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A Theory of Satisficing Decisions and Control

Michael A. Goodrich, Wynn C. Stirling, and Richard L. Frost

Abstract—The existence of an optimal control policy and the timal, meets minimum requirements, or is “good enough.”
techniques for finding it are grounded fundamentally in a global A satisficing search is a search for an optimal solution that
perspective. These techniques can be of limited value when theterminates when a solution is found such that the cost of

global behavior of the system is difficult to characterize, as it furth hi ds th ted b fits of doi
may be when the system is nonlinear, when the input is con- uriher searching exceeds the expected benelils of doing So

strained, or when only partial information is available regarding  [2]. An optimal solution is clearly satisficing, but the notion of
system dynamics or the environment. Satisficing control theory a minimum standard may persist even if a best solution either
is an alternative approach that is compatible with the limited does not exist or is not attainable. Furthermore, a satisficing
rationality associated with such systems. This theory is extended solution is distinct from a “suboptimal” solution, since the

by the introduction of the notion of strong satisficingto provide latt t h it f timal soluti
a systematic procedure for the design of satisficing controls. The atter concept presupposes the existence of an optimal solution

power of the satisficing approach is illustrated by applications to and is usually obtained by simplifying the original problem.

representative control problems. Since a satisficing solution must meet a minimum standard of
performance, it is also different fromd hocsolutions, which
I. INTRODUCTION are often based largely on vague notions of desirability under

specific circumstances.

In this paper we introduce a concept of satisficing that also
draws on the notion of cost/benefit tradeoffs, but in a way that
CONTROL problems are typically characterized by tw@s quite different from its use simply as a stopping rule for a

desiderata that may be in tension: 1) the commitment &arch procedure based on an optimality paradigm. Section II
achieving the fundamental goal of the controller, such as ”a%velops this concept by first summarizing epistemic utility
ing, regulation, or terminal control, and 2) the commitmeRheory (a theory of cognitive decision making) and then
to a performance criterion, such as minimum control effort Qdapting this theory to the practical context, resulting in
minimum time. Usually, these two commitments are combingg new theory of satisficing control. Section Il presents a
into a single performance index to be minimized by applyingiethodology for satisficing control for problems of the general
techniques based on Bellman’s principle of optimality Ofgnlinear formx(t) = f[x(¢),u(t),t], where x(-) is the
Pontryagin's minimum principle. This view of control isstate vector of a dynamical system(-) is a control input,
designed to obtain the best solution with respect to a givgpg f(-,-,-) is a dynamical model. Key features of this
performance metric. approach are that it 1) incorporates performance measures

For many problems, however, an optimal solution is ejng design principles to characterize terminal and transition
ther intractable, is prohibitively expensive, or is difficult tqgsts: 2) is amenable to a systematic design procedure; 3)
justify because of possibly unwarranted assumptions, suchi@apable of meaningful operation in the presence of lim-
an oversimplified performance metric. Controller designs fad. or local, system models and information; 4) does not
nonlinear systems, in particular, are difficult to obtain via thﬁequire restrictive modeling assumptions such as linearity
optimality paradigm. In such cases, the engineering approaghtime-invariance; and 5) yields comparable performance
usually is either to find a modification of the problem such thg§nen applied to problems for which optimal solutions are
the optimal solution to the modified problem is a satisfactoryajjaple. Examples are presented which demonstrate the
solution to the original problem, or to adopt ad hocsolution.  gesjgn procedures and allow comparisons of computational
These approaches are, of course, problematic, and if they fallguirements and performance results with optimal solutions.
the designer must seek an alternative paradigm compatiklgction |V establishes conditions for satisficing control to be
with the information available. consistent with optimal control. Finally, Section V summarizes

Optimality is not the only possible paradigm of rationajmportant results from the paper.
choice. Economics has motivated the need for alternative
paradigms that are commensurate with the available knowl-
edge and capabilities. Simon [1] introduced the concept gf
a satisficingdecision as one that, although perhaps not op- The synthesis approach employed herein uses a temporally

. : _ _ local planning horizon to generate controls. Model predictive

Manuscript received November 7, 1995; revised April 10, 1998. | (MPC | K . hori d di

M. Goodrich is with Nissan Cambridge Basic Research, Cambridge, l\/lgé\o""trO ( ), also known as moving horizon and receding
02142 USA. horizon control, employs such a planning horizon for designing
Computer Engineering, Brigham Young University, Provo, UT 84602 USA . MPC desi . he id ificati f
(e-mail: wynn@ee_byu.edu). environments. esign requires the identification of a

Publisher Item Identifier S 1083-4427(98)08184-3. system model, and the specification of a system performance

A. Background and Solution Formulation

Related Literature

1083-4427/98%$10.001 1998 IEEE



764 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 6, NOVEMBER 1998

metric defined over a finite planning horizon. The success ofie, and success cannot always be realized due to limitations
MPC is due, in large part, to its ability to handle uncertaiof information and resources. In recognition of this fact, an
nonlinear systems with state and input constraints such aternative school of epistemological thought has emerged that
those found in complex industrial processes. Successespinfesses a more modest goal than truth-seeking. The goal of
application are supported by theoretical advances, suchtlais alternative school isrror avoidanceand the methodology
the characterization and specification of sufficient conditiomsnployed to achieve this goal is termepistemic utility theory
for stability and observability [3]-[7]. Reference [6] provideg22].
a stability theorem for time-invariant nonlinear systems, but Epistemic utility theory employs two utilities, rather than
the theorem requires that the system satisfy a number afe. The first utility is designed to characterize the truth
technical conditions that are difficult to verify. Reference [8upport of the propositions being evaluated (subjective prob-
develops error bounds for receding horizon controllers fability), and the second probability measure is designed to
nonlinear systems, but only for time-invariant systems. If timeharacterize the informatiordalalue ofrejectingthem. These
invariance does not hold, there seem to be few theoretid¢aio utilities are developed independently. For example, the
results regarding the performance of receding-horizon conttalith support of rival scientific theories may be assessed
techniques for nonlinear systems. Similar results apply ftwrough their conformance with observations, and their infor-
receding horizonH,, control [9], [10]. mational value may be assessed in terms of their simplicity,
The approach presented in this paper represents the comsg@lanatory power, or predictive power. The fundamental
guences of a decision by a cost-like attribute calieflility content of an epistemic utility-based approach is that, by
and a benefit-like attribute calleglccuracy Partitioning the endowing the two utilities with the mathematical structure of
consequence set into these attributes recalls the generaligegbabilities, they quantify the attributes of the propositions in
potential field (GPF) approach to robot path planning and obemparable units, and may be compared. Those propositions
stacle avoidance [11], [12]. In the GPF methodology, a goalighose truth-support does not outweigh their informational-
represented as an attractive potential, obstacles are represevabite-of-rejection should be rejected. All other propositions
as repulsive potentials, and the path along the negative gradigmbuld be retained as serious possibilities. This procedure
of the combined potentials is selected as a collision free pathtains all propositions that are considered “good,” without
With the application of harmonic potential fields [13], [14], théocusing exclusively on a search for one that is deemed “best.”
problem of a robot remaining in an attractive local minima ik this way, serious errors are avoided since no credible and
avoided, but the problems with forming a globally attractivealuable propositions will be eliminated from consideration.
potential field in the presence of moving obstacles remainkhis approach results, in general, in a weaker decision than
Additionally, although computationally efficient, GPF's do notloes a truth-seeking approach, since the set of unrejected
consider the optimality of the resulting path [15]. A methogropositions may not be a singleton set.
proposed in [11] deals with the moving obstacle problem usingWe adapt epistemic utility theory to action by re-interpreting
a GPF formalism by incorporating thvew-timeconcept. This the notions of truth and information in a practical setting.
concept appears to be a special case of a receding planiivg first extend the notion of “truth” to the more general
horizon as employed in MPC. By employing representatiom®ncept of accuracy meaningconformity to a given standard
of cost and benefit in a MPC format, we obtain an efficierib the epistemological context, the standard is truth; in the
method for accommodating both the fundamental controlleontroller design context, the standard is the achievement of
objective as well as run-time performance considerations. the fundamental goal of the controller. Consequently, control
Other mathematical developments [16]-[21] of the satisctions that have high accuracy support are likely to achieve
ficing concept are motivated by the desire to make robuste fundamental design goal of the controller (for example,
decisions in the presence of uncertainty. These developmesgspoint regulation). Next, we adapt the epistemic notion of
compare a utility defined over the consequences of a decisinformation to a controls context by introducing the concept
to a decision threshold. This decision threshold depends owlfyliability, meaning susceptibility or exposure to something
on nature and not on decision consequences. The approactesirable An action has high liability exposure if, inde-
presented herein is similar to these other developments in thahdently of its accuracy, it is costly in terms of resource
controls are justified on the basis of a comparison, but, lepnsumption (for example, control effort), exposure to hazard,
contrast, our approach compares two utilities defined owver other encumbrance.
the expected consequences of a decision (i.e., the decisiohet UU denote the set of possible control actions, and
threshold depends upon both control actions and the expedetd® denote the state of nature (such as the system state,
state of nature). disturbances, and plant parameter values). Bedenote the
Borel field in U. We wish to define probability functions to
characterize the accuracy and liability of a sgte B as
ll. A THEORY OF SATISFICING DECISIONS parameterized by the state of nature. We require these utilities

A. Appllcatlon of Epistemic U““ty Theory to Control Linformation, as used in this context, is similar to the usage employed

Seeking the best solution to a control problem is analogoE?S Johnson-Laird: “The more possible states of affairs that a proposition
.eliminates from consideration, the more semantic information it contains.”

to the e.p'Stem.C)lOg'C_al Stance. of Seek'n.g the truth reg.a'rdlﬁg, p. 218]. This usage should not be confused with Shannon information,
an inquiry. This epistemological goal is a very ambitioushich is defined in terms of entropy.
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to be transition probabilities. LePy : B x © — [0,1], be that is, the family of all measurable sets that maximize
a transition probability such that, for fixe#l € ©, P4(-;¥) expected epistemic utility. Let, be any member of this
is a probability measure, and for fixed € B, P4(G;-) is equivalence class. Sindg; and P, each have unit mass on
a measurable functionP4(-;?) characterizes the accuracyi/, S, # 0 if the rejectivity,b < 1. Furthermorep can always
support of elements 0B, given that is the state of nature. be chosen to ensure th&l(S,) > 0. S, is termed anaximal
Similarly, let P, : B x © — [0, 1], be a transition probability satisficing setfor rejectivity b; if G C S, then G will be
characterizing the liability exposure of elementsif termed asatisficing set
The epistemic utility functiorf22], [24]-[26] is the convex

combination of accuracy support and liability exposure  B. Characterizing the Maximally Satisficing Sets

e(G,0) = aPy(G;0) + (1 — a)(1 — PL(G:9)) (1) Although the measure#;, and P4 are obtained indepen-

dently, it is of interest to establish any natural connections

wherea € [0, 1]. After a positive linear transformation, a morebetween these two measures. We may perform the Lebesgue

convenient form for this utility function is decomposition of’;, relative toP4 to obtainP;, = Pr, +Pr,,
WheirePL1 < Py (FiL1 isﬁabsolutgly continuous with respect
e(G, ) = Pa(G;9) — bPL(G;9) (2) to Py)and P, L P, (P, and P, are mutually singular).

_ . . There exists a pair of disjoint set8; and Bs, with U =
whereb = (1 — «)/«. The parameter, is termed tha@ndex By U By, such thatP, (and, henceP,,) is concentrated on

.Of rejectlwt)?,_ n the sense Fhat large v_a_Iues oimply an Bi, and P, is concentrated od,. Let S, be a maximally
increased willingness to reject propositions. The condition

b~ 0 (a ~ 1) corresponds to minimal concern for Iiability.saltISfICIng set, and defing” = 5, N B, and 5 = 5 N Ba.

i Based on these definitions, we establish thatand P, can
The conditionb ~ 1 (a ~ £) corresponds to equal concern for L

accuracy and liability. A9 — oo (« & 0), liability concerns beLneglectle.d];n grlara_ctperlzg%. — P (SLy =P, (S =
dominate accuracy concerns, and eventually all propositions 2 A(57) = Pp(S7) = Pp, (57) = P, (51) =
with nonzero liability exposure are rejected. For fixéd

Pp(G;9) and P4 (G; 9) are probability measures, but neitherpL (51) = Py, (1) = 0 since Py, is concentrated ol and
represents the subjectillief concerning the even®. They PLI is concentzrated oL CIearIyIPA(SL)—bPL(SL) cannot
are best understood as a utility function and an inutility % oo B (S|.|)—bP (51) > Pa(Sy) — bPL(Sy)
function that happen to possess the structure of transitign. -~ ") contrad?ction 0 (g) Frren AsinbcéA(Sf) b
probabilities. P4 (G; ) is a measure of how much accuracyy, (S5 — 0 and Ps(SL) bP. (55 " b o
support is associated witt¥ when ¢ is the state of nature, it ?E)Ilows that Py, (5+) = 0. fn = -

and Py, (G; ) characterizes the liability exposure associated Because the sefL has measure zero with respect to both

with G. .
. . N . ... the accuracy support and liability exposure measures, we can,
Let the probabilityPs be a (possibly subjective) d'smbuuonwithout loss of generality, restrict attention t§, = S,

of the states of nature that represent beliefs regarding elemq%?thermore given this restriction we can, again without loss
of ©. If the state of nature is known, thefs and P may 0{ generality, restrict attention By — By énn s

be evaluated. Generally, however, we will view the state 0 By the Radon-Nikodym theorem, there exists a nonnegative

gifjurlzt? a r]?niorfs) ﬁrliaebr:g.telnaﬁFt:reol})giiIﬁsrﬁiglaesliclanguctg'easurable functiork, termed the Radon-Nikodym derivative
o B i 5

’ - . P )
that Po (W) represents belief that/ € F contains the actual f Pr, with respect toF’y, such that for any7 € 5,

Proof: P4(S1) = 0 by definition of absolute continuity.

Oc< |

state of nature. The expected value of the epistemic utility = _ =
function (2) is, forG € B P, (&) = /Gh(u)PA (o).
&(G) = / [P4(G;9) — bPL(G;0)] Po (d9) The [unctionh is also callegl thdikelihood ratio between?’;,
/o B and P4 on B. We may write
= P4(G) - bPL(@) 3) _ _ 7 i ,
Eb(G) = PA(G) — bPL(G) = PA(G) — b[PLl(G) +PL2(G)]
where _ _ _
= Py(G) — b / h(u)Ps (du) — bPy, (G). @)
_ a
PA(G) = [ Pa(Gs0)Po () @ - _ o
e In applying this theory to controller design, we will restrict

5 _ . our attention, in this paper, to single-input systems, and
Pu(@) = /@P"(G’ )P (dd)- ®) define the action, or control, spac¥, as the intervall =
[tmin; ¥max]- We require that the accuracy support and liabil-
ity exposure distribution functions assign all of their utility
mass to this interval. Lefs(u;¥) = Pa([tmin, ¢];?), and

Ly (u;9) = Pp([umin, »];¥) denote the corresponding distri-
bution functions. We may also construct the expected accuracy
support distributionfy (1) = Pa([tmin,«]), and the expected

2|n deference to Levi's termholdnesswe useb to denote rejectivity. liability exposure distribution 7. (u) = Pr, ([ttmin, ©]). We

We now offer a definition oBatisficingin terms of epistemic
utility theory. Define the equivalence class of sets

C, = {S eB:S= argglggéb(G)} (6)
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will generally have@ C IR* for » > 1, and we letFig(¥#) be from a strictly satisficing point of view, one may choose any
the distribution function corresponding to the measikg of the unrejected control decisions with confidence that the
In this paper, we will restrict our attention to continuousction will yield justifiable performance. Thus the designer
distributions so thatF'y, F;, and Fg are all differentiable, has considerable latitude in the ultimate choice of the control
with density functionsfs(u;¥) = & Fu(u;9), fo(w;9) = to be implemented.

L Fr(u;9) and fo(¥) = L Fo(v), respectively. Rewriting

(4) and (5) in terms of density functions, the expected accuraCy Strongly Satisficing Control

and expected liability exposure densities are

Fa(u) = /@ Fa(u:0) fo () di (8)

Satisficing, as defined herein, is a liberal notion of perfor-
mance: broadly speaking, a control is satisficing if the good
(characterized by accuracy support) outweighs the bad (char-
_ acterized by liability exposure). Furthermore, the maximal
fr(u) = /@fL(“? ) fo () 4. () satisficing set,S,, will generally not be a singleton set, and

o ) ) there may be many satisficing possibilities. When determining
In a deterministic environment, the state of nature is knowﬁ-control law which is to govern a plant, a single input is

and the probability density function will concentrate all ofequired. Since each controlin the maximally satisficing set
the mass on the true value; that is,dp is the true state g, s justifiable by the satisficing principle as an acceptable
of nature, thenfe(¥) = (¢ — ¥o), S0 fa(u) = fa(u;%0) input to the plant, how can a single control be seleited

and fr.(u) = fL(u; %) In a stochastic environmenfe Will —ajthough all controls inS, are satisficing, they are not
characterize the uncertainty regarding the state of nature. TRigessarily all equal. In selecting a control, if a choice exists
uncertainty may enter, for example, through process noiggtyween two controls of equal liability exposure but differing
sensor noise, or other random phenomena in the systecyracy support, it is reasonable to select the one with higher
Throughout the remainder of this paper, we will treat onlyccyracy support. Similarly, if a choice exists between two
the deterministic problem, and assume that the true statecghrols of equal accuracy support, it is reasonable to select

nature,Jo, is known. _ ~ the one with lower liability exposure. For evewye U let
Theorem 2:If f; andf4 exist, the Radon-Nikodym deriva- - - - B

tive h(u) = J’figg almost everywhere over the sB. Ba(u)={veU: fr(v) < fr(u) and fa(v) > fa(w)}

Proof: For all measurabl&? C B; we havePr = Pp,, Br(w)={veU: fo(v) < fr(u) and f4(v) > fa(uw)}

and P, (G) = [, fr(u) du. By the Radon-Nikodym theorem,
we also havePy, (G) = [, h(w)Pa (du) = [, h(u) fa(u) du. and define the set of actions that atectly betterthanw (i.e.,
Since these expressions must hold for every measurable t66t set of actions that dominatg

G C B;, we must have thaifr(u) = h(u)f4(u) almost

. / _ = B, B
everywhere. Furthermore, sindg,, is absolutely continuous B(u) alw)U Br(w) (12)
with respect 0Ly, fa(u) = 0 implies fr(u) = 0, SO that is, B(u) consists of all possible actions that have lower
h(u) = J{Z—EZ) almost everywhere oi;. O liability exposure but not lower accuracy support thanor

In our subsequent development, we restrict attention to thave higher accuracy support but not higher liability exposure.
caseP4(S,) > 0 (in controller design we requireto be small If B(u) = @ then no actions can be preferred #oin both
enough such that this always occurs). With this restriction, tlaecuracy support and liability exposure ands a (weakly)
equivalence class of maximally satisficing sets (6) becomesiondominated action.

The set
C,=<5e€B:5=argma 1-bh f. d
f { wrgglgg{/a[ (w)] fa(w) U} €= luell: Blu) =M 13)
= al‘glcl}gg{/ [falu) = bfr(w)] dU}} (10) is termed theequilibrium set. Whereas the satisficing set
G

is determined by comparing a control's accuracy support
and we may therefore view, without loss of practical signifiagainst its liability exposure, the equilibrium set is determined
cance, the following set as the maximally satisficing set by comparing controls against each other. Actiansc &
= = possesses an important equilibrium property: within the set,
S = {u: fa(w) - bfr(u) = 0} (11) perturbations inu cannot increase accuracy support without
The rejectivity, b, represents how prone the decision rule i8lso increasing liability exposure, nor can liability exposure
to rejection. The larger the rejectivity, the smaller the set &€ decreased without also decreasing accuracy support. The
unrejected elements df, sinceb; < by implies Sy, C Sj,. strongly satisficingset is defined as the intersection of the
S, will generally not be a singleton set, and there magatisficing set and the equilibrium set
even be a continuum of satisficing values. In contrast to S —£nS (14)
utility maximizing decision-making procedures, this approach b= b
relaxes the requirement for a unique best decision. Instead, alfThe necessity of answering this question is not restricted to satisficing
decisions for which the ratio of accuracy support to |iabi|it)zontrollers, but also arises for fuzzy Iog’ic controllers (FLC’s) [27]-[29].
L .. Lopsely speaking, the solution for FLC's is to apply a defuzzification
exposure meets or exceeds the rejectivity value are admitt cedure that performs some kind of weighted average using the utility of
Obviously, only one control can actually be implemented, butach admissible control in the weighting.
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Observe that the definition of the equilibrium set and thef liability exposure density functions is the set of density
strongly satisficing set apply fo¥/ finite, countable, or un- functions that are convex ovéy. That is, for A € [0,1],
countable. Afr(ur) + (1= N fr(u2) > frQur + (1 — Nup) for all
Theorem 3:1f U is closed, thers, is closed andS, # . uy € U, up € U. For these classes, the following theorems are
Proof: Let p(u,v) = | fa(uw)— fa(v)|+b|fL(v)— fL(v)]. important in developing a synthesis procedure. Recall from
Then p(u,v) defines a metric on the equivalence class ¢L7) and (18) thatu,s and u; are the most discriminating
points with the same accuracy support and the same liabil@ggntrols forb = 0 andb — oo, respectively.
exposure. Let be a point of closure af},. Then for alle > 0 Lemma 4: For continuous accuracy support and continuous
there is au. € S, such thato(u.,v) < . Now liability exposure,& C {u € U : fi(u)ff(x) > 0} U
{wa,ur} where

e > p(us,v)
= |Ji4(u5) _fi(v)|+b|fli(u6) _fI:(U)| f"'(u) _ lim fA(u—i-)\)—fA(u) (19)
2 [falue) = bfr(u)] = [fa(v) — bfL(v)] AV T30 A
implies thate + [f.a(v) — bfr(v)] > [fa(us) — bfp(u)] > _ o o -
0. This inequality holds since.. € S, implies fi(u.) — denotes the right derivative gfy, and similarly definef;” as
bfr(u.) > 0. This is true for anye > 0, which means that the right derivative offr. o
fa(v)=0bfr(v) > 0, implying thatv € Sy. Thus,S, is closed. Proof. Sincew andwy, represent the most discriminat-

We now shows, is nonempty by constructing a specifidng controls forb = 0 andb — oo, respectively, by the proof of
element of this set. Define thmost discriminatingsatisficing Theorem 3, they are ifi. For any other € &, concavity off 4

control and convexity offy, imply that accuracy support and liability
_ _ exposure are either both nonincreasing or both nondecreasing
tp = arg sup {fa(z) = bfr(2)}. (15) " in the neighborhood of.. Hence,f7 (u)f; (1) > 0. O

If, in addition to being continuous, botf, and f;, are dif-
Since S, # 0 (b is chosen to guarantee this)p exists, but ferentiable with derivatives denotefl, and f;, respectively,
may be an equivalence cl_ass if (15) goes not hgve a unighe equilibrium set satisfies

solution. By constructionf(up) — bfr(up) > fa(u) —

bf_‘rl(u) Yu € U, or, equivalently, Ec {U, clU: fj{(u)fi(u) > 0} U {U,A,U,L}. (20)
Jalup) = fa(u) 2 0[fr(up) — fr(w)] YueU. (16)

For fa(u) > fa(up), (16) implies fr(u) > fr(up). For
fr(w) < fr(up), (16) implies fa(uw) < fa(up). Hence,
there is nouw € U such that bothfr(up) < fr(w) and
fa(up) > fa(u) which means thatp € £.

Thus &, always contains at least one element, namely
most discriminating satisficing control. = 0, the most

Moreover, for concave 4 and convexf;, the following lemma
establishes a necessary and sufficient condition for determining
the equilibrium set.

Lemma 5: For differentiable concavé, and differentiable
convex fr

discriminating control is thenost accuratesatisficing control, E={ueU: fi(u)fr(u) 2 0} U{ua,ur}.
4 = arg Fa(2)V. 17 _ _
twa = arg Sup {fa ()} (A7) proof: Letu e {v e U: F\(v)F(v) = 0} U {wa,uz}.

e ) If w=wug4 oru=ugthenu € € since the most discriminating
This limiting case represents a very aggressive stance dighq| is always in the equilibrium set. Otherwise,must

achieve the goal at the risk of excessive cost. A most accurggﬁisfyﬂ(u)ﬁ (x) > 0 which implies thatIA > 0 such that
satisficing control may be considered for cases with Iar%(u)_)\fi(uj _ 0._However, since the sum of two concave
variations inf,4 and small variations iry;,. Another limiting functions (fa(u) and —A\Jz(w)) is also concave then the
case occurs a — oo, resulting in aleast liable satisficing |\ nich satisfiesf’y (u) — Afz(u) = 0 is a most discriminating

control, control forb = A. Since a most discriminating control cannot
uy, = arg ing {fr.(2)}. (18) be dominatedy € £. Thus,
ZE€5h
This procedure is very conservative, and reflects a willingness ED{ueU: fi(w)fi(u) >0} U {ua,ur}.

to compromise the fundamental goal in the interest of reducing
cost. It may be appropriate when there are large variations

- . i oo Mis result, coupled with Lemma 4 establishes the desired
fr. relative to small variations irf 4.

result. O

) Theorem 6:Let U C IR. For f4 a concave density function

D. An Important Special Case and f;, a convex density function ovdi the maximal satis-
An important class of accuracy support density functions fEing set.S; is convex. Moreover, for concave differentiable

the set of density functions that are concave dverThat is, accuracy support and convex differentiable liability exposure,

for A € [0, 1],Afa(u1)+(1=X) fa(uz) < fa(Aur+(1—Nuz) the equilibrium set and the strongly satisficing s&, are

for all w1 € U, wo € U. Similarly, an important class convex.
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Proof: Convexity of the maximal satisficing set is shown

by establishing that, for; € S, and uy € S,, the point i ' i
vx = Mg + (1= Muy € S, for any 0 < A < 1. By concavity oosr N\
of f4 and convexity off;, we get that 004l |

FaPus + (1= Nua] > Afa(wr) 4+ (1 = A) fa(uz) ool o

—fo[Aur 4+ (1 = MNug] 2 =Afp(ur) — (1= A)fr(uz), 003 N — 5 —
hence 0.025| \\ — Sy —
Fala + (1 = Nug] = bfz[Mug + (1 — Nug] ooz /\

> Al[faur) = bfp(ui)] + (1 = M)[fa(uz) — bfr(u2)]. B
Now, sinceu;,uy € S, we know thatfa(uy) — bfr(u;) > 0 o ) .
and f4(u2) — bfr(us) > 0, whence 0.005F o X

Falva) = bfr(va) > 0. %0 S5 o s 0 Y P 20

Thus S, is convex. ) L . _ ~
. . . Fig. 1. Satisficing regions for a concavg; and convexf; plotted as
To establish the convexity &, first note that by Lemma 4 gensities.

Ec{uelU: fi(wfp(u) 2 0} Ufus,ur}.  (21)

If uqs = ur, then& = {ua}. Otherwise, letu;,us € € with

u; < uz, and suppose’,(u;) and f/(u2) are of opposite
sign. Sincef, is concave, this requires thdt (u,) > 0 and

f4(u2) < 0. Foru; andu, to be elements of, requires that
fi(u1) > 0 and f (u2) < 0, which is impossible sincé, is

convex. Thus the directional derivatives pf and f;, cannot
change sign ir€. Since £ is concave, there can be at most
one sign change in the derivative, so it can be concluded th
f4(vy) has the same sign &, (u,) and f/,(u2). A similar
argument holds fof; (v,), and consequently, (vy) fi (va) >

0 so, by Lemma 5y, € £. Finally, since the intersection of . 2 =
convex sets is convexs, is Convex. Sy consists of those: for which f,(u) exceedsfr(u). The

This theorem means that, for concave accuracy suppg?tI S CONSISts OI thc_»st& ;‘or Wh'_Ch nc;_ cglr]:rol with hlghler |
and convex liability exposure defined on an interval = accuracy support exists 1or a given fabliity Exposure 1evel,

[thonins e, the maximally satisficing set is also an intervaland for_ which no control with lower liability exposure exists
Moreover, £ = [min{u.,us}, max{us,uz}]. In the next for a given accuracy support level. Observe thatdoe S,

’ ) ) 7 N 1 ih 1
section, it will be shown that this is a useful characteristic. the accuracy support and liability exposure have slopes with

The following theorem establishes an equivalence betwe%w same sign (see Lemma 5), whence controls in this region

the equilibrium set and the set of most discriminating control@’™® N equilibrium.
This theorem is useful because it says all elements of
(not just the endpoints; 4 andwy,, are maximizing elements,
whencesS, contains only satisficing and maximizing elements. Accuracy support and liability exposure are mechanisms
Theorem 7:LetUJ € IR, let f4 be concave density function,to implement the goals and design ideals of the problem. If
differentiable over the interior of/, and let f;, be a convex information is available over the full extent of the problem,
density function, differentiable over the interior @t Then for then the functions may be designed from a global perspective.
everyu € £ there exists a rejectivity valuk € [0,00) such If a global solution is not available or is not implementable,
thatw is a most discriminating satisficing control. Furthermoraye may still incorporate whatever information is available to
if f4 — bfr, is strictly concave for every € [0, ), then for design the accuracy support and liability exposure functions
every suchb there corresponds a unique most discriminatinga the receding horizon concept. By permitting the designer
satisficing control. to tailor the structure of these functions according to what is
Proof: Let v € &. Define u, = min{ua,ur} and actually known or defensibly assumed, the problem may be
w* = max{u4,ur }. For these limiting cases, it has previouslyast in its natural setting. This capability frees the designer
been established that by assigning rejectivity valuds-ef o  from the need to make arbitrary assumptions simply to invoke
and b = 0, respectively,u;, andw4 are most discriminating a global solution technique.
satisficing controls. Fix: € (u.,u*). The functionf4(v) — In this section, we first develop a synthesis procedure for
bfL(v) is extremized whery’,(v) — bf;(v) = 0. If f; = 0 satisficing control using receding control horizons. We then
then f, = 0 whence, by concavity of4 and convexity of look at two problem classes: quadratic regulation of linear and
fr, v = us = uy, for any b. Otherwise, whenf; # 0, nonlinear systems, and minimum time problems. The linear

evaluatingf’, (v) — bf;(v) = 0 atv = u implies b, = ’}48
is the rejectivity required to render a most discriminLating
satisficing control. Furthermore whefiy — bf;, is strictly
concave for allb € [0,00), © = argmax,c(u, u){fa(v) —
bfr(v)} is the unique most discriminating satisficing control.
O
Fig. 1 illustrates the maximal satisficing and strongly sat-
ficing sets for a concave differentiablé, and convex
ifferentiable f.4, with the accuracy support and liability
exposure plotted as functions@f The satisficing and strongly
satisficing sets are shown on the plot toe 1. In the figure,

I1l. A PPLICATIONS OF SATISFICING CONTROL
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quadratic regulator provides a benchmark for performance ath@ influence vectorsof the form
computational comparisons; the inverted pendulum (nonlinear

quadratic regulator) provides a solution for a nonlinear plant €o(u(t)) = {&o(t+ 1), Lot + D)t
with nonstationary plant parameters using a computationally E(u(t+1)={a(E+2),...,&(+ Di1)}
feasible solution method, and Zermelo’s problem provides a : (24)
benchmark for performance and computational comparisons '
of minimum time problems. Eo1(u(t+d—1)={&1t+d+1),...,

fa—1(t +d+ Diya)}
A. Controller Formulation The collection{&(u(t + £)), 0 < ¢ < d — 1} then represents
1) Receding Planning Horizons and Influence Vedhe state elements that are explicit functions:(f), . . ., u(t+
tors: Consider the nonlinear, time-varying, single-inpu¢ — 1), and using these elements we may formulkteal
n-dimensional system performance indexe®[&o(u(?)), . . ., {a—1(u(t+d—1))] and

Aléo(u(t)), ..., €u—1(u(t + d — 1))] to computef.s and fy,.
As demonstrated in the subsequent examples, these local per-
x(t+1) = flx(t),u(t),t], t=0,1,...,ty—1 (22) formance indexes are formed according to the same principles
that are used to define the global performance indexesd
L.
together with the performance index 2) Synthesis for Restricted Plant Structur&iven this re-
ceding horizon framework and the notion of an influence
vector, we now restrict attention to a set of fixed conditions and
design a satisficing controller for the resulting structure. The
J = px(tp)] + Z Lx(t), u(t), 1] (23)  use of an influence vector allows us to account for the relative
=0 order of the system (see, for example [4]) while using Euler
integration. We can thus use this simple discretization method
where ¢ and L are given performance indexes (for exam(the firsF res'griction) producing the discrete-time dynamical
ple, quadratic forms), and where the terminal timg, is €XPression given by
unspecified. General global s_olutions for this nonlinear control x(t +1) = x(t) + Tx(t) (25)
problem are not easily obtainable, but many such problems
may be addressed from a local perspective. One natuiglere is the sampling time. The second restriction is that
approach is to invoke a receding, or rolling, horizon contrale consider single input nonlinear systems of the form
strategy [6], [8]. This approach consists of implementing
a feedback controller through a series of repeated open- x(t) = fx(t), t] + D[g[x(t), t]]h[u(t), 1] (26)

Iqop calgulatlons pased on the instantaneous state. Fo\r/vt?ere eaclf, g, h are bounded, and whetkeis differentiable
discrete-time receding horizon of lengththe nextd values,

: f 4 d— 1) are computed as functions of th with respect tou for all time (this allows us to minimize the
iﬁsrg’n't's;t’;i( t T_he )c];),ntrom ) ispil:n Iemenltje d ' roducin Socal cost functions presented in the next section); and where
ex(t). ) . () . P  Pre Y pisthe diagonal operator which places all of the elements of
a statex(¢ + 1), the horizon is shifted forward one time unit, n x 1 vectory into the diagonal elements of thex n,

and the process is repeated. For example, a one-step Conrﬁglrix Dly]

zggtzr(c))r f(;lr E;)CV\:?::S tr?:'.rﬁc:gﬁ]:ris'ggro_f ; ngto(ttr)] trt]e We now construct the influence vectors for this restricted
u : ! ' - u(t) class of systems. Let the subscriptdenote the:th ele-

and u(t. + 1) are required. . . ._ment of the vector; for example;; is ith element ofx =
In this paper, our approach is to employ a receding honzcrgrg1 #n]% and fi(x,t) is the ith element of the vector
1t )

and to specifyf4 and fy, as functions of the control input, o T . . .
and the state of naturé, such thatf4 assigns high accuracyféf? z;e[zl;lisl)(:nt)’v'ié' ’(g’slg)_((’zt)s]) .b;he discretized dynamics

support to those control values that tend to achieve the goal
of the system, and, assigns low liability exposure to those zi(t+1) = filx(t),t) + gs(x(t), ) h; (u(t), ).
control values that tend to conform to the design principles.

Because the System model (22) may involve de|ay5 (We W'ﬂhe fO”OWing procedure then determines the minimum delay
assume it is causal), it is possible that + ¢) will have an ¢; required beforer;(t+¢;) is influenced byu(¢). At any step,
explicit influence on elements of the state vector beyond tid Z be the set of indexes for which is known.

t + ¢ + 1st step. Consequently, we may define #heplicit 1) Seti = j = 1.
influence horizorof u(t + £), denotedD; ¢, as the maximum  2) For eachi, if g;(u(t)) # 0 seté; = j. (These elements

ty—1

number of time increments for which(¢ 4 ¢) has explicit are immediately influenced by(¢).)
influence on any component of the state. 3) If all 6; are known quit. Elsg = j + 1.

If Diye > 1, letée(t+£+F%) be the sub-state of(t+ £+ k) 4) ldentify all f;[x(t+j—1),t+j—1], ¢ € T that depend
that is an explicit function ofu(t 4+ £). Continuing in this upon anyzy, € x(t+j— 1), k € Z. For each of thesé

manner, we may generatesequences of substates, denoted  seté; = j. (These elements are not immediately (at time
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t+j — 1) influenced byu(t), but instead are influencedThis function represents the local cost of the decision to take
attimet+j by x(t+5—1) via f;[zp(t+75—1),t+5—1].) actionu. Actions that result in large values g§, will have
5) Repeat step 3. higher liability than actions that result in small values fGf
This procedure first identifies elemenis(t + 1) affected These valuations are made independently of the likelihood
directly byu(t). It then identifies functiong; that are affected that a given choice will achieve the desired goal—the only
by =;(#+1). These functions will directly affeat; (¢+2) which consideration is liability exposure, which we equate with cost.
will then affect newf;, and so on. Anyé; not identified in ~ 4) Independence of Accuracy and Liabilitfthese  local
n — 1 steps (given thak is n x 1) are not affected by:(t) cost functions associate controls with high accuracy support
(i.e., are not controllable at tim&. The influence vector is (high f4) with small terminal cost, and controls with high

then identified as liability exposure (highfy) with large incremental cost. When
- accuracy support exceeds liability exposure, the corresponding
So(u(t)) = [x1(t +61),. ., zalt + 60)] control produces a terminal state of sufficient value that

and the influence horizo®, = max,_; ., 5. th mp_rementgl effo.rt.requwed to reach the terminal state
i is justified. This explicit tradeoff between tolerance for goal

Identification of the influence vectogg for j = 1,...,d— hi ¢ h . i ithi ai
then proceeds analogously. However, for purposes of identify: levement (such as maximum position error wi 'n a certain
olerance) and effort (such as energy consumption) is of

ing useful local cost functions, we introduce a third restrictio . X : .
undamental importance in physical controller design.

Although we allow the system matrices (such fds ¢)) to E oball imal ve (1 lanning hori
vary with time, we require that the influence horizén and i roma gq ally optima perspecuve (long planning OI‘IZO'I"I)
this tradeoff in the cost function can be resolved by analyzing

each¢; are constant. We refer to such a system asstricted he alobal ; £ th i iroller. H
time varyingsystem, and this restriction allows us to use Ioc% € giobal performance of the resulling controfler. However,

cost functions that employ the same influence vector structu em a Iocal_ perspecnv_e with unknown time-varying condi-
Thus, & (u(t + k) = [z1(t + k + 61) en(t + k + 6,7 tions the optimal resolution between the need to, for example,

foral k= 0. d—1. regulate the system without expending excessive fuel, cannot
A be computeda priori. Instead, by independently allocating a
unit of accuracy support over all possible controls and a unit
ﬁ)é liability exposure over the same set, the benefit/cost tradeoff
can be justifiably performed without resorting to analysis of
lobal performance. In other words, the benefit and costs of

3) Constructingf.4 and f;, Using Local Planning Horizons:
From a local perspective, we vietw d as the terminal time,
ts. Let the state of nature include the current state of t
system, that isp? = x(t). Because we associatg; with

th I, fa[w; x(#)] is designed to have | lues fof \
e goal, fa[wix(?)] is designed to have large values Ocontrol can be independently assessed and the tradeoff between

u = [UO, . ud_l]T such tha@[‘fo(uo), - ,Sd_l(ud_l)] is . . .
small. We obtairy., by negating and normalizing this function.these elements can be performed using local information.
Define
B. Linear System with Quadratic Performance
galu x(t)] = Zseul%{@[.fo(zo), -5 €a-1(za-1)]} Since the solution to the optimal linear quadratic regulator
— B[Eo(uo), . - Eui(ug_ )]+ (27 is yvell known, it proyidgs a conyenient be.nchmark agai_nst
[€o(uo) §a-1(ta-1)] @" which to evaluate satisficing solutions. Consider the following
wherez = [,...,zq_1]*, U¢ is the d-dimensional control time-varying single-input system:

spacel/ x --- x U, ande is a small number inserted to insure
that all of the values of 4 are nonzero. The probability density X(t +1) = A(O)x(t) + B(t)u(t), t=0,1,....¢;—1 (31)

function £ is obtained fromy, by normalizing wherex(t) is ann-dimensional state vector(¢) is ann x n

galu;x(t)] matrix, »(t) is a scalar input, and(¢) is ann-dimensional
vector. We wish to choose the control according to a quadratic

o gales x(@))de f ind 23) b
erformance index, so ecomes
fa takes its maximum at the valuesthat drive® closest to P (23)

zero, but also assigns significant accuracy support to control = x (¢)[P — Q(tf)]x(t;)

falwx(®)] = (28)

values in the neighborhood of this control value. tp—1
The liability exposure density functiofi;, is a measure of + Z XY (t+ 1)Q(t + 1)x(t + 1) + R, (H)u(#)] (32)
how well the control decisiom complies with the incremental =0

cost functional (cost-to-go)A[&o(u(t)), ..., &u—1(u(t +d —

1))], from the local perspective. Consequently we define whereP > 0, Q(t) > 0 and R, (¢) = 0.

To demonstrate the application of satisficing control, we

gr[u;x(t)] = Aléo(uo), - -, &a—1(ug—1)] develop an epistemic utility-based approach to a temporally
— inf {A[€o(20), ..., &u_1(za_1)]} + €. (29) local version of this problem. Locality is invoked via a
zcU

receding horizon control strategy. The most restrictive such
Converting this into a probability density function by normalversion is a one-step control horizon, that is= 1. It is
izing yields important to emphasize that, because the satisficing controller
) uses only temporally local information, it is insensitive to
Frlwx(t)] = gulux(?)] ) (30) a time-invariance assumption. Thus, the matriegsB, @,
Jya grlz:x(8)] dz and R may be time-varying without appreciable change to




GOODRICH et al.: THEORY OF SATISFICING DECISIONS AND CONTROL 771

the procedure. Furthermore, these matrices need not evenwiit normalizing term
known in advance of the instantaneous horizo#,d. In this u
!;grﬁggs:e, it would not be possible to obtain a globally optimal Galx(t)] = /u g (w; x(8)) duw. 43)
5) Derivation of Accuracy Support and Liability Exposure:
Let Uy, = (—um,um) be a finite open interval representing®dain, both (42) and (43) can be easily obtained in closed
the range of admissible controls. We begin by specifying form using (33).
andg;, according to (27) and (29). To calculatg, we observe The most accurate and least liable controls are given by
that “regulation” occurs when all terminal substatesxirare _
zero. Thus, we penalize all terminal states equally whereby we ua = ug, = —[BT®)BO] BT (HAM)X() (44)
setP — Q(t;) = I. For the problem addressed in this section, ur, = ug, = [Ru(t) + BF(H)Q(t + 1)B()] ™
the explicit influence horizon i®; = 1. The influence vector X BT(t)Q(t + D) A)x(1). (45)
is &o(u) = x(t + 1) = A(t)x(t) + B(t)u, where we have
dropped the time dependence @rto emphasize that at eachin this development, all belief is placed anwhencef () =
time step a new control is generated. Accuracy support is bag&; x). Becausef 4 is concave ang;, is convex,S; is convex
on the local performance index (see Theorem 6), which implies that all possible strongly
T satisficing controls may be obtained via convex combinations
Ql€o(w)] =x" (¢ + 1P — QU plx(t +1) of ur, andw,4. For A € [0,1] definewuy = Aup + (1 — Nua.
= [At)x(t) + B(t)u]" [A(®)x(t) + B(t)ul.  (33) For A ~ 0, the control tends to reduce the accumulated
Similarly, liability exposure is based on the local performanc pst at the expense of large termlnql error, and Yo 1,
index the control tends to reduce the terminal error at the expense
of the accumulated cost. Thug, is a design parameter for
Algo(w)] = xF (4 D)Q(t + Dx(t + 1) + R, (t)u? a synthesizing procedure. There exists\g such that the
= [A(®)x(t) + B(H)u]T Q(t + 1)[A(t)x(t) most discriminating control is given byp = wuy,. The
5 most discriminating controk:, can be calculated directly
+ B(t)u] + R, (t)u". (34) . . . .
in a manner similar to the calculations af; and w,, (i.e.,
Becauseb andA are quadratic in, it is possible to identify minimizing f4(u) — bfr(u) with respect tou), yielding

the minimum of these local functions - L
up =—[B* ()T +VQ(t+1)B(t) + ¥ R,(t)]”

ug, = arg min S[o(w)] (35) x BT(4)(I 4+ V' Q(t + 1)) A(t)x(¢) (46)
ue, = arg min Alo(w)] 59 herew — pZaful Let Pp(t+1) = I +H/Q(t + 1) and

G [x(t
From an implementation perspective, it is helpful to allocate alkfine the satis[fk(:lng gain
of the accuracy support mass and all of the liability exposure
mass to the equilibrium set. It is easily shown that for quadratic Kp(t) = [BT($)Pp(t+ 1)B(t) + V'R, (1)~
performance indexes the boundaries of the equilibrium set are x BY(#)Pp(t + 1)A(?) (47)
determined by the minimum values &f and A. Let

) so thatup = —Kp(t)x(t). The satisficing control for the
we = minfue,, ue, } B7) linear quadratic regulator is a state-feedback control, and has
Ut = maX{UsA,UsL} (38) a structure similar to the optimal feedback control. Because
U= [u.,u] =€ (39) the gainKp is a function of the stat&(t) (via &), however,

_ the feedback is not linear.
and assumer,, > |u.| andw,, > |u"| so that the boundaries ) Simulation Results and Comparison to Optimal Control:

of Un, do not affect these values. o ~ WhenA(t), B(t), Q(t) and R, (t) are defined for all time and
SinceA[€o(u)] is quadratic, it assumes its unique miNiMunknown beforehand, the optimal solution can be obtained of the
at ug, . Thus, (29) becomes form w(t) = —K(#)x(t), where K (¢) is the Kalman gain (see
gL[U/;X(t)] _ A[SO(U/)] _ A[SO(U/SL)] +e (40) [30, Theorem 6.28])
with normalizing term K(t) = {B"®)[Q(t+1)+ P(t + )] B(t) + Ru(t)}
x BY®[Q(t + 1) + P(t +1)]A(t) (48)
Gr[x(t)] = / gr(w;x(t)) dw. (42)
s and where P(t) = AT@®)[Q(t + 1) + P(t + D][A®}) —

Both (40) and (41) can be easily obtained in closed form usidg(t) K (¢)], with terminal condition(t;) = P—Q(t;). In the
(34). Similarly, since®[£,(«)] is quadratic inu it achieves its Special case wherd(t), B(t), Q(t), and R, (t) are constant,
maximum atug, when restricted t&. Hence, (27) becomes, the system is time-invariant and a steady-state solution exists
of the formu(t) = K..x(t), where the steady-state Kalman
galw;x(1)] = ©[€o(ue, )] — 2lo(w)] + ¢ (42)  gain K., = (BTSB+R)~'BTSA, andS is obtained via the
“We postpone such a demonstration to the inverted pendulum examplealgebraic Riccati equation [31, Egs. (2.4)—(12)].
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Fig. 2. Performance results for the single-agent linear regulator problem:

control history and (b) phase plane.

25

inating satisficing control:, was employed. For comparison
purposes, we define the optimal cost functign— oo

T = gx(t) 1P~ QU )
+ % ; x(t+ D)7 Qx(t + 1) +u(t)" Ryu(t). (49)

The steady-state optimal cost for this problemJis = 38.3,

and the cost for the one-step controllers (denoted;oywhere
subscripth indicates rejectivity) are/; 3 = 42.5, J1.¢ = 39.9,
and./; g = 40.0. Thus, performance degrades approximately
4% if a satisficing solution is employed even with a planning
horizon of d = 1. Additionally, since the normalization
constantss 4[x(¢)] and G [x(t)] can be determined in closed
form as functions of: [33], the calculation of{;; consists of
one matrix inversion, seven matrix multiplications, and a small
number of scalar additions and multiplications. This; can

be calculated with no substantial computational burden and
thus does not significantly increase computational complexity
when compared to the steady-state linear state feedback.
For the linear problem, these results are perhaps not very
surprising since the satisficing receding horizon solution is
similar to other bounded-memory approaches (see, e.g., [6]
and [8]) known to have similar properties. We will have more
to say about the factors of performance and computational
complexity in the other examples.

C. Nonlinear, Nonstationary System with
Quadratic Performance

An important control problem is the nonlinear, nonstationary
regulator problem of the form (26). Suppose we wish to
regulate

x(t + 1) = £[x(t), u(t), 1],

x(0) =x9, t=0,1,2,...

(50)
\(/%ere f is a nonlinear vector function, about the origin

x = 0 in such a way that the performance index (32) is
kept small. An optimal solution would minimize this per-

To compare the optimal and satisficing control policie§ormance index but, unlike the linear regulator system, no
we use an unstable second-order linear time-invariant systg}era| systematic solution has been discovered for the general

example taken from [32]. Let

A= 0.9974 0.0539 B— 0.0013
T |-0.1078 1.1591 ~10.0539

0= [0'25 0 } R, =[0.05] P=1I.

0 0.05

nonlinear problem. A conventional approach is to linearize
this system about an equilibrium point and apply linear system
techniques, resulting in at least a spatially local solution whose
functionality is problematic. Techniques, such as feedback
linearization, adaptive control, and gain scheduling are based
in large part on such assumptions.

Since negligible performance is lost by using steady- In this section, we apply a satisficing receding horizon

state gains, we compare with the results usiAg,

control to a problem that has proven to be surprisingly difficult:

[-0.5522 —5.9690]. The resulting control history is plotted inThe control of an inverted pendulum in a vertical plane
Fig. 2(a), with the solid curve representing the optimal steadyrith full circular freedom by applying a lateral force to the
state control, and the dashed curves representing the one-stap to which the pendulum is attached, while simultaneously
satisficing control for three different values of rejectivity.
The steady-state optimal trajectory is shown in Fig. 2(b) asConsider the apparatus illustrated in Fig. 3. The problem is
the solid curve, and the solution of the one-step satisficitg bring the pendulum from vertically downward to vertically
epistemic utility-based controller is displayed with the dashagpward by applying a force to the cart. This problem is
curves for three different rejectivity values. The most discrinprototypical of many nonlinear control problems, and thus

regulating the position of the cart.
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— cos

= 58
ll} ga(x) I(M + msin® ) (58)

i 1
: = 59
; 94(x) M—i—msian/) (59)

where
M  mass of the cart;
l length of the pendulum;

m  mass of the pendulum;
i»  angle from vertical (measured counterclockwise);

!i ,f " F i z horizontal position of the cart;
i w  control input, is a lateral force applied to the cart.
I | M 1) Derivation of Accuracy Support and Liability Exposure:

Using Euler integration with sample timg, the equivalent
discrete-time dynamical expression is

. . x(t+1) = x(t) + T{f[x(t) + g[x(®)]ul(t)} (60)
' for ¢ = 0,1,.... With this discretization procedure;(t + 1)

and z(¢ + 1) are not explicit functions of«(t), but ¢ (¢t + 2)
and z(¢t + 2) are explicit functions ofu(¢). Thus, D, = 2,

i e and we may identify the components of the influence vector
Fig. 3. Inverted pendulum on a cart. ‘50(“) = {£O(t + 1)a £O(t + 2)} as
bt +1
makes a good test case for satisficing control. Traditional ¢

<

controllers linearize the dynamics model of the pendulum in a _
small region within, say 10of the vertical. More recently, a
fuzzy controller trained by a genetic algorithm has been showpq

O LTl g
(0)+ T+ aalx(Ou())

to balance the pendulum 90% of the time if the pendulum is

given a random initial position within 80of the vertical and &y(t + 2) = [z/}(t + 2)}

a random initial velocity less that 8& [34]. In this section, #(t+2)

we will design an epistemic utility-based controller with the _ [w(t) + 2T fu[x()] + T*{ fa[x()] +93[X(t)]u(t)}}
control horizond = 1 which will control the pendulum given 2(t) + 20 fo[x()] + T*{ fu[x(D)] + ga[x(O)]u(®)} |’
any set of initial conditions, while simultaneously positioning (62)

the cart at a desired point. The only restriction made is that . .
the initial pendulum velocity be small enough so that th We adopt the same quadratic performance indexes (33)-(34)

: : . . that were used for the previous linear quadratic regulator
sample interval is much less than the rotational period @ . . .
) ample. Since the inverted pendulum is a regulator problem,
the pendulum. To render the problem nonstationary, we w, ; )
. e goal of the system is the same as for that problem;
further assume that the mass of the penduluimis a random : . .
namely, bring the system to rest at the desired point. Let
walk whose futured values are known. Q) [Qp(t) 0 ], where, and Q, are2 x 2 matrices
Let x = [¢, 7,7, #]7 denote the state of the cart/pendulum 0 Q. r v

system. The continuous-time dynamical equation for this pro\LY-ith Qp(ty) = Qulty) =0, and letP — Q(ty) = I. The local
performance indexes then become

lem is
e — £+ g Gy Pl =&+ 2600+ 2+ Dbt +1) (63)
and
where f = [f1, fo, f3, f)]" and g = [91,92,93,94)]" are
given by Al€o(w)] = &5 (¢ +2)Qp(t + 2)&0(t +2) + &5 (1 + 1)
() = 3 52) X Qu(t+ Déo(t + 1) + R, (H)u? (64)
1(x) =
folx) = 2 (53) in accordance with (27) through (30).
) ) ) - From these equationsf4 and fr may be calculated in
Fa(x) = (M +m)gsing — ml;}osz/;smz/)z/) (54) accordance with (27), (29), (28), and (30). Thus, problems
(M + msin” ) with linear dynamics and nonlinear dynamics are both treated
ml sin 1) — mg cos 1 sin 1 exactly the same; neither linearity nor time-invariance are
fax) = M + msin 9 : (55) exploited. The resulting most discriminating controller is, after

some calculations,
g1(x) =0 (56)  up = —[GTXOII +V'Q(t + D)GxH)] + V' Ru(t)] 1
92(x) =0 (57) x GFx(W)](I +V'Q(t + 1)) F[x(t)] (65)
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Fig. 4. Phase planes for the inverted pendulum on a ear=(constant): (a) rotational phase plane (in radians and radians per second) and (b) translational
phase plane (in meters and meters per second).

where ol ' i
Glx(t) = [Paslx(t)] T2alx(t)] Toslt] Tosbe(t)]”
T2f3[x; (£)] + 2T0(t) + x(t
PO = | el 0| 1
THO]+ ()

The following values were used in the simulatiaf(t)
30 1 0 0

1 03 O 0
0 0 02 02
0 0 02 0.2
0.21 kg, I = 0.61 m, T = 0.01 s, andUU = [—1000, 1000].
The off-diagonal terms in)(¢) reflect coupling betweer)
and z necessitated by one control input but two degrees ab ‘ ‘
freedom in the system, namely the rotational and translational © 500 1000 1500
components. Fig. 5. Control inputs for the inverted pendulum on a cart (time measured
2) Simulation Results and Discussion of Optimal Solution®; 0.01 s increments).
As a baseline, we first present results for the time-invariant
case, that isyn(t) = m, a constant; we then present results An interesting feature of this controller is that jumps occur
for m(t) a random walk. Fig. 4(a) and (b) illustrate then both translational and angular velocity when the pendulum
rotational (pendulum) and translational (cart) phase planes &wings through)) = —«. This phenomenon is a consequence
the constant mass case. The Symbol represents the initial of the coupling between translational and rotational position in
conditions (the cart at the origin with the pendulum in thehe liability exposure density function, which causes a polarity
vertical down position) and thex” symbol represents the switch, denoted bys; in the figure, to occur betweery, and
terminal conditions (the cart at the origin with the pendulum . On one side of the vertical,;, < 4, and on the opposite
balanced in the vertical up position). side, u;, > ua4. This polarity switch creates a large change
Fig. 5 provides the control time history for this problemin w5, and the resulting change in rotational rate then acts to
The system achieves its desired objective of balancing thestore the control to near its value before the polarity switch.
pendulum at the origin by swinging the pendulum back anthus, the phenomenon appears as an impulsive control input
forth while the cart oscillates around the origin. As the carthen the pendulum goes through the vertical down position,
oscillates, the pendulum gathers momentum. In the transte illustrated in Fig. 5.
tional and rotational phase planes, this motion is manifest agrig. 6(a) and (b) illustrate the rotational and translational
growing spirals. When the amplitude increases sufficientlphase planes for the random-mass case. Hefe,+ 1) =
the oscillation ceases and the pendulum then converges tosthg) + »(t), with v(¢) an uncorrelated process with each
vertical upright position. Finally, the cart returns slowly to théime-sample drawn from a uniform distribution over the in-
origin. terval (—0.01,0.01). Note that, although the trajectories differ

’ Ru(t) = 10_4, M = 0455 kg, m =

—40}F i
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_4F

@ (b)

Fig. 6. Phase planes for the inverted pendulum on a(eart= randony: (a) rotational phase plane (in radians and radians per second) and (b) translational
phase plane (in meters and meters per second).

guantitatively from those of the constant-mass case, the qual- y

itative behavior is very similar. The fact that the massis —___________ -
random has no effect on either the controller structure or design '
procedure.

It is possible to construct a solution to the discretized
nonlinear problem using dynamic programming. However,
such solutions can only be constructed wheft) is known for
all time. In the absence of such prior information, either global
robust control methods or receding horizon methods would be
required, but no systematic results of comparable generality

regarding the inverted pendulum are known to the authors. In 0O >

summary, the satisficing approach provides a solution to this X
problem which could, in theory, be improved using iterative =

optimal control methods (such as [35]). Since closed form P

solutions for the controller can be obtained, computational
complexity is not a significant issue.

D. Nonlinear System With Minimum-Time Performance

In this section we apply epistemic utility-based control the-
ory to Zermelo’s problem. Zermelo's problem is a minimum
time problem with nonlinear dynamics for which an optimal
solution is known [31], [36]. We first present the satisficin§'d- 7- Geometry for Zermelos problem.
solution to this problem and compare the performance to the
optimal solution. which can easily be put in the discretized form of (26) by

Zermelo's problem involves a ship that must travel throughefiningx(t) = [z(t), y(t)*, £ = V[y(¢)/y,0", g = 1, and
a region of strong currents to reach an island, placed at the= V[cos(¢),sin4(t)]”. The explicit influence horizon for
origin of a Cartesian coordinate system, in minimum timdhis problem isD; = 1, since the controly(t), explicitly
The current vectoric.., ¢,], in Cartesian coordinates, is giver@ffects bothz(¢ + 1) and y(¢ + 1). For ad-length control
asc, = 0, ¢, = Vy/h, as shown in Fig. 7, wher® is the horizon, the influence vectors age(u(t +¢)) = x(t+£+1),
magnitude of the ship’s velocity relative to the water, an¢ 0 < ¢ < d — 1. Specifically, ford = 1,

a fixed constant. The ship’s heading angle= v, is defined Eo(t) = x(t +1) = |:x(t) + TV]cos(t) + y(t)/h]
relative to the positiver axis, and is the control variable for o= o y(t) + TV sin(t) '

this problem. We defin®’ = [0, 2x]. The discretized equations  For minimum-time problems with constrained final state,

of motion are the performance index (23) is
a(t+1) = «(t) + TV]cosy(t) + y(t)/A] J =xT(t;)x(t) + tfz_:l 1=x"(tp)x(t;) +t;  (66)
y(t+ 1) =y(t) + TV sinap(t) t=0
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wherex(t) = [#(t), y(t)]*. We wish to find a minimum-time the left of the present state, then the inner product is positive
satisficing control. From the local point of view, the essenand the corresponding accuracy support, after shifting, is high.
of minimizing time is to maximize velocity. Consequently, weSimilar results for other regions of state space indicate that
must include a measure of velocity, or position change, in thigis inner product yields a large accuracy support for controls
performance index. Adding and subtracting velocity relatetlat move the system quickly toward the origin, but low

components to (66) yields

d

(tr)x(tp) +tr £ Z[X(tf —d+j)

—x(ty —d+j = DF [x(ty = d+ j)
— x(t; — d+j - 1)

J=x7

(67)

which may be rearranged as
d

J=x"(tp)x(ty) + > [x(ty —d+j) —x(t; —d+j— 1"
=1
X [x(ty—d+j) —x(tp —d+j—1)]+tf

d
Z x(tp—d+j)—x(t; —d+j—D*
j=1

X X(tf—d+j)—X(tf—d+j—1)]. (68)

1) Accuracy Support and Liability Exposure Construction:

From a local perspective + d is associated with the terminal

time, t;. Thus, a local terminal performance index may be
formed from the first two terms on the right-hand side of (68)

to obtain

Q[€o(20), - - -

d
x(t+ dyx(t+d) + > [x(t+5) —x(t+5— D"
j=1

s €a—1(Pa—1)]

xh@+n—xa+y:ny (69)

For the casel = 1 we dropt dependence o##(t) whence
substitution of (69) into (27) yields

galt;x(t)] = Sup{ZX (t+Dx(E+1)

—2xT(t + D) [x(t +1)

:Sup{Q[x

zeU

y TV]cosz + y(t)/h]
TV sin 2

_F

o |:TV[COS +y(t)/h]
TV siny

—x(@}

—x(B)] + e

(t) + TV]cosz + y(t)/h]
y(t)+ TV sinz

|

(t) + TV]cosy + y(t)/h]
y(t) + TV sine

r
|+

The essence of (70) is the inner prodwdi(t + 1)[x(t) —

(70)

’

(71)

accuracy support for controls that move the system in the
wrong direction or that move the system slowly. This inner
product is the local basis for constructing the accuracy support
density function.

To construct the liability exposure density function, we use
the second two terms from (68), and again assodciateith
t 4+ d, to form

Aléo(%0), -+ €a-1(pa—1)]
d
=t+d— Y [x(t+5) —x(t+j-1]"

X [x(t+j)—x({E+75—1)] (72)
For the casel = 1, substituting (72) into (29) yields, after
some manipulation,
grl;x(®)] = jgg{[X(t +1) = x()] x(t +1)
— [x(t+ 1) — x(8)]F[x(t + 1)

{ [TV[COSZ +y(t)/h]r

—x(®)]}
—x(t)]+¢ (73)

= sup

scU TV sinz

TV[cosz + y(t)/h] |
% TV sin z |
TV]costp + y(t)/h] | T
B TV siny |

The liability exposure density function constructed from this
gr, places large liability exposure on low speeds and small
liability exposure on large speeds, indicating that wherever the
agent travels, it should go there speedily; that is, the velocity
term in (73) should be maximized. This is similar to the
optimal bang-bang controllers that originate from minimum
time problems with bounded controls.

2) Results and Comparison to Optimal Contrdtor these
dynamics, the accuracy support and liability exposure are
formed from (71) and (74) and the resulting boat trajectories
are plotted forV = 4.0, h = 1.0, T = 0.01, z(0)
4.9h, and y(0) 1.66h in Fig. 8. Trajectories are given
for the optimal solution, a one-step satisficing solution, and
a two-step satisficing solution, where the two-step satisficing
solution is given for three different values of rejectivity. The
corresponding times are given in Table I.

The one-step satisficing solution does not recognize that

x(t+1)]. Its effect on accuracy support is best understood ty crossing over the; = 0 axis the boat can gain speed,
considering a few simple scenarios. Suppose that the presginee the liability exposure for the one-step solution is uniform

position, x(t), is positive (to the right of the origin). If a
control, ¢(¢), produces a next state(¢ + 1), that is more

at y(t) = 0. The two-step satisficing solution, by contrast,
takes advantage of thg = 0 crossing and decreases the

positive than the present position, then the inner produamount of time required. High rejectivifp = 0.9) causes the
is negative and the corresponding accuracy support, afterat to overshoot the island and backtrack. Lower rejectivity
shifting, is small. If, however, the next state is positive and t& = 0.7) eliminates the overshoot and decreases time, but
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T

—— Optimal 1 3r —= Optimal
25 ~ ~ 2-slep satisficing . | a5l — — Satisficing b=0.7
— - t-step satisficing - - — - - Satisficing b=0.5
2t ok -+ Satisficing b=0.9

(@) (b)

Fig. 8. Performance results for the single-agent Zermelo’'s problem: (a) comparison of optimal, one-step satisficing, and two-step satisfigjng, and (
comparison of optimal with two-step satisficing for varying index of rejectivity.

TABLE | Theorem 8 (Consistency of Quadratic Regulatofpr the
ZERMELO'S PROBLEM RESULTS deterministic quadratic regulator problem (50) and (32), if the
control horizon spans the full extent of the problem, that is,

l Contml.Met‘hOd I At l for d = t;, then the most discriminating satisficing control is
thl_’nal 1.40 identical to the optimal control.
L-step satisficing (b =0.7) | 1.98 Proof: We will prove this result for the scalar control
2-step satisficing (b = 0.5) | 1.66 case only. The most discriminating control, denoted =
2-step satisficing (b=0.7) | 1.64 [, - - ue,—1]7, IS up = argsup, e, {fa(z) — bf(2)}.
2-step satisficing (b =0.9) | 1.80 From (28) and (30)

arg sup {fa(z) — bfi(z)} = arg sup {ga(z) — V'gL(2)}

decreasing the rejectivity furthés = 0.5) increases time since S S (75)
currents are not fully exploited. Although changing rejectivity
does affect performance slightly, the satisficing solutions ar , [t ga(zit) dz
not overly sensitive to rejectivity. Thus, performance of th\é’%ereb - bfzt[ g1 (z5t) dz” Also, from (27) and (29),
two-step horizon satisficing solution is not significantly worse ' ,
(approximately 17% fob = 0.7) than the optimal control. The arg_sup {9a(z) —V'gr(2)}
computational complexity of the satisficing solution is higher zclit )
because no closed form solution is employed (calculation of = argzégf {®[€0(20); - & -1 (2, -1)]
the equilibrium set is obtained using numerical derivatives, /
and a search is made through the discretized control space for +VA[go(z0). - &y (2, -1) ] }- (76)
the most discriminating control). In the presence of nonlinegor the quadratic regulator problem with = tr, we
currents, however, no optimal solution of the continuous timgke ®[£(uo), . . & (w, 1) = xT(t;)Px(t;) and
problem is easily obtained, but a satisficing solution is of th&[é’o(u()) (g, 1) = Etf—le(tJrl)Q(tJrl)x(tJr
form developed above is easily generated [33]. 1)+ Ru(jt)zfj. Thus. =0

IV. C R «

. CONSISTENCY OF RECEDING : T 1 T
= arg f ty) Px(t b t+1
HORIZON SATISFICING CONTROL un Wrgzéﬁw X (tn)Px(tr) + ; x(t+1)

The use of a receding horizon makes it possible to develop a
tra}gtable satisficing controller using the principles.ofepis.temic X Qt+ 1)x(t + 1) + Ry (H)u(t) b. 77)
utility theory. As the length of the control horizoni, is
increased, more of the future state values are taken into consid-
eration for the calculation of the current control. It is thereforEor ¥’ = 1, this is exactly the optimal quadratic regulator
reasonable to expect that performance will improve witbolution. O
increasingd. The following theorem establishes the stronger The following theorem establishes the result that in the limit
result that in the limit asd approaches;, the quadratic asd approaches;, the minimum-time satisficing control is
regulator satisficing control will actually be equivalent to thequivalent to the optimal control. The proof is similar to the
optimal control. proof of Theorem 8.
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Theorem 9 (Consistency of Minimum Time Controlleffor
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(9]

the deterministic minimum-time (50) and (66), if the control

horizon spans the full extent of the problem, that is,det ¢,

then the most discriminating satisficing control is identical to

the optimal minimum-time control.

We present a theory of satisficing control that builds upo[r]l3]
the philosophy of avoiding error rather than seeking truth. Thes]

[12]

V. CONCLUSION

mature theoretical foundations of this philosophy are translated

into a controller design procedure for single-agent, timq15]

varying, nonlinear systems. Solutions are generated for two

well-known optimal control problems (LQR and Zermelo’
problem) and performance and computational requirements

(10]

(11]

S. Lall and K. Glover, “A game theoretic approach to moving horizon
control,” Advances in Model-Based Predictive ControDxford, U.K.:
Oxford Univ. Press, 1994.

S. Lall and K. Glover, “Robust performance and adaptation using
receding horizonf . control of time varying systems,” iRroc. Amer.
Contr. Conf. 1995pp. 2384-2388.

Y. S. Nam, B. H. Lee, and N. Y. Ko, “A view-time based potential field
method for moving obstacle avoidance,"$CE pp. 1463-1468, 1996.

J. Guldner and V. I. Utkin, “Sliding mode control for an obstacle
avoidance strategy based on an harmonic potential fieldPtaec. 32nd
Conf. Decision ContrglSan Antonio, TX, Dec. 1993, pp. 424-429.

C. L. Connolly and R. A. Grupen, “On the applications of harmonic
functions to robotics,J. Robot. Systvol. 10, no. 7, pp. 931-946, 1993.
J.-O. Kim and P. K. Khosla, “Real-time obstacle avoidance using
harmonic potential functions[EEE Trans. Robot. Automatvol. 8, pp.
338-349, June 1992.

S. Sundar and Z. Shiller, “Optimal obstacle avoidance based on the
Hamilton-Jacobi-Bellman equation|lEEE Trans. Robot. Automatvol.

13, pp. 305-310, Apr. 1997.

16] M. D. Mesarovic, “Systems theoretic approach to formal theory of

problem solving,” inTheoretical Approaches to Non-Numerical Problem

are compared. Using these examples, we demonstrate that Solving R. Banerji and M. D. Mesarovic, Eds. Berlin, Germany:
satisficing controllers do not require significantly more con‘[— 7l
putations and produce behavior which compares favorabily
to optimal solutions. When computation of optimal solution.8]
is infeasible (such as the uncertain time-varying inverte[gg]
pendulum problem), we demonstrate the ability to generate
computable solutions in the presence of time-varying plantg20l

Unlike traditional receding horizon control methods, wey;

independently assess controller performance on the basis of

terminal conditions (such as regulation) and transition costé]

(such as fuel consumption). This independent assessmesf

makes explicit the asymmetry between the fundamental goal
of the controller and undesirable performance characteristi[:zszl.]
The tradeoff that appears in many controller designs betwejen]
these objectives is made explicit, and only controls for whi(c}ﬁ
accuracy support (benefit with respect to fundamental g a?]
achievement) exceeds liability exposure (cost with respdef]
to undesirable characteristics are permitted). This indepe[%]
dent assessment facilitates the design of a receding horizes)
controller for the inverted pendulum problem with full circu-
lar freedom. Unlike conventional generalized potential fielgo]

approaches with attractive goals and repulsive obstacles, satis-

ficing controllers consider explicit performance objectives, ar{@%
are consistent with optimal solutions in the sense that, when

the planning horizon is sufficient, performance is optimal.

(1]
(2]
(3]

(4]

(5]
(6]
(7]

(8]

(33]

[34]
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