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A Theory of Satisficing Decisions and Control
Michael A. Goodrich, Wynn C. Stirling, and Richard L. Frost

Abstract—The existence of an optimal control policy and the
techniques for finding it are grounded fundamentally in a global
perspective. These techniques can be of limited value when the
global behavior of the system is difficult to characterize, as it
may be when the system is nonlinear, when the input is con-
strained, or when only partial information is available regarding
system dynamics or the environment. Satisficing control theory
is an alternative approach that is compatible with the limited
rationality associated with such systems. This theory is extended
by the introduction of the notion of strong satisficingto provide
a systematic procedure for the design of satisficing controls. The
power of the satisficing approach is illustrated by applications to
representative control problems.

I. INTRODUCTION

A. Background and Solution Formulation

CONTROL problems are typically characterized by two
desiderata that may be in tension: 1) the commitment to

achieving the fundamental goal of the controller, such as track-
ing, regulation, or terminal control, and 2) the commitment
to a performance criterion, such as minimum control effort or
minimum time. Usually, these two commitments are combined
into a single performance index to be minimized by applying
techniques based on Bellman’s principle of optimality or
Pontryagin’s minimum principle. This view of control is
designed to obtain the best solution with respect to a given
performance metric.

For many problems, however, an optimal solution is ei-
ther intractable, is prohibitively expensive, or is difficult to
justify because of possibly unwarranted assumptions, such as
an oversimplified performance metric. Controller designs for
nonlinear systems, in particular, are difficult to obtain via the
optimality paradigm. In such cases, the engineering approach
usually is either to find a modification of the problem such that
the optimal solution to the modified problem is a satisfactory
solution to the original problem, or to adopt anad hocsolution.
These approaches are, of course, problematic, and if they fail,
the designer must seek an alternative paradigm compatible
with the information available.

Optimality is not the only possible paradigm of rational
choice. Economics has motivated the need for alternative
paradigms that are commensurate with the available knowl-
edge and capabilities. Simon [1] introduced the concept of
a satisficingdecision as one that, although perhaps not op-
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timal, meets minimum requirements, or is “good enough.”
A satisficing search is a search for an optimal solution that
terminates when a solution is found such that the cost of
further searching exceeds the expected benefits of doing so
[2]. An optimal solution is clearly satisficing, but the notion of
a minimum standard may persist even if a best solution either
does not exist or is not attainable. Furthermore, a satisficing
solution is distinct from a “suboptimal” solution, since the
latter concept presupposes the existence of an optimal solution
and is usually obtained by simplifying the original problem.
Since a satisficing solution must meet a minimum standard of
performance, it is also different fromad hocsolutions, which
are often based largely on vague notions of desirability under
specific circumstances.

In this paper we introduce a concept of satisficing that also
draws on the notion of cost/benefit tradeoffs, but in a way that
is quite different from its use simply as a stopping rule for a
search procedure based on an optimality paradigm. Section II
develops this concept by first summarizing epistemic utility
theory (a theory of cognitive decision making) and then
adapting this theory to the practical context, resulting in
a new theory of satisficing control. Section III presents a
methodology for satisficing control for problems of the general
nonlinear form , where is the
state vector of a dynamical system, is a control input,
and is a dynamical model. Key features of this
approach are that it 1) incorporates performance measures
and design principles to characterize terminal and transition
costs; 2) is amenable to a systematic design procedure; 3)
is capable of meaningful operation in the presence of lim-
ited, or local, system models and information; 4) does not
require restrictive modeling assumptions such as linearity
or time-invariance; and 5) yields comparable performance
when applied to problems for which optimal solutions are
available. Examples are presented which demonstrate the
design procedures and allow comparisons of computational
requirements and performance results with optimal solutions.
Section IV establishes conditions for satisficing control to be
consistent with optimal control. Finally, Section V summarizes
important results from the paper.

B. Related Literature

The synthesis approach employed herein uses a temporally
local planning horizon to generate controls. Model predictive
control (MPC), also known as moving horizon and receding
horizon control, employs such a planning horizon for designing
controllers that operate in nonlinear, constrained, and uncertain
environments. MPC design requires the identification of a
system model, and the specification of a system performance
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metric defined over a finite planning horizon. The success of
MPC is due, in large part, to its ability to handle uncertain
nonlinear systems with state and input constraints such as
those found in complex industrial processes. Successes in
application are supported by theoretical advances, such as
the characterization and specification of sufficient conditions
for stability and observability [3]–[7]. Reference [6] provides
a stability theorem for time-invariant nonlinear systems, but
the theorem requires that the system satisfy a number of
technical conditions that are difficult to verify. Reference [8]
develops error bounds for receding horizon controllers for
nonlinear systems, but only for time-invariant systems. If time-
invariance does not hold, there seem to be few theoretical
results regarding the performance of receding-horizon control
techniques for nonlinear systems. Similar results apply for
receding horizon control [9], [10].

The approach presented in this paper represents the conse-
quences of a decision by a cost-like attribute calledliability
and a benefit-like attribute calledaccuracy. Partitioning the
consequence set into these attributes recalls the generalized
potential field (GPF) approach to robot path planning and ob-
stacle avoidance [11], [12]. In the GPF methodology, a goal is
represented as an attractive potential, obstacles are represented
as repulsive potentials, and the path along the negative gradient
of the combined potentials is selected as a collision free path.
With the application of harmonic potential fields [13], [14], the
problem of a robot remaining in an attractive local minima is
avoided, but the problems with forming a globally attractive
potential field in the presence of moving obstacles remains.
Additionally, although computationally efficient, GPF’s do not
consider the optimality of the resulting path [15]. A method
proposed in [11] deals with the moving obstacle problem using
a GPF formalism by incorporating theview-timeconcept. This
concept appears to be a special case of a receding planning
horizon as employed in MPC. By employing representations
of cost and benefit in a MPC format, we obtain an efficient
method for accommodating both the fundamental controller
objective as well as run-time performance considerations.

Other mathematical developments [16]–[21] of the satis-
ficing concept are motivated by the desire to make robust
decisions in the presence of uncertainty. These developments
compare a utility defined over the consequences of a decision
to a decision threshold. This decision threshold depends only
on nature and not on decision consequences. The approach
presented herein is similar to these other developments in that
controls are justified on the basis of a comparison, but, by
contrast, our approach compares two utilities defined over
the expected consequences of a decision (i.e., the decision
threshold depends upon both control actions and the expected
state of nature).

II. A T HEORY OF SATISFICING DECISIONS

A. Application of Epistemic Utility Theory to Control

Seeking the best solution to a control problem is analogous
to the epistemological stance of seeking the truth regarding
an inquiry. This epistemological goal is a very ambitious

one, and success cannot always be realized due to limitations
of information and resources. In recognition of this fact, an
alternative school of epistemological thought has emerged that
professes a more modest goal than truth-seeking. The goal of
this alternative school iserror avoidance, and the methodology
employed to achieve this goal is termedepistemic utility theory
[22].

Epistemic utility theory employs two utilities, rather than
one. The first utility is designed to characterize the truth
support of the propositions being evaluated (subjective prob-
ability), and the second probability measure is designed to
characterize the informational1 value ofrejecting them. These
two utilities are developed independently. For example, the
truth support of rival scientific theories may be assessed
through their conformance with observations, and their infor-
mational value may be assessed in terms of their simplicity,
explanatory power, or predictive power. The fundamental
content of an epistemic utility-based approach is that, by
endowing the two utilities with the mathematical structure of
probabilities, they quantify the attributes of the propositions in
comparable units, and may be compared. Those propositions
whose truth-support does not outweigh their informational-
value-of-rejection should be rejected. All other propositions
should be retained as serious possibilities. This procedure
retains all propositions that are considered “good,” without
focusing exclusively on a search for one that is deemed “best.”
In this way, serious errors are avoided since no credible and
valuable propositions will be eliminated from consideration.
This approach results, in general, in a weaker decision than
does a truth-seeking approach, since the set of unrejected
propositions may not be a singleton set.

We adapt epistemic utility theory to action by re-interpreting
the notions of truth and information in a practical setting.
We first extend the notion of “truth” to the more general
concept ofaccuracy, meaningconformity to a given standard.
In the epistemological context, the standard is truth; in the
controller design context, the standard is the achievement of
the fundamental goal of the controller. Consequently, control
actions that have high accuracy support are likely to achieve
the fundamental design goal of the controller (for example,
set-point regulation). Next, we adapt the epistemic notion of
information to a controls context by introducing the concept
of liability , meaning susceptibility or exposure to something
undesirable. An action has high liability exposure if, inde-
pendently of its accuracy, it is costly in terms of resource
consumption (for example, control effort), exposure to hazard,
or other encumbrance.

Let denote the set of possible control actions, and
let denote the state of nature (such as the system state,
disturbances, and plant parameter values). Letdenote the
Borel field in . We wish to define probability functions to
characterize the accuracy and liability of a set as
parameterized by the state of nature. We require these utilities

1Information, as used in this context, is similar to the usage employed
by Johnson-Laird: “The more possible states of affairs that a proposition
eliminates from consideration, the more semantic information it contains.”
[23, p. 218]. This usage should not be confused with Shannon information,
which is defined in terms of entropy.
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to be transition probabilities. Let , be
a transition probability such that, for fixed
is a probability measure, and for fixed is
a measurable function. characterizes the accuracy
support of elements of , given that is the state of nature.
Similarly, let , be a transition probability
characterizing the liability exposure of elements of.

The epistemic utility function[22], [24]–[26] is the convex
combination of accuracy support and liability exposure

(1)

where . After a positive linear transformation, a more
convenient form for this utility function is

(2)

where . The parameter,, is termed theindex
of rejectivity2, in the sense that large values ofimply an
increased willingness to reject propositions. The condition

corresponds to minimal concern for liability.
The condition corresponds to equal concern for
accuracy and liability. As , liability concerns
dominate accuracy concerns, and eventually all propositions
with nonzero liability exposure are rejected. For fixed

and are probability measures, but neither
represents the subjectivebelief concerning the event . They
are best understood as a utility function and an inutility
function that happen to possess the structure of transition
probabilities. is a measure of how much accuracy
support is associated with when is the state of nature,
and characterizes the liability exposure associated
with .

Let the probability be a (possibly subjective) distribution
of the states of nature that represent beliefs regarding elements
of . If the state of nature is known, then and may
be evaluated. Generally, however, we will view the state of
nature as a random variable. Let be the Borel field in
and let denote a probability measure such
that represents belief that contains the actual
state of nature. The expected value of the epistemic utility
function (2) is, for

(3)

where

(4)

(5)

We now offer a definition ofsatisficingin terms of epistemic
utility theory. Define the equivalence class of sets

(6)

2In deference to Levi’s term,boldness, we useb to denote rejectivity.

that is, the family of all measurable sets that maximize
expected epistemic utility. Let be any member of this
equivalence class. Since and each have unit mass on

if the rejectivity, . Furthermore, can always
be chosen to ensure that . is termed amaximal
satisficing setfor rejectivity ; if , then will be
termed asatisficing set.

B. Characterizing the Maximally Satisficing Sets

Although the measures and are obtained indepen-
dently, it is of interest to establish any natural connections
between these two measures. We may perform the Lebesgue
decomposition of relative to to obtain ,
where ( is absolutely continuous with respect
to ) and ( and are mutually singular).
There exists a pair of disjoint sets and , with

, such that (and, hence, ) is concentrated on
, and is concentrated on . Let be a maximally

satisficing set, and define and .
Based on these definitions, we establish thatand can
be neglected in characterizing .

Lemma 1:
.

Proof: by definition of absolute continuity.
since is concentrated on and

is concentrated on . Clearly cannot
be less than zero or
which is a contradiction to (6). Then, since

and
it follows that .

Because the set has measure zero with respect to both
the accuracy support and liability exposure measures, we can,
without loss of generality, restrict attention to .
Furthermore, given this restriction we can, again without loss
of generality, restrict attention to on .

By the Radon-Nikodym theorem, there exists a nonnegative
measurable function,, termed the Radon-Nikodym derivative
of with respect to , such that for any ,

The function is also called thelikelihood ratiobetween
and on . We may write

(7)

In applying this theory to controller design, we will restrict
our attention, in this paper, to single-input systems, and
define the action, or control, space, as the interval

. We require that the accuracy support and liabil-
ity exposure distribution functions assign all of their utility
mass to this interval. Let , and

denote the corresponding distri-
bution functions. We may also construct the expected accuracy
support distribution, , and the expected
liability exposure distribution, . We
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will generally have for , and we let be
the distribution function corresponding to the measure.
In this paper, we will restrict our attention to continuous
distributions so that and are all differentiable,
with density functions

and , respectively. Rewriting
(4) and (5) in terms of density functions, the expected accuracy
and expected liability exposure densities are

(8)

(9)

In a deterministic environment, the state of nature is known,
and the probability density function will concentrate all of
the mass on the true value; that is, if is the true state
of nature, then , so
and . In a stochastic environment, will
characterize the uncertainty regarding the state of nature. This
uncertainty may enter, for example, through process noise,
sensor noise, or other random phenomena in the system.
Throughout the remainder of this paper, we will treat only
the deterministic problem, and assume that the true state of
nature, , is known.

Theorem 2: If and exist, the Radon-Nikodym deriva-
tive almost everywhere over the set .

Proof: For all measurable we have ,
and . By the Radon-Nikodym theorem,
we also have .
Since these expressions must hold for every measurable set

, we must have that almost
everywhere. Furthermore, since is absolutely continuous
with respect to implies , so

almost everywhere on .
In our subsequent development, we restrict attention to the

case (in controller design we requireto be small
enough such that this always occurs). With this restriction, the
equivalence class of maximally satisficing sets (6) becomes

(10)

and we may therefore view, without loss of practical signifi-
cance, the following set as the maximally satisficing set

(11)

The rejectivity, , represents how prone the decision rule is
to rejection. The larger the rejectivity, the smaller the set of
unrejected elements of , since implies .

will generally not be a singleton set, and there may
even be a continuum of satisficing values. In contrast to
utility maximizing decision-making procedures, this approach
relaxes the requirement for a unique best decision. Instead, all
decisions for which the ratio of accuracy support to liability
exposure meets or exceeds the rejectivity value are admitted.
Obviously, only one control can actually be implemented, but,

from a strictly satisficing point of view, one may choose any
of the unrejected control decisions with confidence that the
action will yield justifiable performance. Thus the designer
has considerable latitude in the ultimate choice of the control
to be implemented.

C. Strongly Satisficing Control

Satisficing, as defined herein, is a liberal notion of perfor-
mance: broadly speaking, a control is satisficing if the good
(characterized by accuracy support) outweighs the bad (char-
acterized by liability exposure). Furthermore, the maximal
satisficing set, , will generally not be a singleton set, and
there may be many satisficing possibilities. When determining
a control law which is to govern a plant, a single input is
required. Since each controlin the maximally satisficing set

is justifiable by the satisficing principle as an acceptable
input to the plant, how can a single control be selected3?

Although all controls in are satisficing, they are not
necessarily all equal. In selecting a control, if a choice exists
between two controls of equal liability exposure but differing
accuracy support, it is reasonable to select the one with higher
accuracy support. Similarly, if a choice exists between two
controls of equal accuracy support, it is reasonable to select
the one with lower liability exposure. For every let

and

and

and define the set of actions that arestrictly betterthan (i.e.,
the set of actions that dominate)

(12)

that is, consists of all possible actions that have lower
liability exposure but not lower accuracy support than, or
have higher accuracy support but not higher liability exposure.
If then no actions can be preferred toin both
accuracy support and liability exposure andis a (weakly)
nondominated action.

The set

(13)

is termed theequilibrium set. Whereas the satisficing set
is determined by comparing a control’s accuracy support
against its liability exposure, the equilibrium set is determined
by comparing controls against each other. Actions
possesses an important equilibrium property: within the set,
perturbations in cannot increase accuracy support without
also increasing liability exposure, nor can liability exposure
be decreased without also decreasing accuracy support. The
strongly satisficingset is defined as the intersection of the
satisficing set and the equilibrium set

(14)

3The necessity of answering this question is not restricted to satisficing
controllers, but also arises for fuzzy logic controllers (FLC’s) [27]–[29].
Loosely speaking, the solution for FLC’s is to apply a defuzzification
procedure that performs some kind of weighted average using the utility of
each admissible control in the weighting.
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Observe that the definition of the equilibrium set and the
strongly satisficing set apply for finite, countable, or un-
countable.

Theorem 3: If is closed, then is closed and .
Proof: Let .

Then defines a metric on the equivalence class of
points with the same accuracy support and the same liability
exposure. Let be a point of closure of . Then for all
there is a such that . Now

implies that
. This inequality holds since implies

. This is true for any , which means that
, implying that . Thus, is closed.

We now show is nonempty by constructing a specific
element of this set. Define themost discriminatingsatisficing
control

(15)

Since ( is chosen to guarantee this), exists, but
may be an equivalence class if (15) does not have a unique
solution. By construction,

, or, equivalently,

(16)

For , (16) implies . For
, (16) implies . Hence,

there is no such that both and
which means that .

Thus always contains at least one element, namely a
most discriminating satisficing control. If , the most
discriminating control is themost accuratesatisficing control,

(17)

This limiting case represents a very aggressive stance to
achieve the goal at the risk of excessive cost. A most accurate
satisficing control may be considered for cases with large
variations in and small variations in . Another limiting
case occurs as , resulting in aleast liablesatisficing
control,

(18)

This procedure is very conservative, and reflects a willingness
to compromise the fundamental goal in the interest of reducing
cost. It may be appropriate when there are large variations in

relative to small variations in .

D. An Important Special Case

An important class of accuracy support density functions is
the set of density functions that are concave over. That is,
for
for all . Similarly, an important class

of liability exposure density functions is the set of density
functions that are convex over . That is, for

for all
. For these classes, the following theorems are

important in developing a synthesis procedure. Recall from
(17) and (18) that and are the most discriminating
controls for and , respectively.

Lemma 4: For continuous accuracy support and continuous
liability exposure,

where

(19)

denotes the right derivative of , and similarly define as
the right derivative of .

Proof: Since and represent the most discriminat-
ing controls for and , respectively, by the proof of
Theorem 3, they are in. For any other , concavity of
and convexity of imply that accuracy support and liability
exposure are either both nonincreasing or both nondecreasing
in the neighborhood of . Hence, .

If, in addition to being continuous, both and are dif-
ferentiable with derivatives denoted and , respectively,
the equilibrium set satisfies

(20)

Moreover, for concave and convex the following lemma
establishes a necessary and sufficient condition for determining
the equilibrium set.

Lemma 5: For differentiable concave and differentiable
convex

Proof: Let .
If or then since the most discriminating
control is always in the equilibrium set. Otherwise,must
satisfy which implies that such that

. However, since the sum of two concave
functions ( and ) is also concave then the
which satisfies is a most discriminating
control for . Since a most discriminating control cannot
be dominated, . Thus,

This result, coupled with Lemma 4 establishes the desired
result.

Theorem 6: Let . For a concave density function
and a convex density function over the maximal satis-
ficing set is convex. Moreover, for concave differentiable
accuracy support and convex differentiable liability exposure,
the equilibrium set and the strongly satisficing set are
convex.
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Proof: Convexity of the maximal satisficing set is shown
by establishing that, for and , the point

for any . By concavity
of and convexity of , we get that

hence

Now, since we know that
and , whence

Thus is convex.
To establish the convexity of, first note that by Lemma 4

(21)

If then . Otherwise, let with
, and suppose and are of opposite

sign. Since is concave, this requires that and
. For and to be elements of , requires that
and , which is impossible since is

convex. Thus the directional derivatives of and cannot
change sign in . Since is concave, there can be at most
one sign change in the derivative, so it can be concluded that

has the same sign as and . A similar
argument holds for , and consequently

so, by Lemma 5, . Finally, since the intersection of
convex sets is convex, is convex.

This theorem means that, for concave accuracy support
and convex liability exposure defined on an interval

, the maximally satisficing set is also an interval.
Moreover, . In the next
section, it will be shown that this is a useful characteristic.

The following theorem establishes an equivalence between
the equilibrium set and the set of most discriminating controls.
This theorem is useful because it says all elements of
(not just the endpoints, and , are maximizing elements,
whence contains only satisficing and maximizing elements.

Theorem 7: Let , let be concave density function,
differentiable over the interior of , and let be a convex
density function, differentiable over the interior of. Then for
every there exists a rejectivity value such
that is a most discriminating satisficing control. Furthermore,
if is strictly concave for every , then for
every such there corresponds a unique most discriminating
satisficing control.

Proof: Let . Define and
. For these limiting cases, it has previously

been established that by assigning rejectivity values of
and , respectively, and are most discriminating
satisficing controls. Fix . The function

is extremized when . If
then whence, by concavity of and convexity of

for any . Otherwise, when ,

Fig. 1. Satisficing regions for a concave�fA and convex �fL plotted as
densities.

evaluating at implies
is the rejectivity required to render a most discriminating
satisficing control. Furthermore when is strictly
concave for all ,

is the unique most discriminating satisficing control.

Fig. 1 illustrates the maximal satisficing and strongly sat-
isficing sets for a concave differentiable and convex
differentiable , with the accuracy support and liability
exposure plotted as functions of. The satisficing and strongly
satisficing sets are shown on the plot for . In the figure,

consists of those for which exceeds . The
set consists of those for which no control with higher
accuracy support exists for a given liability exposure level,
and for which no control with lower liability exposure exists
for a given accuracy support level. Observe that for
the accuracy support and liability exposure have slopes with
the same sign (see Lemma 5), whence controls in this region
are in equilibrium.

III. A PPLICATIONS OFSATISFICING CONTROL

Accuracy support and liability exposure are mechanisms
to implement the goals and design ideals of the problem. If
information is available over the full extent of the problem,
then the functions may be designed from a global perspective.
If a global solution is not available or is not implementable,
we may still incorporate whatever information is available to
design the accuracy support and liability exposure functions
via the receding horizon concept. By permitting the designer
to tailor the structure of these functions according to what is
actually known or defensibly assumed, the problem may be
cast in its natural setting. This capability frees the designer
from the need to make arbitrary assumptions simply to invoke
a global solution technique.

In this section, we first develop a synthesis procedure for
satisficing control using receding control horizons. We then
look at two problem classes: quadratic regulation of linear and
nonlinear systems, and minimum time problems. The linear
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quadratic regulator provides a benchmark for performance and
computational comparisons; the inverted pendulum (nonlinear
quadratic regulator) provides a solution for a nonlinear plant
with nonstationary plant parameters using a computationally
feasible solution method, and Zermelo’s problem provides a
benchmark for performance and computational comparisons
of minimum time problems.

A. Controller Formulation

1) Receding Planning Horizons and Influence Vec-
tors: Consider the nonlinear, time-varying, single-input,

-dimensional system

(22)

together with the performance index

(23)

where and are given performance indexes (for exam-
ple, quadratic forms), and where the terminal time,, is
unspecified. General global solutions for this nonlinear control
problem are not easily obtainable, but many such problems
may be addressed from a local perspective. One natural
approach is to invoke a receding, or rolling, horizon control
strategy [6], [8]. This approach consists of implementing
a feedback controller through a series of repeated open-
loop calculations based on the instantaneous state. For a
discrete-time receding horizon of length, the next values,

, are computed as functions of the
current state, . The control is implemented, producing
a state , the horizon is shifted forward one time unit,
and the process is repeated. For example, a one-step control
horizon would require the design of only , the
control for the current time increment. For , both
and are required.

In this paper, our approach is to employ a receding horizon
and to specify and as functions of the control input,,
and the state of nature,, such that assigns high accuracy
support to those control values that tend to achieve the goal
of the system, and assigns low liability exposure to those
control values that tend to conform to the design principles.

Because the system model (22) may involve delays (we will
assume it is causal), it is possible that will have an
explicit influence on elements of the state vector beyond the

st step. Consequently, we may define theexplicit
influence horizonof , denoted , as the maximum
number of time increments for which has explicit
influence on any component of the state.

If , let be the sub-state of
that is an explicit function of . Continuing in this
manner, we may generatesequences of substates, denoted

the influence vectors, of the form

... (24)

The collection then represents
the state elements that are explicit functions of

, and using these elements we may formulatelocal
performance indexes, and

to compute and .
As demonstrated in the subsequent examples, these local per-
formance indexes are formed according to the same principles
that are used to define the global performance indexes,and

.
2) Synthesis for Restricted Plant Structure:Given this re-

ceding horizon framework and the notion of an influence
vector, we now restrict attention to a set of fixed conditions and
design a satisficing controller for the resulting structure. The
use of an influence vector allows us to account for the relative
order of the system (see, for example [4]) while using Euler
integration. We can thus use this simple discretization method
(the first restriction) producing the discrete-time dynamical
expression given by

(25)

where is the sampling time. The second restriction is that
we consider single input nonlinear systems of the form

(26)

where each are bounded, and whereis differentiable
with respect to for all time (this allows us to minimize the
local cost functions presented in the next section); and where

is the diagonal operator which places all of the elements of
the vector into the diagonal elements of the
matrix .

We now construct the influence vectors for this restricted
class of systems. Let the subscriptdenote the th ele-
ment of the vector; for example, is th element of

and is the th element of the vector
. The discretized dynamics

for are given, via (25)–(26), by

The following procedure then determines the minimum delay
required before is influenced by . At any step,

let be the set of indexes for which is known.

1) Set .
2) For each , if set . (These elements

are immediately influenced by .)
3) If all are known quit. Else .
4) Identify all , that depend

upon any . For each of these
set . (These elements are not immediately (at time
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) influenced by , but instead are influenced
at time by via .)

5) Repeat step 3.

This procedure first identifies elements affected
directly by . It then identifies functions that are affected
by . These functions will directly affect which
will then affect new , and so on. Any not identified in

steps (given that is ) are not affected by
(i.e., are not controllable at time). The influence vector is
then identified as

and the influence horizon .
Identification of the influence vectors for

then proceeds analogously. However, for purposes of identify-
ing useful local cost functions, we introduce a third restriction.
Although we allow the system matrices (such as ) to
vary with time, we require that the influence horizon and
each are constant. We refer to such a system as arestricted
time varyingsystem, and this restriction allows us to use local
cost functions that employ the same influence vector structure.
Thus,
for all .

3) Constructing and Using Local Planning Horizons:
From a local perspective, we view as the terminal time,

. Let the state of nature include the current state of the
system, that is, . Because we associate with
the goal, is designed to have large values for

such that is
small. We obtain by negating and normalizing this function.
Define

(27)

where is the -dimensional control
space , and is a small number inserted to insure
that all of the values of are nonzero. The probability density
function is obtained from by normalizing

(28)

takes its maximum at the valuesthat drive closest to
zero, but also assigns significant accuracy support to control
values in the neighborhood of this control value.

The liability exposure density function is a measure of
how well the control decision complies with the incremental
cost functional (cost-to-go),

, from the local perspective. Consequently we define

(29)

Converting this into a probability density function by normal-
izing yields

(30)

This function represents the local cost of the decision to take
action . Actions that result in large values of will have
higher liability than actions that result in small values of.
These valuations are made independently of the likelihood
that a given choice will achieve the desired goal—the only
consideration is liability exposure, which we equate with cost.

4) Independence of Accuracy and Liability:These local
cost functions associate controls with high accuracy support
(high ) with small terminal cost, and controls with high
liability exposure (high ) with large incremental cost. When
accuracy support exceeds liability exposure, the corresponding
control produces a terminal state of sufficient value that
the incremental effort required to reach the terminal state
is justified. This explicit tradeoff between tolerance for goal
achievement (such as maximum position error within a certain
tolerance) and effort (such as energy consumption) is of
fundamental importance in physical controller design.

From a globally optimal perspective (long planning horizon)
this tradeoff in the cost function can be resolved by analyzing
the global performance of the resulting controller. However,
from a local perspective with unknown time-varying condi-
tions the optimal resolution between the need to, for example,
regulate the system without expending excessive fuel, cannot
be computeda priori. Instead, by independently allocating a
unit of accuracy support over all possible controls and a unit
of liability exposure over the same set, the benefit/cost tradeoff
can be justifiably performed without resorting to analysis of
global performance. In other words, the benefit and costs of
control can be independently assessed and the tradeoff between
these elements can be performed using local information.

B. Linear System with Quadratic Performance

Since the solution to the optimal linear quadratic regulator
is well known, it provides a convenient benchmark against
which to evaluate satisficing solutions. Consider the following
time-varying single-input system:

(31)

where is an -dimensional state vector, is an
matrix, is a scalar input, and is an -dimensional
vector. We wish to choose the control according to a quadratic
performance index, so (23) becomes

(32)

where and .
To demonstrate the application of satisficing control, we

develop an epistemic utility-based approach to a temporally
local version of this problem. Locality is invoked via a
receding horizon control strategy. The most restrictive such
version is a one-step control horizon, that is, . It is
important to emphasize that, because the satisficing controller
uses only temporally local information, it is insensitive to
a time-invariance assumption. Thus, the matrices ,
and may be time-varying without appreciable change to
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the procedure. Furthermore, these matrices need not even be
known in advance of the instantaneous horizon, . In this
latter case, it would not be possible to obtain a globally optimal
solution.4

5) Derivation of Accuracy Support and Liability Exposure:
Let be a finite open interval representing
the range of admissible controls. We begin by specifying
and according to (27) and (29). To calculate, we observe
that “regulation” occurs when all terminal substates inare
zero. Thus, we penalize all terminal states equally whereby we
set . For the problem addressed in this section,
the explicit influence horizon is . The influence vector
is , where we have
dropped the time dependence onto emphasize that at each
time step a new control is generated. Accuracy support is based
on the local performance index

(33)

Similarly, liability exposure is based on the local performance
index

(34)

Because and are quadratic in , it is possible to identify
the minimum of these local functions

(35)

(36)

From an implementation perspective, it is helpful to allocate all
of the accuracy support mass and all of the liability exposure
mass to the equilibrium set. It is easily shown that for quadratic
performance indexes the boundaries of the equilibrium set are
determined by the minimum values of and . Let

(37)

(38)

(39)

and assume and so that the boundaries
of do not affect these values.

Since is quadratic, it assumes its unique minimum
at . Thus, (29) becomes

(40)

with normalizing term

(41)

Both (40) and (41) can be easily obtained in closed form using
(34). Similarly, since is quadratic in it achieves its
maximum at when restricted to . Hence, (27) becomes,

(42)
4We postpone such a demonstration to the inverted pendulum example.

with normalizing term

(43)

Again, both (42) and (43) can be easily obtained in closed
form using (33).

The most accurate and least liable controls are given by

(44)

(45)

In this development, all belief is placed on, whence
. Because is concave and is convex, is convex

(see Theorem 6), which implies that all possible strongly
satisficing controls may be obtained via convex combinations
of and . For define .
For , the control tends to reduce the accumulated
cost at the expense of large terminal error, and for ,
the control tends to reduce the terminal error at the expense
of the accumulated cost. Thus, is a design parameter for
a synthesizing procedure. There exists a such that the
most discriminating control is given by . The
most discriminating control can be calculated directly
in a manner similar to the calculations of and (i.e.,
minimizing with respect to ), yielding

(46)

where . Let and
define the satisficing gain

(47)

so that . The satisficing control for the
linear quadratic regulator is a state-feedback control, and has
a structure similar to the optimal feedback control. Because
the gain is a function of the state (via ), however,
the feedback is not linear.

6) Simulation Results and Comparison to Optimal Control:
When and are defined for all time and
known beforehand, the optimal solution can be obtained of the
form , where is the Kalman gain (see
[30, Theorem 6.28])

(48)

and where
, with terminal condition . In the

special case where and are constant,
the system is time-invariant and a steady-state solution exists
of the form , where the steady-state Kalman
gain , and is obtained via the
algebraic Riccati equation [31, Eqs. (2.4)–(12)].
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(a)

(b)

Fig. 2. Performance results for the single-agent linear regulator problem: (a)
control history and (b) phase plane.

To compare the optimal and satisficing control policies,
we use an unstable second-order linear time-invariant system
example taken from [32]. Let

Since negligible performance is lost by using steady-
state gains, we compare with the results using

. The resulting control history is plotted in
Fig. 2(a), with the solid curve representing the optimal steady-
state control, and the dashed curves representing the one-step
satisficing control for three different values of rejectivity.

The steady-state optimal trajectory is shown in Fig. 2(b) as
the solid curve, and the solution of the one-step satisficing
epistemic utility-based controller is displayed with the dashed
curves for three different rejectivity values. The most discrim-

inating satisficing control, , was employed. For comparison
purposes, we define the optimal cost function

(49)

The steady-state optimal cost for this problem is ,
and the cost for the one-step controllers (denoted bywhere
subscript indicates rejectivity) are
and . Thus, performance degrades approximately
4% if a satisficing solution is employed even with a planning
horizon of . Additionally, since the normalization
constants and can be determined in closed
form as functions of [33], the calculation of consists of
one matrix inversion, seven matrix multiplications, and a small
number of scalar additions and multiplications. Thus, can
be calculated with no substantial computational burden and
thus does not significantly increase computational complexity
when compared to the steady-state linear state feedback.
For the linear problem, these results are perhaps not very
surprising since the satisficing receding horizon solution is
similar to other bounded-memory approaches (see, e.g., [6]
and [8]) known to have similar properties. We will have more
to say about the factors of performance and computational
complexity in the other examples.

C. Nonlinear, Nonstationary System with
Quadratic Performance

An important control problem is the nonlinear, nonstationary
regulator problem of the form (26). Suppose we wish to
regulate

(50)

where is a nonlinear vector function, about the origin
in such a way that the performance index (32) is

kept small. An optimal solution would minimize this per-
formance index but, unlike the linear regulator system, no
general systematic solution has been discovered for the general
nonlinear problem. A conventional approach is to linearize
this system about an equilibrium point and apply linear system
techniques, resulting in at least a spatially local solution whose
functionality is problematic. Techniques, such as feedback
linearization, adaptive control, and gain scheduling are based
in large part on such assumptions.

In this section, we apply a satisficing receding horizon
control to a problem that has proven to be surprisingly difficult:
The control of an inverted pendulum in a vertical plane
with full circular freedom by applying a lateral force to the
cart to which the pendulum is attached, while simultaneously
regulating the position of the cart.

Consider the apparatus illustrated in Fig. 3. The problem is
to bring the pendulum from vertically downward to vertically
upward by applying a force to the cart. This problem is
prototypical of many nonlinear control problems, and thus
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Fig. 3. Inverted pendulum on a cart.

makes a good test case for satisficing control. Traditional
controllers linearize the dynamics model of the pendulum in a
small region within, say 10of the vertical. More recently, a
fuzzy controller trained by a genetic algorithm has been shown
to balance the pendulum 90% of the time if the pendulum is
given a random initial position within 80of the vertical and
a random initial velocity less that 80/s [34]. In this section,
we will design an epistemic utility-based controller with the
control horizon which will control the pendulum given
any set of initial conditions, while simultaneously positioning
the cart at a desired point. The only restriction made is that
the initial pendulum velocity be small enough so that the
sample interval is much less than the rotational period of
the pendulum. To render the problem nonstationary, we will
further assume that the mass of the pendulum,, is a random
walk whose future values are known.

Let denote the state of the cart/pendulum
system. The continuous-time dynamical equation for this prob-
lem is

(51)

where and are
given by

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

where

mass of the cart;
length of the pendulum;
mass of the pendulum;
angle from vertical (measured counterclockwise);
horizontal position of the cart;
control input, is a lateral force applied to the cart.

1) Derivation of Accuracy Support and Liability Exposure:
Using Euler integration with sample time, the equivalent
discrete-time dynamical expression is

(60)

for With this discretization procedure,
and are not explicit functions of , but
and are explicit functions of . Thus, ,
and we may identify the components of the influence vector

as

(61)

and

(62)

We adopt the same quadratic performance indexes (33)–(34)
that were used for the previous linear quadratic regulator
example. Since the inverted pendulum is a regulator problem,
the goal of the system is the same as for that problem;
namely, bring the system to rest at the desired point. Let

, where and are matrices
with , and let . The local
performance indexes then become

(63)

and

(64)

in accordance with (27) through (30).
From these equations, and may be calculated in

accordance with (27), (29), (28), and (30). Thus, problems
with linear dynamics and nonlinear dynamics are both treated
exactly the same; neither linearity nor time-invariance are
exploited. The resulting most discriminating controller is, after
some calculations,

(65)
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(a) (b)

Fig. 4. Phase planes for the inverted pendulum on a cart (m = constant): (a) rotational phase plane (in radians and radians per second) and (b) translational
phase plane (in meters and meters per second).

where

The following values were used in the simulation:

, kg,

kg, m, s, and .
The off-diagonal terms in reflect coupling between
and necessitated by one control input but two degrees of
freedom in the system, namely the rotational and translational
components.

2) Simulation Results and Discussion of Optimal Solutions:
As a baseline, we first present results for the time-invariant
case, that is, , a constant; we then present results
for a random walk. Fig. 4(a) and (b) illustrate the
rotational (pendulum) and translational (cart) phase planes for
the constant mass case. The “” symbol represents the initial
conditions (the cart at the origin with the pendulum in the
vertical down position) and the “” symbol represents the
terminal conditions (the cart at the origin with the pendulum
balanced in the vertical up position).

Fig. 5 provides the control time history for this problem.
The system achieves its desired objective of balancing the
pendulum at the origin by swinging the pendulum back and
forth while the cart oscillates around the origin. As the cart
oscillates, the pendulum gathers momentum. In the transla-
tional and rotational phase planes, this motion is manifest as
growing spirals. When the amplitude increases sufficiently,
the oscillation ceases and the pendulum then converges to the
vertical upright position. Finally, the cart returns slowly to the
origin.

Fig. 5. Control inputs for the inverted pendulum on a cart (time measured
in 0.01 s increments).

An interesting feature of this controller is that jumps occur
in both translational and angular velocity when the pendulum
swings through . This phenomenon is a consequence
of the coupling between translational and rotational position in
the liability exposure density function, which causes a polarity
switch, denoted by in the figure, to occur between and

. On one side of the vertical, , and on the opposite
side, . This polarity switch creates a large change
in , and the resulting change in rotational rate then acts to
restore the control to near its value before the polarity switch.
Thus, the phenomenon appears as an impulsive control input
when the pendulum goes through the vertical down position,
as illustrated in Fig. 5.

Fig. 6(a) and (b) illustrate the rotational and translational
phase planes for the random-mass case. Here,

, with an uncorrelated process with each
time-sample drawn from a uniform distribution over the in-
terval . Note that, although the trajectories differ
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(a) (b)

Fig. 6. Phase planes for the inverted pendulum on a cart(m = random): (a) rotational phase plane (in radians and radians per second) and (b) translational
phase plane (in meters and meters per second).

quantitatively from those of the constant-mass case, the qual-
itative behavior is very similar. The fact that the mass is
random has no effect on either the controller structure or design
procedure.

It is possible to construct a solution to the discretized
nonlinear problem using dynamic programming. However,
such solutions can only be constructed when is known for
all time. In the absence of such prior information, either global
robust control methods or receding horizon methods would be
required, but no systematic results of comparable generality
regarding the inverted pendulum are known to the authors. In
summary, the satisficing approach provides a solution to this
problem which could, in theory, be improved using iterative
optimal control methods (such as [35]). Since closed form
solutions for the controller can be obtained, computational
complexity is not a significant issue.

D. Nonlinear System With Minimum-Time Performance

In this section we apply epistemic utility-based control the-
ory to Zermelo’s problem. Zermelo’s problem is a minimum
time problem with nonlinear dynamics for which an optimal
solution is known [31], [36]. We first present the satisficing
solution to this problem and compare the performance to the
optimal solution.

Zermelo’s problem involves a ship that must travel through
a region of strong currents to reach an island, placed at the
origin of a Cartesian coordinate system, in minimum time.
The current vector, , in Cartesian coordinates, is given
as , as shown in Fig. 7, where is the
magnitude of the ship’s velocity relative to the water, andis
a fixed constant. The ship’s heading angle, , is defined
relative to the positive axis, and is the control variable for
this problem. We define . The discretized equations
of motion are

Fig. 7. Geometry for Zermelo’s problem.

which can easily be put in the discretized form of (26) by
defining , and

. The explicit influence horizon for
this problem is , since the control, , explicitly
affects both and . For a -length control
horizon, the influence vectors are ,

. Specifically, for ,

For minimum-time problems with constrained final state,
the performance index (23) is

(66)
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where . We wish to find a minimum-time
satisficing control. From the local point of view, the essence
of minimizing time is to maximize velocity. Consequently, we
must include a measure of velocity, or position change, in the
performance index. Adding and subtracting velocity related
components to (66) yields

(67)

which may be rearranged as

(68)

1) Accuracy Support and Liability Exposure Construction:
From a local perspective, is associated with the terminal
time, . Thus, a local terminal performance index may be
formed from the first two terms on the right-hand side of (68)
to obtain

(69)

For the case we drop dependence on whence
substitution of (69) into (27) yields

(70)

(71)

The essence of (70) is the inner product
Its effect on accuracy support is best understood by

considering a few simple scenarios. Suppose that the present
position, , is positive (to the right of the origin). If a
control, , produces a next state, , that is more
positive than the present position, then the inner product
is negative and the corresponding accuracy support, after
shifting, is small. If, however, the next state is positive and to

the left of the present state, then the inner product is positive
and the corresponding accuracy support, after shifting, is high.
Similar results for other regions of state space indicate that
this inner product yields a large accuracy support for controls
that move the system quickly toward the origin, but low
accuracy support for controls that move the system in the
wrong direction or that move the system slowly. This inner
product is the local basis for constructing the accuracy support
density function.

To construct the liability exposure density function, we use
the second two terms from (68), and again associatewith

, to form

(72)

For the case , substituting (72) into (29) yields, after
some manipulation,

(73)

(74)

The liability exposure density function constructed from this
places large liability exposure on low speeds and small

liability exposure on large speeds, indicating that wherever the
agent travels, it should go there speedily; that is, the velocity
term in (73) should be maximized. This is similar to the
optimal bang-bang controllers that originate from minimum
time problems with bounded controls.

2) Results and Comparison to Optimal Control:For these
dynamics, the accuracy support and liability exposure are
formed from (71) and (74) and the resulting boat trajectories
are plotted for

, and in Fig. 8. Trajectories are given
for the optimal solution, a one-step satisficing solution, and
a two-step satisficing solution, where the two-step satisficing
solution is given for three different values of rejectivity. The
corresponding times are given in Table I.

The one-step satisficing solution does not recognize that
by crossing over the axis the boat can gain speed,
since the liability exposure for the one-step solution is uniform
at . The two-step satisficing solution, by contrast,
takes advantage of the crossing and decreases the
amount of time required. High rejectivity causes the
boat to overshoot the island and backtrack. Lower rejectivity

eliminates the overshoot and decreases time, but
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(a) (b)

Fig. 8. Performance results for the single-agent Zermelo’s problem: (a) comparison of optimal, one-step satisficing, and two-step satisficing, and (b)
comparison of optimal with two-step satisficing for varying index of rejectivity.

TABLE I
ZERMELO’S PROBLEM RESULTS

decreasing the rejectivity further increases time since
currents are not fully exploited. Although changing rejectivity
does affect performance slightly, the satisficing solutions are
not overly sensitive to rejectivity. Thus, performance of the
two-step horizon satisficing solution is not significantly worse
(approximately 17% for ) than the optimal control. The
computational complexity of the satisficing solution is higher
because no closed form solution is employed (calculation of
the equilibrium set is obtained using numerical derivatives,
and a search is made through the discretized control space for
the most discriminating control). In the presence of nonlinear
currents, however, no optimal solution of the continuous time
problem is easily obtained, but a satisficing solution is of the
form developed above is easily generated [33].

IV. CONSISTENCY OFRECEDING

HORIZON SATISFICING CONTROL

The use of a receding horizon makes it possible to develop a
tractable satisficing controller using the principles of epistemic
utility theory. As the length of the control horizon,, is
increased, more of the future state values are taken into consid-
eration for the calculation of the current control. It is therefore
reasonable to expect that performance will improve with
increasing . The following theorem establishes the stronger
result that in the limit as approaches , the quadratic
regulator satisficing control will actually be equivalent to the
optimal control.

Theorem 8 (Consistency of Quadratic Regulator):For the
deterministic quadratic regulator problem (50) and (32), if the
control horizon spans the full extent of the problem, that is,
for , then the most discriminating satisficing control is
identical to the optimal control.

Proof: We will prove this result for the scalar control
case only. The most discriminating control, denoted

, is .
From (28) and (30)

(75)

where . Also, from (27) and (29),

(76)

For the quadratic regulator problem with , we
take and

. Thus,

(77)

For , this is exactly the optimal quadratic regulator
solution.

The following theorem establishes the result that in the limit
as approaches , the minimum-time satisficing control is
equivalent to the optimal control. The proof is similar to the
proof of Theorem 8.
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Theorem 9 (Consistency of Minimum Time Controller):For
the deterministic minimum-time (50) and (66), if the control
horizon spans the full extent of the problem, that is, for ,
then the most discriminating satisficing control is identical to
the optimal minimum-time control.

V. CONCLUSION

We present a theory of satisficing control that builds upon
the philosophy of avoiding error rather than seeking truth. The
mature theoretical foundations of this philosophy are translated
into a controller design procedure for single-agent, time-
varying, nonlinear systems. Solutions are generated for two
well-known optimal control problems (LQR and Zermelo’s
problem) and performance and computational requirements
are compared. Using these examples, we demonstrate that
satisficing controllers do not require significantly more com-
putations and produce behavior which compares favorably
to optimal solutions. When computation of optimal solutions
is infeasible (such as the uncertain time-varying inverted
pendulum problem), we demonstrate the ability to generate
computable solutions in the presence of time-varying plants.

Unlike traditional receding horizon control methods, we
independently assess controller performance on the basis of
terminal conditions (such as regulation) and transition costs
(such as fuel consumption). This independent assessment
makes explicit the asymmetry between the fundamental goal
of the controller and undesirable performance characteristics.
The tradeoff that appears in many controller designs between
these objectives is made explicit, and only controls for which
accuracy support (benefit with respect to fundamental goal
achievement) exceeds liability exposure (cost with respect
to undesirable characteristics are permitted). This indepen-
dent assessment facilitates the design of a receding horizon
controller for the inverted pendulum problem with full circu-
lar freedom. Unlike conventional generalized potential field
approaches with attractive goals and repulsive obstacles, satis-
ficing controllers consider explicit performance objectives, and
are consistent with optimal solutions in the sense that, when
the planning horizon is sufficient, performance is optimal.
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