal. In the

context of fuzzy logic, the ternaccuracyrefers to the set For the problems addressed herein, we wish to include mul-
membership function associated with the linguistic variablgicative hedgesa,p € [0,1], which allow the fuzziness

ACCURATE inherent in the consequences of an action to be parameterized.

Liability: - Actions may also be evaluated strictly in termshys, we form the satisficing set membership function as
of their liability, meaningsusceptibility or exposure to unde-
sirable consequence3ypically, these consequences may be
manifest in the form of costs or other penalties that would
accrue smp_ly asa result of taking the action, regar_dless (.)f\'/;[/?'lereb represents a design parameter that is relategdand
accuracy. Liability corresponds to the degree to which actions

. . , Wherex represents &norm, and wheré — represents
accrue costs or penalties. In the context of fuzzy logic, tt? b prL TEP

termliability refers to the set membership function associated, | .y~ ~ _ max(0,Y + Z — 1) (see, for example, [46])

with the linguistic variableLIABLE . e .
: ) . th f h
For example, in regulator design, the fundamental objectl\t/ee satisficing set membership becomes

is to drive the system to and maintain the system at a desired p
operating point. Thus, accuracy refers to the degree to which #S» = max(0, g — ppr) = max (0, ha =71 “R)

the possible controlled states satisfy this objective. Indepen- = max (0, 14 — bpr) 2)
dent of the desire to regulate the system is the desire to prevent

excessive control authority and oscillatory state transitiongneres — p/a > 0is called therejectivity and parameterizes
Thus, liability refers to the cost of possible controlled statgfe re|ative wei_gﬁ’t between accuracy and liability.
with respect to these undesirable consequences. The comparative nature of (2) is best illustrated by consid-

Given these two evaluations of consequences, two iNdePgRng the region of support (area of nonzero set membership)
dent principles can be applied: satisficing and domination. Th& he satisficing set, which is given by

satisficing principle (as we have used it) provides a mechanism

for determining what actioan be donggiven the observed S, (0) = fu: 9) > b .9 3
evidence; the domination principle provides a mechanism o(6) = {us pa(10) 2 b (ui 6)}- @)
for determine what actionshould not be donegiven the

s, = opa *(1—ppr) 1)

e complement of the hedged get;,. Whenx represents the

alternative actions. For some problems such as constrairf m (3) we see that deqspns are sat|§f|cmg i aqd p_nly
e accuracy membership is large relative to the liability

decision-making and task-based behavior [44], the satisfici mbership. This comparison provides a set-based mathe-

principle can be applied without applying domination; and fo tical f i ¢ th " ¢ satisfici
other problems such as conventional multi-attribute decisi%ifrimﬁgrgéssmnnif:ﬁs)sarz tr(:'sucszgm Zrl%%one;)chsaiel(r:]ltnfl
analysis, the dominatiénprinciple can be applied without' gn. ugh thi parison, P :

e action may be evaluated on its own merits without comparing
satisficing. . . . . .
it to other actions. It is easily shown that for any membership
functions defined such thdt poa(u;8) du = [ pr(u;0) =1
orsup,, pa(u;6)=sup, pr(u;d) =1, asufficient condition
Using Levi’s error avoidance principle [11], SSDT providegor S, () # @ is thatb < 1. In practice, this condition is overly
a method by which the accuracy and liability set membegonservative and is replaced by the operational restriction
ship functions can be mergedo avoid error, a decision » < sup{3 > 0: S; # 0}. Note that since we restrict attention
maker accepts those decisions which &€CURATEand to membership functions such that the maximumyqf and
not LIABLE . Formally, letl/ denote the set of possibley is unity, the supremum exists and is finite.
decisions or actions and |€t denote the states of nature. The
states of nature represent those conditions, which affect thea gecision « is often treated as a mapping fro into the set of
consequence of a decision but which cannot be controllednsequences [45].

) ) ) 5The subjective selection of this relative weighting is analogous to the
For the remainder of the paper, we use capital letters and a separate fegleoff between the size and power of a statistical hypothesis test using
when we r_efer to _Imgmstlc variables, but will make no such distinction fONeyman—Pearson decision theory. Similar to the way in which subjectively
membership functions. selecting a test's size determines the test's power in Neyman—Pearson hy-
3Because domination is an extension of defactooptimality presumption, pothesis testing, subjectively selectihgetermines the relative importance of
this principle is much more frequently encountered in decision making. accuracy and liability.

A. Satisficing Decisions
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B. Strongly Satisficing Decisions u is—. For the applications in this paper, the composition is

Although the sets, contains all possible actions that ar(ggfined by taking the expected accurapy/liability membership
legitimate candidates for adoption, they generally will not b&ith respect to the state of nature described by the membership
equal in overall quality. For example, two satisficing actionfsnction fe (which is constrained to be a probability density
may have similar accuracy membership but have significaanpCt'on)' Note that other composmons_ can al§o be cons_ld(_ered.
different liability membership and implementing the one with For some _proble_ms, there_ may exist multiple descrlpt_lons
the lower liability will yield essentially the same fuzzy benefief ¢ and it is desirable to include each of these multiple
with lower fuzzy cost. Thus, we are motivated to refine thE€Scriptions in the definition of,. For example, there may

set of satisficing actions. For evenye U let be two experts who specify accuracy and liability membership
functions; i.e., there exisB; and ©, and corresponding
Ba(w;0)={velU: pp(v;0) < pr(u;6) and membership functiong 4 (u; 6.,), pr(w;6,), and f; (), v €
pa(v; 6) > pa(u; 0)} {1,2}. For the applications presented herkime restrict

attention to expert/system descriptions that share a common

;0) = : ;0) < ; 8 :

Br(uif) ={v € U: u(v;0) < pu(u;6)  and state of nature® and common evaluations of consequences
pa(v; ) > pra(u; 0)} (4) pa(u;8), pr(u;6), but differ in their descriptions of nature

3
and define the set of actions that atgctly betterthan (i.e., fg - Formally, let

set of actions that dominate) F={f]:0—R;yel} (9)

B(u;6) = Ba(u;6) U Br.(u; 6) (5)  denote a closed set of subjective probability densities that

that is, B(u; #) consists of all possible actions that have lowdEPTeSent a designer's understanding of the state of nature,
liability but not lower accuracy tham or have higher accuracy Where the set’ represents an index of this set (for example,
but not higher liability than. If B(u;§) = 0, then no actions 1 = 11,2---}). For simplicity, attention Is restricted to
can be preferred ta in both accuracy and liability and is countablel’. Corresponding to eaclfy’ € 7 is an expected

a (weakly) nondominated action with respec®tdrhe (crisp) accuracyiy and an expected liabilityi}, given by

nondominatedset B
) = [ nat0)53(6) o,
e

E(B) = {uw e U: B(u;0) =0} (6)
contains all nondominated actions. pi(u) = /@ pa(u; 0) 5 (8) df-
The intersection of the nondominated set with the satisficing ) o
set yields thestrongly satisficingset V.Vh'e'nl“ contains only one.element, the definitions for the
satisficing set5; and nondominated sét' in (2)—(3) and (6),
Su(6) =E(8) N S, (0) (7) respectively, are modified by using, () andz] (u) instead
S s, uwe&d) of pa(u;6) andpur(u;6). By contrast, whed' contains more
Hsy = { 0, " otherwise (8)  than one element (i.e., there are more than one measurement

source or expert opinion), a decisianc U is satisficing if
whereS, () represents the crisp support set giveWhensS, and only if it is satisficing for allf; € F. This is similar
is nonempty, it has been shown th&(f) is also nonempty to requirements for robustness in set-theoretic estimation,
[7]. Intuitively, S,(¢) contains only those controls which canncluding other developments of the satisficing concept [27],

be done given the evidence afidioes not contain any controls|2g], [40]. The resulting set is called thebust satisficingset
which should not be done given the alternatives. Elements gid is defined as

S, exhibit both properties where, as we shall demonstrate, the

strongly satisficing set can facilitate flexible defuzzifier design. Sy ={u: for ally € I', iy (u) > by (u)}
= ﬂ s
C. Robustness ~ver
The accuracy and liability set membership functions are [bs, = min figo. (10)

defined such that botp 4 (w;-) and pr.(u;-) are measurable et

functions defined ove® for fixed » and bothu 4(-;6#) and One criticism against using the intersection operator to fuse
unr(+;0) are set membership functions for fixed These results generated by multiple sources is that the resulting
membership functions represent the value of a decisiwmhen set may be empty. However, the design paramétean be
the state of nature i or stated simply, represent the statemeselected such that the robust satisficing set is always nonempty.
if # then v is ACCURATE/LIABLE. By contrast inferring a This is achieved if and only & is bounded by < inf -t b7,
decision directly from the observationg ¢ then dow), we whered” = sup{b > 0: S, # 0}. Loosely speaking) is
instead infer the value of a decision from the observatiotunded by the minimax value over all nonvacudfis # 0)
(if 8 thenw is (not) valuablg. When the state of nature isexpert opinions.
6" instead offf or whenf is nonsingleton with membership ,

Using the more general framework of multiple states of natdiye we

fﬂ(e)’ then the accuracylliab_i“t.y of, is obtained by forming establish a foundation for designing controllers which fuse multiple sources
the composition of the linguistic statemems and if # then of sensor information.
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The robust nondominatedet can also be defined by elim- Proof: We will prove thatS, is nonempty for these
inating controls for which obviously better (dominating) coneonditions by constructing a specific element of this set. Let
trols exist. Let

_ _ _ _ — aro I _ =
Bl(uw)={veU:n](v) <puj(v) and @}(v)>pn}(uw)} Up = arg max {glelfl {m(u)} = b IEQ%‘{NL(“)}} (15)
Bl(w)={veU:uj(v)<uj(uw) and 7, (v)>7u,(u

plw) =1 £(v) pw) alv) A} denote the (robustly)most discriminating control. We

vy — B 2l

B(u) =B (u) U By (u). first show thatup € S,. Since min,er @) (up) >
Then maxyer 7} (up) (ot_herwise it is not most discriminating

given the hypothesis), then for any € I, i)(up) >

i " A Ttk impli
min,cr 7% (up) > max,cr 77 (up) > 7] (up) implies that
E=quw ﬂ B7(u)=0,. (1) wp € S, whereup € Sp.
yer We now show thatup € €. For anyy € I, suppose that

. . _ &Y. Then there is a € B, U B} where
In general, this set can be difficult to compute. Since, as the z € Balup) £{up)

following theorem showsUWer EY C £, we can use the
following approximation for the robust equilibrium set:

—~
<

7y (u) = by, (w) >y (up) — by (up)

> min 77} (up) — bmax i}
_gglrlm(w) lggguL(UD)

E=1J ¢ (12)
~er which means that: is most discriminating. This contradicts
our assumption where, € £7 for all v € T', whereup € £.
Theorem 1:{J . €7 C €. Sinceup € £ andup € S, thenup € S, whereS, # O.m.
Proof: Supposeu € U,er £7. Then there exists &; Note that the operatanin.cr 7, de-emphasizes the good
such thatu € €7 where B (v) = §. Since BY(u) = § it and the operatamax.,r 77}, overemphasizes the bad yielding
follows thatn,er BY(u) = () whereu € €. B 3 conservative controller.

Since each&” is always nonempty£ is also always
nonempty. For the appl_ications considered inthis papes,€ b Dpefuzzifier Design
so we use the more simple notation. - ) )

The robust strongly satisficing setan now be defined by —Defuzzifiers for typical fuzzy logic systems employ su-
restricting the robust satisficing s§f to the region of support Perlative methods such as theaximum defuzzifieor av-

defined by the robust equilibrium s&t The robust satisficing €r29ing methods such as theentroid defuzzifier{12]. In
set can be expressed as these methods, a single control is selected from the set of

controls with nonzero set membership because it is superior
or most representative. Selection and design of a defuzzifier
Sp=ENS = <WL€JF gw) ﬂ <WQF Sl?) (13) can be a significant obstacle in designing a fuzzy logic
controller [12]. We suggest that one reason defuzzifier design
Hs,, U¢€ & . ceps .
s, 2{07 " otherwise (14) is difficult is that many rule bases are based upon local
rather than than global performance. A well-known result
from which we see that (7) and (8) are special cases With from optimal control theory is that optimizing over a local
singleton andfs a delta function placing all belief mass on theplanning horizon does not necessarily yield global optimal
single valued. We now have a general definition for a robusperformance. Thus, we suggest that rule bases determined by
strongly satisficing control. Broadly speaking, a decision lecal performance considerations may be incompatible with
robustly strongly satisficing if and only if it is satisficing foroptimal defuzzifying and may instead require “procedurally
every belief held by the designer and nondominated day rational” defuzzifying [4].
such belief. Thus, if a designer is unsure of precisely how The satisficing fuzzy logic controller (SFLC) includes both
nature should be fuzzifiédut can restrict the description tothe accuracy set membership function as well as the liability
within a set, then the designer can choose a control whichsgt membership function. Unlike most fuzzy control applica-
justifiable for all descriptions. tions (but similar to the ART model [48, p. 106]), the output
In the following theorem, we present a sufficient (but notector of the SFLC does not correspond to a final control
necessary) condition to guarantee that the robust stronglgtions; i.e., inference is not made from the observation to
satisficing set is nonempty. The interpretation of this theoreancontrol solution. Instead, inference from the observation to
is as follows: if there is a decision such that..r 7, the control solution proceeds in three distinct steps: 1) observe
and not U.cr 7;) has nonzero support, then the robudiature and infer consequences of control actions through an
strongly satisficing set has nonzero support. In words, i§ explicit dynamic model; 2) infer values from the consequences
ACCURATE for cvery fuzzified state and ndtIABLE for any using an explicit expert; and 3) infer the fuzzy set control

fuzzified state, then: is strongly satisficing. solutions from values using both the satisficing and domination
Theorem 2:1f there exists aw € U such that principles. Note that whed = 0 and when the accuracy
min,er B (uw) > bmaxer 7} (u) thenS, # 0. inference is made directly from observations to values then

7In our usagefuzzificationis used in the sense of [47]. 8Note that we actually show the stronger result that € Nyer E7.
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the conventional FLC is obtained and, thus, the SFLC can iseobtained by minimizing
viewed as a generalization of the FLC. N1
For the SFLC, any defuzzifier which selects a control from _ T AT .
&y is justifiable according to two criteria: 1) all such controls Iy =a(t+ N)"Pa(t+ V) + kz_o [t + £)” Ru(t + &)
are satisficing (inS;), which means that evidence is sufficient T
to justify their use and 2) all such controls are maximizing tat+k+1)7Qu(t+k+1)] (18)
lin (1), & = €, see (16)] for someh, which means that ith respect to the control sequenest),--,u(t + N —
no other control is superior and thereby precludes their US§. subject to the control bounds and dynamics constraint
Furthermore, whetf (the set of beliefs held by the designerbiven by, respectively [17]u(t + k) € U for all k and
is a singleton, then the set of strongly satisficing controls caly(t + k) € AU for all k. The first controlu(t) of the
claim superiority in the following sense and, hence, can Bgsulting minimizing sequence is applied and the constrained
justified as the defuzzifier output. Let minimization is repeated for the next and all subsequent time
steps. Although for some model predictive systems there exist
¢ = {u: 3" > 0 for which u = arg max 71 4(v) — bﬁL(v)}. methods for guaranteeing plant stability (such as including
vel a terminal constraint), the cost matricéy ¢, and R are
(16) specified by an implicit expert (the designer) to infer how
predicted states translate into global plant performance.
This set consists of those actions which maximize the In [7], we developed the notion of a@nfluence vectol (u)
difference between the accuracy and liability set memberstdpfined for the discrete time dynamical system in (17) and
functions for some value df A well-known result from multi- then use this influence vector and the standard quadratic cost
objective optimization, which is presented in the companidanction in (18) to develop a receding horizon controller. Let
report [14] in this context for completeness and for a specifi, (¢t + 7) be the substate of(t + 7) that is an explicit
case in [7], implies that the sé = £. This means that non- function of u(t + ¢), 7 = 1, ---, Dy, Where Dy, is the
dominated solutions are not only superior to all other solutiomsaximum number of time increments for whiak(t + ¢)
in some sense, they are also mathematically optimizing. has explicit influence on any component of the state. For a
planning horizonV, the influence vectors are tthé sequences

of substates of the form
[Il. M ODEL PREDICTIVE SATISFICING

Fuzzy LoGIC CONTROLLER SYNTHESIS Xo(u(®) ={xo(t+ 1), -, xo(t + D1)}
It is desirable to employ expert knowledge to determine xi(u(t+1) =Dt +2), - x (t+ 14 Dega)}
how local information translates into global goal achievemerty—1 (u(t + N — 1)) ={xny_,(t + V)
For example, automobile drivers are (usually) very effective oo xn_ (t+N—=14Din_1)}

at interpreting how local measurements (such as time head-

way and relative velocity) translate into global consequencesBY restricting attention to single step receding horizon,
(such as safe but expedient travel) [44]. Such a translatif) is the only relevant control variable where we can write
between local measurements and decisions reflecting glokél) = Xo(t). For the plant in (17), it can be shown (see [7])
consequences must either implicitly or explicitly address ti{@at the influence vector can be written in the form
inferences diagrammed in Fig. 1. In this section, we develo _ T

methods for ir?]plementing sﬂch inferences and identify re? X(1) = [t +00), oo wnlt 4 60)]
strictions that facilitate computable methods for performin@herex(t) = [z1(t), - -, zn(t)]T, and wheres; is the delay

such inferences. We first briefly review how consequences qafore u(t) influences theith element of the vector. A

be inferred from observations using receding horizon modgécessary restrictiris that eachz(#) is controllable viau(t);

predictions [7]. We then discuss how these predictions can fpgyt is, eachs; is defined and there exists ard such that

used to infer valuations of control. Finally, we review howor any z(0) there exists a sequence of contral&), - - -,

these valuations can be used to infer justifiable behavior. u(t + N — 1) such thatz(N) = 0. Given these restrictions,
D, = max; é;. Using the procedure in [7], eadf) is easily

A. Consequences: Receding P|anning computed subject to the plant in (17). As in [7], we require

Horizons and Influence Vectors that although all system matrices can be time-varying, the

. . . . . . . . variations are restricted such that edghs constant.
Consider a discrete time, time-varying single input nonlinear

plant of the form . .

B. Observations, Consequences, and Evaluations

2(t+1) = f1[x@), 1] + fo[x (), tu(t) + glz(t), tlu(t) (17) Since modeling is subject to uncertaintf,, f,, andg in

(17) may not be precisely known) it is desirable to develop
wherez(t) represents the system statés) is the system input, controllers that work for multiple system models. It is also
and v(¢) is a disturbance. Given a desired state= 0 and desirable to develop controllers that operate effectively in
positive def_ini.te cost matrices, Q, and i, the conventional 9An area of current active research is the development of stable satisficing
model predictive controller (see, for example, [17] and [18Fontrollers. A key to this development is the controllability of the plant.
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the presence of external disturbaneesThis is one of the the appropriate region of suppof. Furthermore, observe
objectives of robust control design (see, for example, [41hat this normalization yields set membership functions that
[42], [43)]). In this papet? we restrict attention to problemssituationally depend on the set of available controls where
for which precise measurements ofare available, thereby fuzzy values are situationally inferred.
focusing emphasis on robustness with respect to nonwhitdt is worth noting that the most discriminating controb
disturbances as well as with respect to model uncertaintlefined in (15) closely resembles the solution obtained by
Thus, ¢ = (f,,f5.9,v). An estimated and its associated minimizing a® + BA for «,3 > 0. As observed in [7],
distribution f, then gives us information necessary to make, depends on a state-dependent evaluation of predicted
a decision. When disturbances are difficult to predict it isonsequenceg on the basis of what can be done (the control
helpful to consider a set of such predictions in determining) given the circumstances (the observati¥jn By contrast,
a control. Similarly, when system models are subject to erraninimizing «® + SA reduces to a nonlinear state feedback
it is helpful to consider a set of such models. Thus, if more thaontrol law that does not explicitly consider the set of available
one disturbance/system motlels possible, then the designeralternatives. Additionally, as demonstrated in Section IV-B2
can consider more than orfg(#) in determining a controk. for plants with no known feedback law in closed form, a search
In the cost function given by (18), there are two differentb find «p need not be performed each sample time whereas
factors: the terminal cost” Pz and the “cost to gox?Qz + a search for the minimizing solution ef® + SA must be
u? Ru. Rather than aggregating the terminal cost and “cost performed for each sample time.
go” into a single global performance metric, we can instead
independently identify and compare each factor from a local IV. EXAMPLES
perspective [7]. Thus, we define the accuracy cost functionalin this section, we develop rule bases and present results for
for a single step control horizon as the terminal cost portiahe rotational translation actuator (RTAC) [50], [51] and the
of the receding horizon cost function inverted pendulum problems. These problems are appropriate
because they serve as benchmarks for demonstrating “proof of
O(u; 0) = x" () Px(?) (19) concept.” In the examples, not only is the set-based structure
and a liability cost functional for a single step control hori®f SSDT used to provide robustness to nonwhite disturbances
zon as the “cost-to-go” portion of the receding horizon co§d model uncertainty, but also the resulting flexibility in
function defuzzifier design is also illustrated.
In the preceding sections, we have taken care to discriminate
A(u; 6) = xT ()Qx(t) + u () Ru(t). (20) between three types of inference: 1) inferring (partial) conse-
) ) ) ) guences from observations; 2) inferring valuations from (par-
The accuracy cost functional is associated with the global gqgl) consequences; and 3) inferring decisions from valuations.
of_ the controlller and thg I|ab|I|ty_ cost functlonal is assoua_teqihese inferences were resolved in Section Il by 1) one-step
with the proximate design considerations. In [7] the matricgRedictions of consequences obtained using an explicit plant
P, Q, andR were assumed given by an implicit expert. In thigyogel: 2) the terminal and cost-to-go performance metrics
paper, we specify these matrices using an explicit rule baggiined by an expert and subject to facilitatory restrictions;
obtained from expert knowledge. In words, the plant modghq 3) the strongly satisficing decision theory described in
specifies the_ i_nference from. _observations_ to consequenegsition II. In this section, we focus on implementing these
and the explicit expert specifies the relation between loGakerences in examples, and illustrate some of the implications.
(receding horizon) consequences and global (plant behaviorspecial mention needs to be made of the process of inferring

values. valuations from consequences. As implemented, an expert
must not only specify a rule base structure to determine cost
C. Decisions functions, but also specify numerical parameters for these cost

By normalizing (19)—(20),.4 andy;, may be determined as functions. This rule base structure and numerical specification
are required during design-time but not employed during

pa (s 0) =iy [ma%( {2(0)} — @(u;g)} (21) execution time. We preser_n rule bases for two problems and
z€U assume that an expert exists who can translate the resulting
structured cost-functions into numerical representations. In
practice, such translation was accomplished by iteratively
) adjusting these parameters in simulation. Note that, because
wherex 4 andry, are the (possibly state dependent) normajpe specified cost functions are normalized to produce set-
izing constants required to create membership functions. QRampership functions and thereby ensure the comparability
serve that sincé(#) can be directly computed from (19)~(20) ot accuracy and liability, the expert need only specify relative
normalization can occur so that all mass is restricted [ mpers (ratios) of the usefulness of each rule. This process

10Following the example of [47], we could treat measurement uncertainty COmpatible with a “tune by simulations” approach.
using fuzzified observations. Thus, the state of nature could be extended to
included = (z,y, f1, f2, 9, b, v, w), wherey = h(x(t),t) + w(t). A. The RTAC

11Although criteria such as Akaike’s Information Theoretic Criterion exist, The RTAC . h in Fig. 2 d
it may be difficult for a designer to justify a model class as being the best € system Is shown in Fig. and represents a

class for a problem [49]. translational oscillator with an eccentric rotational proof mass

pn(u0) = [ Awi6) - iy (AGs0)}| @
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The structures of the cost matrices and, hence, the values

MO ; @) inferred from the set of consequences are determined by
; associating elements of these matrices with particular rules as
k E follows. This problem is a regulator problem with the objective
ANk b 2 of keeping the cart close to the origin. Since regulation
R % ‘ (a global consequence) cannot be precisely deterrfrad
considering only a single-step control horizoN = 1), the
o ; O set of accurate controls is fuzzy and, consequently, associated
with a set-membership function. The accuracy of a control is
Fig. 2. Translational oscillator with rotational actuator. dictated by the following rule: those controls for whighis

close to the origin (a consequence similar to regulation) have

. . ] . high accuracy. Since each elementyofs equally important
connected by a linear spring of stiffnessto a fixed wall. \yith respect to this purpose, we |& = 1.

The cart is constrained to have one-dimensional travel. TheLiabiIity is determined by a set of rules obtained from

rotational proof mass actuator affixed to the cart has massgypert-specified design principles and tuned by simulation. The

and moment of inerti& about its center of mass. Its center ofjesign principles dictate the following rules for generating the
mass is located a distant&om the axis about which it rotates."ab”ity membership function.

It is assumed that motion occurs in a horizontal plane so thatIA
there are no gravitational forces to be considered. The contro by a control are relatively large the control is liable.

Z ((jj|es ?S:szni(et()f:)(]rgg SEptlrlwidct;)rtthﬁhzr?fu;;snss%Tﬁ?(;)t?gﬁ areB If the cart position and cart velocity have the same sign
' q the control is liable. This reflects expert understanding

given by that when the cart is moving away from the origin the

(M +m)s+kz= — me(i/) cos b — z/‘}2 sing) +u  (23) system is not very close to being in equilibriu_m._
C If a control requires a great deal of energy it is liable.

If cart position, proof mass angle, or velocities produced

E+mi?)) = —mlz 24

(E +ml%)y mizcosy +v (24) These rules dictate a block diagonal structure of the magrix
which can easily be written in the form of (17) wigp = We identify the relationships between elementsyadictated
z = [¢,2,4,#]7 and satisfies the conditions specified iRy the rules by placing the appropriate rule (A, B, C) in

Section 111, The states andz denote the translational positionthe matrices below. If no relationship exists, then the matrix
and velocity of the cart, respectively, and and ¢y denote €lement is zero

the angular position and velocity of the rotational proof mass, A 0 0 O
respectively. In the simulation results, we use Euler integration Q= 0 A 0 B R—cC
with sample timeT" = 0.002 s, and the following parameter |0 0 A 0 o
values: M = 1.856 kg; m = 0.065 kg; I = 0.062 m; 0 B 0 A

E = 0.000014 kg nm?; and (nominally)k = 203.7 N/m.
Although the discretized sub-statégt + 1) and z(¢ + 1)
are not explicit functions ofu(¢), the substates)(¢t + 1),
2(t 4+ 1), ¥(t+2), and z(t + 2) are. Thus, we may identify
the components of the state that are influenced (due to

Given this rule-base structure, numerical values are tuned
in simulation. Such tuning is tantamount to determining the
relative importance of these local rules in relation to the global
R]eerformance of the controller. After tunin@ becomes

relative order of the system) by the current input) as 5 0 0 O
the velocity vectors(t + 1) = [¢(¢t + 1), 2(t + 1)]* and 0= 0 5 0 30 R—05
position vectorp(t + 2) = [1(t + 2),2(t + 2)]7 yielding o001 0 o
x(t) = [p(t + 2),v(t + D], 0 30 0 5

i 1)'S.pe0|f|c?t|o? of ,?ttfrjlbuteswccj-:‘}gowtgrn ?ttet.nt'on to %e— Since rejecting disturbances by damping unfavorable cart
ermining a structure foP’, @, and &, and selectings, an motion is the most important factor for this system, the second

K in (19)7(22) to_ yield desirable results. We _normalize thﬁjle gets the most emphasis (weight= 30). Note thatQ
membership functions such that they have unit area over ligenot positive semi-definite; this formulation is permissible

region of support. The corresponding normalizing constantgecause we treat the quadratic forms as fuzzy inference

are given by engines rather than as cost functions used to produce the
1 optimal behavior.

ka Note thatP, @, andR are specified by experts at design time
/beg (max.ce ®(z) — ®(v)) dv and are used to infer valuations from a partial understanding of
1 global consequences. Run-time inferences to action are done

KL . using the resulting valuations via satisficing, domination, and

/ (A(v) —min.ce A(2)) dv defuzzifying. Also note that normalizing the resulting cost

vCE

functions to give set membership functions yields valuations

F.OI‘ t.he. S"T_]UIat'on resylts prgsentgd herein, the_mbusuy MOSp example, nonminimum phase systems exhibit unintuitive behaviors
discriminating defuzzifier defined in Theorem 2 is used. for single-step control horizons [21].
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Fig. 3. Phase planes for the RTAC controllers. (a) Rotational-proof mass phase angle (in degrees). (b) Translational cart position (in meters).

that situationally depend on the set of available controls. Thusjiformly over{—2,2}. For anyk € [150,250] there exists a
values are situationally inferred. correspondingf”, v € I' = [150,250] such that all belief is

2) Results:In the simulations, we consider three caseplaced on: = v where” = (f7,¢,0) andf, (6) = §(6—6").
The first case has known system parametgrsufd ¢ from Simulation results fo**2 = 3 are shown in Fig. 3 and
(17) are known) and is disturbance free(t) from (17) is indicate that, despite the drifting spring constant, the controller
zero) whered = (f,g,0) is known precisely. The secondregulates the cart about the origin witffgg%Q = 273.9.
case has no disturbancégt) = 0) but does have uncertainNotice the small angular offset of approximately 0.025 radians
spring constant f uncertain, butg known) where#” = which decreases approximately 0.001 radians every second.
(f7,¢,0). The third case has known system parametgrs This terminal offset contributes significantly to the resulting
and g are known) but has nonwhite disturbances generatedst and can be decreased by increasing@heeighting for
by an unknown model structure whef& = (f,g,v7). The 4, but only in exchange for less damping.
time histories of the rotational-proof mass angle and the cartFor case threef” = (f,g,v"). The disturbances is a
position obtained using a SFLC for each case are shownrianwhite random sequence generated by an autoregressive
Fig. 3(a) and (b), respectively. For qualitative comparisomoving-average (ARMA) model given by
simulation results using a discretized version of the stabilizing

controller developed by Bupgt al., in [50] are also shown. For Alq)u(t) = B(q)e(t). (26)
quantitative comparison, we define the observed cost function . . -
based on (18) for a?20s Simulation duration as Whel’e we ha.Ve adopted the notation Of [49] n def|n|ng

the transfer operatorsl(g) and B(g) and wheree(t) is an

B . 20/T-1 . independently identically distributed zero mean Gaussian noise
Jr=00 =%(20)" Px(20) + Z [w(KT +1)" Qu(kT +1) sequence with variance equal to two. In practicly) =
k=0

14+0.5¢ " andB(q) = 1—0.3¢~ L. Using system identification

+ u(kT)" Ru(kT))]. (25) methods, we identify (¢) = B(q)/A(q) from whichu(t) is

i o predicted from past observations of the disturbance. We restrict
For case onef = (f,9.0). The time histories of the puention to a set of model structures which uniquely predict

rotational-proof mass angle and the cart position in Fig. 3 ajig, eyt value ofvu(¢). Associated with each model structure

for a satisficing controller wittb*®¢! = 3. The satisficing is the best modeH” (g), which yields the predictiod #([t —
controller behaves qualitatively (as shown in the plots) arﬁw H(q)e(t) of the disturbancev(t). Thus, 67 —
(

At 7Bupp Jcase = mi
quantﬂaflvely(.]t:;g s 2196 and Jizg" = 157.9) similar f,9,H"(g)e) and the corresponding set of belief functions
to Bupp’s controller: . _isthe setF = {f: f] = 8(67 — 0)).
For case twof? = (f7,9,0), and the uncertainty ”',f Continuing case three, models of(¢) and B(q) were
occurs because we suppose that the spring cons@htis jantified using MATLAB's System Identification Toolbox

known only as an element in the set [150, 250] N/m and cgiy, four model structures by applying a pseudorandom input

drift over time. The drift of the spring constant is Simmategignalu(t) € {~1,+1} to the discretized equations (23)—(24)
by a random walk with reflecting boundaries at 150 and 23 ’

) > G O 0r a Gaussian white noise sequenge) and estimating(t)
given by k(t) = k(t — 1) +n(t) wheres(t) is distributed by: 1) predictingz(t + 1) using knownu(t); 2) determining
13since Bupp’s controller does not explicitly consider the cost functiog(x(¥))v(t) = =(t + 1) — (¢ + 1); and 3) findingv(¢) from
(25), 2! < Jf:“fop should not be interpreted as implying inferiority
of Bupp’s controller. The result should instead be interpreted that Bupp'si#&(t|t — 1) denotes an estimate of the disturbance at tingiven past
controller exhibits similar performance as the satisficing controller. observationsyt — 1), v(t —2), ---v(0).
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TABLE |
IDENTIFIED DISTURBANCE MODELS
Class | Alg) -1 | B(q) -1
Actual 0.5¢ 1 —0.3¢7 ¢
ARMA, 0.5033¢~1 —0.2892¢~ 1
ARMA, 1.0596¢ T + 0.2696¢ 2 —0.2684¢ | — 0.1757q" 2
AR 0.7792¢~1 4+ 0.1776¢~ 2 0
SS 0.5023¢~ ! —0.2909¢~ T
ARMA;] 0.4980¢~ T —0.3231¢7 1
ARMA, | —0.1566¢—1 — 0.3535¢—2 | —0.9756¢q~ 1 + 0.1768¢—2
AR 0.7981g~ ! + 0.1923¢~2 0
SS 0.4952¢~1 —0.3252¢~ 1

-z

Fig. 4. Inverted pendulum on a cart. The pendulum has full rotational motion
g(=(¢))v(¢). Four model structures were chosen: a first-ordend must be regulated about the vertical while simultaneously keeping the
(ARMA ), a second-order (ARM#), a second-order auto- ¢t near the origin.
regressive (AR), and a second-order state space (SS) model
identified using the prediction error method [49] Two mOdel$e|ocity less than 180 per Samp|e time?l’. The approach
were identified, one from each of two noise/input realizationgmploys predictions obtained from a nonlinear model of the
for each of these four model structures. This yields a totglant dynamics, uses a single time step receding control
of eight identified models wher€ = {1,2,---,8}. Table | horizon, and determines accuracy and liability using quadratic
presents the model structures and the corresponding paramg#gt functions. A criticism of this design is the omission of
estimates. either a stability argument or an appeal to expert rules. In

Simulation results using the robust strongly satisficing s@iis paper, we extend the previous results by: 1) employing
are shown fob*>* ® = 2 in Fig. 3 and yield/f25,* = 179.7. expert information to generate the appropriate cost functions;
Observe that the cart is effectively regulated about the origity designing a controller with explicit attention to robustness;
despite disturbances. Also observe that to maintain similgid 3) illustrating the flexibility of reduced-search defuzzifier
performancep®®°® = 2 < 3 = b 1. This decrease ihis a design.
result of the fact that ag” grows to include differing models, The inverted pendulum apparatus is illustrated in Fig. 4,
b must decrease fol5, to be nonempty. For comparisonwhere M is the mass of the cart, is the length of the
purposes, it is insightful to omit the two frist order modependulum,m is the mass of the pendulung; is the angle
classes since they have the same model structure as the agtgai vertical (measured counterclockwise)is the horizontal
disturbance. Doing so yieldg;25,%" ~ 179.7 indicating position of the cart, and, the control input, is a lateral force
that it is not necessary to have the actual disturbance moggbplied to the cart. The continuous-time dynamical equations
structure to produce acceptable performance. for this problem are

- M4+m gsinz/)—mlcosz/)sinz/ﬂ/}Q—cosz/)u
B. The Inverted Pendulum: Robustness and Defuzzification ¥ = ( ) —5 (27)
(M + msin= )

The inver_ted pendulum problgm can pe stated as_follows. . milsingy? — mgcoshsing + u
Control an inverted pendulum in a vertical plane with full 2= —
circular freedom by applying a lateral force to the cart to which M+ msin”
the pendulum is attached, whilgmultancously regulating which can be easily written in the form of (17) with state
the position of the cart to any desired pairhis problem variable =(t) = [1(¢), 2(¢),%(¢), 2(¢)]* and which can be
has become a benchmark for nonlinear control design wishown to satisfy the conditions in Section Ill. In the simulation
examples from conventional control, fuzzy logic control, ancesults, we use Euler integration with a sample timeé/’'o&
other nonclassical control methods. For example, conventiofidll s and the following parameter values! = 0.455 kg,
controllers linearize the dynamics model of the pendulum in= 0.61 m, U = [-1000,1000], and (nominally)ym = 0.21
a small region within say T0of the vertical. FLC controllers kg. For this problem, we consider the disturbance free case
include a FLC trained by a genetic algorithm, which hawith uncertain pendulum mass where we use the simplified
been shown to balance the pendulum 90% of the time if thetation8” = f7.
pendulum is given a random initial position within 8@f It is clear that, although the substaté& + 1) andz(t + 1)
the vertical and a random initial velocity less thar?8052]. are not explicit functions ofu(t), the substates/}(t + 1),
An example of a particularly inventive nonclassical controllet(t+ 1), ¥(¢t+2), andz(¢t+2) are. Thus, we may identify the
uses deterministic rules, fuzzy logic, and model-dependesdmponents of the state that are influenced by the current input
information to control the pendulum with 36@f motion on «(t) as the velocity vectow(t + 1) = [1(t + 1), 2(¢t + 1)]*
a constrained track [53]. and position vectop(t + 2) = [¢(¢ + 2), z(¢ + 2)]* yielding

A model-predictive satisficing controller for this problemy () = [p(t + 2),v(t + 1)]*.
has previously been presented [7], [8], which balances thel) Specification of AttributesWe now turn attention to
pendulum and brings the cart to the origin vy initial cart choosingP, @, R, x4, andky, in (19)—(22) to yield desirable
position, cart velocity, pendulum angle, and pendulum angulegsults. We normalize the membership functions so that the

(28)
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maximum membership is unity and the minimum membership Obviously, the relative weight of these rules will influence
is zero (over the region of suppof). The corresponding the system behavior. For example, if minimizing velocities is
normalizing constants are given by more important than minimizing positions, then the pendulum
may never generate enough energy to move above the horizon.

1 ) _ . :
Ra=_— ®(v) — mi B(0) Such issues are resolved by tuning the weights to the nominal
Teg T\ T Mileeg TAY cart/pendulum system yielding [7]
1
"L nax A(v) — min,ee A(v)’ 0100
ves 1 03 0 O 4
Q= R=10"".
. . . o 0 0 02 02
The values in the cost matrices are determined by associating 0 0 02 09

elements of these matrices with particular rules. For the first

simulation result, the most discriminating defuzzifier defineHor the cart/pendulum system used in the simulation, the
in Theorem 2 is used. The flexibility of defuzzifier design i%) values indicate that making the pendulum angle small
demonstrated in the second simulation result. (weight 30) is more important than keeping the cart near the

The inverted pendulum can be thought of as a regulatefigin (weight 0.3). They also indicate that keeping the cart

problem since the goal of the system is to regulate th@sition and pendulum angle opposite signs (weight 1) is more
system about a desired operating point. Since regulationirgportant than all other considerations except bringing the
the purpose of the controller and since regulation canngéndulum to vertical.

be precisely determined by considering only a single-step2) Results: In the simulations we consider two cases. The
control horizon(N = 1), the set of accurate controls is fuzzyirst case has no disturbances but does have an uncertain
and, consequently, associated with a set-membership functigpendulum masgf from (17) is uncertain) wheré” = f7.

The accuracy of a control is dictated by the following ruleThis case forms an illustration of the application of robust
those controls for whichy is close to the origin (regulating satisficing receding horizon control. A second case is also
point) have high accuracy. Since each elemeng & equally presented when the plant has certain system parameters and no
important with respect to this purpose, we let= 1. disturbances, where = f with f known and fixed. This case

Liability is determined by an expert who not only specifiefjustrates two important aspects of our methodology: 1) that

the structure of the cost matrix according the observed desigie defuzzifier design is flexible and 2) that reduced search
principles but also tunes the numerical values in simulatiogiternatives are possible.

The quadratic cost function can be used because no morgor case on&” = f? and the uncertainty in the system
than second order relationships between elementy afe model occurs because we suppose that the mass at time
required® (as evident from the following rule base). The + 1 is given by m(t + 1) = m(t) + n(t) wheren(t) is
following rules specify the design principles: distributed uniformly ove —0.01, 0.01}. Suppose further that

A If cart position, pendulum angle, or velocities producethis random walk is restricted so thait(t) € [0.10,0.30] for
by a control are relatively large the control is liable. all time. In the absence of other information, it is desirable

B If cart position and pendulum angle produced by th® design a control such that for ®Im(t) € [0.10,0.30]
control have the same sign the control is liable. Thikhe plant performance is justifiable. For any < [0.10, 0.30]
reflects the expert understanding that when the pendulahere exists a correspondinfy’, v € I' = [0.10,0.30] such
is pointing to the left/right and the cart is also to thé¢hat all belief is placed onn = v where 8 = f7 and
left/right the system is not very close to being balanced, (8) = (6 — 67).

C If cart velocity and pendulum velocity produced by the Applying a robust satisficing fuzzy logic controller to this
control have the same sign the control is liable. Thigroblem withb = 0.9 yields the rotational and translational
reflects the expert understanding that when the pendulyriase-plane performance illustrated in Fig. 5(a) and (b). The
is swinging the same direction that the cart is travelinge” symbol represents the initial conditions (the cart at the
the system is either getting farther from being balancedtigin with the pendulum in the vertical down position) and the
or needs to avoid overshoot. “x” symbol represents the terminal conditions (the cart at the

D If a control requires a lot of energy then it is liable. origin with the pendulum balanced in the vertical up position).

These rules dictate a block diagonal structure of the mathe controller balances the pendulum while regulating cart
Q. We identify the relationships between elements yof POSition by swinging the pendulum back and forth while
dictated by the rules by placing the appropriate rule (1, fhe cart oscillates around the origin. As the cart oscillates,

3, 4) in the matrices below. If no relationship exists, then tif8€ pendulum gathers momentum. In the translational and
matrix element is zero. rotational phase planes, this motion is manifest as growing

spirals. When the amplitude increases sufficiently, the oscilla-

A B : .
0 0 tion ceases and the pendulum then converges to the vertical
B A 0 0 . " S
Q= 0 0 A C R=D. upright position. The cart then returns slowly to the origin. For
0 0 C A 16The results presented in [7] for a randomized mass do not explicitly

account for the unknown value of(¢), but instead employ the known (albeit
15For more complicated relationships, a more sophisticated inference engiaedomly time-varying) value ofz(t) via to produce acceptable performance
is required. via local model predictions.
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Fig. 5. Phase planes for the inverted pendulum for uncertain system. (a) Rotational pendulum angle (in radians per second and radians).oftgl Translati
cart position (in meters per second and meters).

these simulations, the most discriminating defuzzifier defineded. To emphasize this point in case two, a simulation was

in Theorem 2 is used. performed using a defuzzifier which randomly (with uniform
Observe that the perturbatiomgt) of the massm(t) are probability) selected a control from the strongly satisficing set

as large as 10%. We can interpret this in two ways. Firlir m known and fixed. The rotational and translational phase

and most simply, this means that a large uncertainty is iplanes for one such simulation with = 0.9 are presented

cluded in the discrete time system and that as designed, the=ig. 6(a) and (b). Observe that the behavior produced by

controller is robust with respect to this uncertainty. Seconthe random defuzzifier is qualitatively very similar to that

the large uncertainty imn(t) can be interpreted as evidenceproduced by the most discriminating defuzzifier.

that the discrete time control law would be appropriate (i.e.,

the controller handles significant errors between model-based V. CONCLUSIONS

predicted performance and simulated plant performance) forcgnventional optimal control employs an explicit system

the continuous time system (the physical system was nghqe| and assumes an implicit expert who defines a cost
available for testlng).. ) i function and solves the resulting optimization problem. Con-
For case twog = f is certain and a flexible reduced-searcgnional fuzzy control assumes an implicit model and em-
defuzzifier design is explored.When no closed-form solu- o15us an explicit expert to define solvable performance criteria.
tion can be found, applying maximizing defuzzifiers require$, this paper, we employ an explicit model to predict local
a search. Flexible reduced-search defuzzifying is importagh ¢ pehavior and an explicit expert to transform these local
since, for example, applying a receding control horizon 19,qe| predictions into global evaluations of gains and losses.
many nonlinear control problems requires a planning horizgeis formulation implements these characteristics in a three
greater than one step (for example, to guarantee stabiligpy, hrocess: 1) explicit models are used to infer local con-
and the resulting control law may not have a closed form. &,,ences from observations: for problems where complexity

search must therefore by applied and such search should A4 ncertainty dictate that long range computable and precise
be computationally prohibitive. For the satisficing approach,Fﬂam descriptions are infeasible, local predictions may be

defuzzifying algorithm can be constructed that reduces sealgfhilable and applicable to generating a useful solution; 2)
by “staying the course” with the current control when possiblgy jicit expert rules are used to infer valuations from local

and otherwise se!ecting any satisficing solution. The algorith&nsequences; such inferences are applicable to problems
for such search is as follows. Lei(t) represent the current,yhere ‘mathematically stable control laws are not trivially
control. If (t) € &, then no search needs to be done becausgngirycted, but where local information can be related to
u(t +1) = u(t) is a satisficing solution. Otherwise, a searchona| performance; and 3) finally, satisficing decision theory
needs to be done becaus¢t) ¢ Sp. Using the randomized jnters control actions from valuations by combining indepen-

defuzzifier, this search randomly selects possible solutiogsn: assessments of goal achievement gains with proximate
until one is obtained that is satisficing. As soon as a SatiSﬁCiBgrformance losses.

solution is found, this solution is implemented. Because any gince the relation between local plant predictions and global
element in the strongly satisficing set can be justifiably app"‘%%tem performance is nonstatistically uncertain, fuzzy de-

as a control, any defuzzifier that selects from this set can Q&iptions are required. Given these fuzzy descriptions, it

eems unreasonable to suppose that a single unique cost
17For case one, the most discriminating defuzzifier was applied, but thiSSIS PP g d

not the only choice. For example, applying a centroid defuzzifier producegléncnon unamb'guou_SIY speqﬂgs a best glObaI Performance'
result nearly identical to the maximum defuzzifier. Instead the error-avoiding principle associated with compara-
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Fig. 6. Phase planes for the inverted pendulum with constant mass and reduced search/random defuzzifier. (a) Rotational pendulum angle (in radians pe
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tive rationality can be used to produce the set of satisficing#] w. C. Stirling, M. A. Goodrich, and R. L. Frost, “Procedurally rational

system controls. This application of the satisficing princi- ggcﬁison'orzskilgg%and control,[EEE Contr. Syst. Mag.vol. 16, pp.
ple determines when a control solution is justified givens; | a Zadeh, “What is optimal?,1RE Trans. Inform. Theogwol. 4, no.

the observed evidence. When combined with the domination 1, p. 3, Mar. 1958.

S ; . ; ind6] M. R. Endsley, “The role of awareness in naturalistic decision making,”
pr|nC|pIe which eliminates control solutions when superloﬂ in Naturalistic Decision MakingC. E. Zsambok and G. Klein, Eds.

solutions exist, the resulting set-valued formulation facilitates  jisgale, NJ: Erlbaum, 1997, ch. 26, pp. 269-283,. o
both flexible defuzzifier design as well as robustness witli”] M. A. Goodrich, W. C. Stirling, and R. L. Frost, “A theory of satisficing
respect to uncertain models and nonwhite disturbances. decisions and control,lEEE Trans. Syst., Man, Cybern.—Part A: Syst.

) . Humans vol. 28, pp. 763—779, Nov. 1998.
In this paper, we have presented a synthesis procedure f@y , “A satisficing approach to intelligent control of nonlinear

designing fuzzy logic controllers. This procedure is derived systems,” inProc. IEEE Int. Symp. Intell. ContrDearborn, M, Sept.

.. . 1996.
from the SSDT-based model pred'Ct'Ve approach, but whic ] H. A. Simon, “A behavioral model of rational choiceQuart. J. Econ,.

has been extended to: 1) appropriately employ the power vol. 59, pp. 99-118, 1955. _
of expert knowledge and 2) account for robust performan¢¥! — Iggeesc'ences of the ArtificiaBrd ed. Cambridge, MA: MIT
in the presence of uncertainty. We have demonstrated g |. Levi, The Enterprise of Knowledge Cambridge, MA: MIT Press,

synthesis of satisficing fuzzy logic controllers for two discrete  1980. _ S .
time nonlinear problems. The synthesis procedure is based |J|i:|2/||é '\\Al(()e{]dSef;’ ;p“zgzs'fgffy,\jfrmiggg9“9'”‘*’””9- A tutoridtyoc.
identifying rules and cost functions, which simultaneously uses] s. Roychowdhury and B.-H. Wang, “Cooperative neighbors in defuzzi-

objective (albeit possibly uncertain) local one-step predictions fication,” Fuzzy Sets Systol. 78, no. 1, pp. 3749, Feb. 1996.

. : . . .[14] M. A. Goodrich, W. C. Stirling, and R. L. Frost, “Model predictive
derived from mathematical models and subjective (expert) in- satisficing fuzzy logic control.” Tech. Rep. CBR TR 98-3, Nissan

terpretation of the global system consequences. These sourcescambridge Basic Res., Nissan Res. Development Inc., Cambridge, MA,
of knowledge are used to identify the accuracy and liability of ~ 1998.

. - 5] P. B. Sistu and B. W. Bequette, “Nonlinear model-predictive con-
a possible control and, though the provable stability of suéﬁ trol: Closed-loop stability analysis,AIChE J, vol. 42, no. 12, pp.

systems remains an open research question, expert knowledge 3388-3042, Dec. 1996.
was used to generate feasible controllers. Using the RTA@G] J. Richalet, “Industrial applications of model based predictive control,”

. . . Automatica vol. 29, pp. 1251-1274, 1993.
we demonstrated robustness with respect to nonwhite distyfr] p. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear

bances. Using the inverted pendulum, we demonstrated that systems,”IEEE Trans. Automat. Contrvol. 35, pp. 814-824, 1990.

_ ; : J18] P. O. M. Scokaert, J. B. Rawlings, and E. S. Meadows, “Discrete-time
successful control of the model-based problem is flexible WI{H stability with perturbations: Application to model predictive control,”

respect to the defuzzification procedure. Additionally, using  Automatica vol. 33, no. 3, pp. 463-470, Mar. 1997.
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