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Abstract

Fuzzy logic controllers implicitly assume a utility maxi-
mizing principle. The satisficing principle is an alternative
to utility maximizing. Instead of maximizing a single utility,
the satisficing principle compares two independent utilities
to determine admissible controls. Applying this principle
to fuzzy logic controllers provides more defuzzifier latitude
and, hence, can make the design of fuzzy logic controllers
easier and more systematic.

1 Introducticn

As systems become more complex or less precisely
known, the development of Conventional Controllers
(CC’s) becomes more difficult--a manifestation of Zadeh’s
principle of incompatibility [9]. Fuzzy Logic Con-
trollers (FL.C’s) can be and have been successfully applied
to many such systems, in part because of the simplified and
tractable controller description. However, FLC’s and CC’s
share a common foundation:. each controller requires the
generation and manipulation of a single utility. For FLC’s,
fuzzifiers and inference engines generate the utility of each
control; for CC’s, performance indices generate this utility.
For FLC’s, the defuzzifier uses this utility to produce a
single ‘‘best’’ control; for CC’s, the performance index is
extremized to produce a single “‘best’’ control. Although the
complexity is (perhaps greatly) reduced, FLC’s implicitly
attempt to maximize utility.

Utility maximization, however, is neither the only possi-
ble paradigm for rational decision-making, nor the appropri-
ate paradigm for all decision-making scenarios. Simon [5]
presents an alternative principle, termed the satisficing prin-
ciple: all solutions that meet a minimum standard, possibly
obtained under constraints of partial information or re-
stricted computation, are admissible. Levi [3] provides an
epistemological theory which is consistent with the satis-
ficing principle. In contrast to the conventional practice
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of maximizing a single utility, Levi’s theory requires that
two independent utilities be compared. This structure forms
the basis of the satisficing control theory presented in this
paper.

We first present a theory of satisficing control based on
Levi’s epistemology. Based on this theory, we develop
a satisficing fuzzy logic controller (SFLC). Finally, we
demonstrate the use of an SFLC on the inverted pendulum
problem.

2. Summary of Satisficing Control Theory
2.1. Satisficing Decisions

Control problems are usually specified in terms of two
desiderata: (a) the ultimate goal of the controller (for ex-
ample, to drive the state to a fixed set-point), and (b) the
design principles used to generate a specific control policy
(for example, a performance index to be minimized). To
apply the satisficing principle, which selects controls by
comparing these two desiderata, two utilities are required:
one which reflects the ultimate goal of the controller and
another which reflects the design principles. We call these
two utilities the accuracy and rejectability utilities, respec-
tively. We let these two utilities correspond to two fuzzy
sets defined under the linguistic variable value of control.
Let the set U denote the control space (Umin, ¥max) Where
we have assumed that the accuracy and rejectability utilities
assign all of their mass to this interval; i.e., U is the universe
of discourse for the linguistic variable value of control.

We wish to define a utility function to characterize the
accuracy, meaning conformity to a given standard, of a
control v € U. This utility has the form of a set membership
function pg : U — [0,1]. pa(u) is an accuracy-bearing
utility function, termed the accuracy function. The accuracy
may be interpreted as a measure of how well a control
decision achieves the ultimate goal; that is, its effectiveness.
This set membership function defined over U defines the
fuzzy set termed the accuracy set. '
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Rejectability may be interpreted as a measure of how
well a control decision obeys the design principles, in-
dependently of its effectiveness. The rejectability utility
may be expressed through another membership function,
pr U+ [0,1]. pr(u) is the utility of rejecting the control
u € U. This set membership function defines the fuzzy set
termed the rejectability set.

The satisficing set is defined as

Sy ={u €U :pa(u) > bur(u)}, ¢y

where b, the rejectivity index, establishes the satisficing
threshold. We can, without loss of generality, restrict atten-
tion to rejectivity small enough to guarantee that S}, defined
in (1) is nonempty. In contrast to many decision-making
procedures but in the spirit of fuzziness, this approach
relaxes the requirement for a unique best decision and, in-
stead, admits as satisficing all decisions for which accuracy
exceeds rejectability. The satisficing set S; can be viewed
as a fuzzy set with associated membership function

ps(u;b) = max {0, pa(u) — bur(u)}. (2)

Obviously, only one control from this fuzzy set can actu-
ally be implemented, but, from a strictly satisficing point
of view, one may choose any of the unrejected control
decisions with some confidence that the action will yield
good, if not optimal, performance. Thus the designer has
considerable latitude in the ultimate choice of the control to
be implemented and, hence, in the selection of a defuzzifi-
cation procedure. However, it is helpful to further restrict
the satisficing set prior to defuzzifying.

2.2. Strongly Satisficing Control

Satisficing, as we have defined it, is a weak notion of
performance: broadly speaking, a proposition is satisficing
if the good (characterized by accuracy) outweighs the bad
(characterized by rejectability). Furthermore, the satisficing
set, Sp, will generally not be a singleton set and, hence, there
may be many satisficing control possibilities. However,
although all controls in S, are satisficing, they are not
necessarily all equal. In selecting a control, if a choice exists
between two controls of equal rejectability but differing
accuracy, it is reasonable to prefer the one with higher
accuracy. Similarly, if a choice exists between two controls
of equal accuracy, it is reasonable to select the one with
lower rejectability.

Three strongly satisficing controls are immediately
obvious. A most accurate satisficing control, uy =
arg maxscs, {1t4(z)}. would be appropriate for cases with
large variations in p4 relative to small variations in pg.
Such a decision represents a very aggressive stance to
achieve the goal at the risk of excessive cost. A least

rejectable satisficing control, ugr = argmin,egs, {#r(2)},
would be appropriate when there are large variations in g
relative to changes in 4. This procedure is very conserva-
tive, and reflects a willingness to compromise the goal in the
interest of reducing cost. A most discriminating satisficing
control, up = argmax,cs, {#a(z) — bur(z)} reflects a
desire to compromise between cost and achievement in a
way that maximizes the difference between the two.

It is desirable to identify the set, S, of all strongly
satisficing solutions. Clearly, {u4,ugr,up} C S,. More
generally, define

S, = {u€S;:AveS, forwhich ug(v) < pr(u)

and p14(v) > pa(u)} 3

The strongly satisficing set consists of all those satisficing
controls for which no other satisficing control is both more
accurate and less rejectable. We may interpret this by saying
that the strongly satisficing set consists of controls for which
no obviously better solution exists. In consequence of this,
strongly satisficing solutions enjoy an equilibrium property:
the accuracy cannot be increased without also increasing
the rejectability, and the rejectability cannot be decreased
without also decreasing the accuracy.

As with the satisficing set, the strongly satisficing set
can be viewed as a fuzzy set with associated membership
function

u €Sy
otherwise

pe(u;b) = { He (g" ) @
Controls in this fuzzy set have nonzero membership only
when accuracy exceeds rejectability (times rejectivity) and
when no other control is obviously better. A defuzzifier
operating on this set has a great deal of latitude because
each element in the set has a legitimate claim as the choice
of control.

3. Fuzzy Logic and Satisficing Decisions

A conventional fuzzy logic controller is diagrammed in
Figure 1. The output of the inference engine, when viewed as
a function of potential controls, represents the utility of each
control. In other words, the output of the inference engine
defines a solution fuzzy set of controls with a corresponding
degree of membership [1]. The defuzzifier manipulates this
membership function to select a single control. Selection
and design of a defuzzifier can be a significant obstacle in
designing an FLC [4].

The SFLC diagrammed in Figure 2 includes both an ac-
curacy utility as well as a rejectability utility. By comparing
Figure 1 to 2, we see that the accuracy and rejectability
set membership function pair in the SFLC can be used to
refine the solution fuzzy set membership function prior to

273



FLC.

Figure 2. Basic components of a satisficing
FLC.

defuzzifying. This should not be a large conceptual leap
for practitioners of fuzzy logic. We have only added one
additional membership function defined over the linguis-
tic variable value of control, but by doing so we have
potentially reduced the defuzzifier complexity since every
strongly satisficing control is justifiable. Note that when
b = 0 the conventional FLC is obtained and, thus, the SFLC
can be viewed as a generalization of the FLC. In control-
ling the inverted pendulum, we demonstrate that the SFLC
design is relatively simple, but produces very good results.

We wish to emphasize that the satisficing principle oper-
ates independently of how the accuracy and rejectability set
membership functions are obtained; the satisficing principle
does not depend on a particular fuzzification procedure or
inference engine. It is for this reason that the accuracy and
rejectability modules are represented as featureless boxes in
Figure 2. A conventional rule-based system can be used to
fuzzify inputs and infer a utility defined over possible con-
trols, or cost functions can be used to generate the accuracy
and rejectability membership functions. It is also possible
for a combination of cost functions and rule bases to be
used to generate these membership functions. In the next
section; we present a fuzzification technique and inference
engine that are implicitly incorporated in a cost-function

formulation.

4. Control of the Inverted Pendulum

We now develop an SFLC for the inverted pendulum
problem: control an inverted pendulum in a vertical plane
with full circular freedom by applying a lateral force to
the cart to which the pendulum is attached, while simulta-
neously regulating the position of the cart to any desired
point. Traditional controllers must linearize the dynamics
model of the pendulum in a small region within, say 10
deg of the vertical. More recently, an FLC trained by a
genetic algorithm has been shown to balance the pendulum
90 % of the time if the pendulum is given a random initial
position within 80 deg of the vertical and a random initial
velocity less than 80 deg/sec [2]. We will design an SFL.C
for the given inverted pendulum problem given any initial
cart position, cart velocity, pendulum angle, and pendulum
angular velocity less than 80 deg per sample time 7.

The inverted pendulum apparatus is illustrated in Fig-
ure 3, where M is the mass of the cart, [ is the length of

—x

Figure 3. Inverted pendulum on a cart.

the pendulum, m is the mass of the pendulum, 6 is the
angle from vertical (measured. counterclockwise), = is the
horizontal position of the cart, and u, the control input,
is a lateral force applied to the cart. The continuous-time
dynamical equations for this problem are

(M +m)gsin @ — ml cos 0 sin 962 — cosfu

§ = 5
(M + msin® 8) ©)
Isin 042 — i
o= ™ sin 66 mgc?32651n0+u' )
M 4+ msin® 6

Let x(k) = [0(k), z(k),8(k), (k)] denote the state of
the system. Using Euler integration, the equivalent discrete-
time dynamical expression is X(k + 1) = x(k) + T%(k).
With this discretization procedure, it is clear that 8(k + 1)
and z(k+ 1) are not explicit functions of u(k), but §(k + 1),
z(k + 1), 8(k + 2), and z(k + 2) are explicit functions of
u(k). Thus, we may identify the components of the state
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that are influenced by the current input (k) as the velocity
vector v(k+1) = [8(k+1),2(k+1)]T and position vector
p(k +2) = [0(k + 2), z(k + 2)]7.

We adopt a quadratic performance index. Since the
inverted pendulum is a regulator problem, the goal of the
system is to bring the system to rest at the desired point. Let
Qp and Q,, be 2 x 2 cost matrices for position and velocity,
respectively, and let R be the cost matrix for control u. The
accuracy cost functional is defined as

&(u) =pT(k+2)pk +2) +vI(k+1)v(k+1) (7)
and the rejectability cost functional is defined as

Aw) = pT(k+2)Qpp(k+2)+
vIi(k+1)Q,v(k +1)+ Ru®.  (8)

From these equations, y4 and pr may be determined
as pa(u) = ka| max.ev {2(2)} - @(w)] and pp(u) =

KR [A(u) — min,ey {A(z)}] where k4 and kg are the
normalizing constants required to create (state-dependent)
membership functions. Because any element in the strongly
satisficing set can be justifiably applied as the control to the
plant, the design of a defuzzifier can be simplified. One
conventional defuzzifier determines the center of mass of
the solution fuzzy set (as weighted by the utility function).
For this construction, gy (u; b) is a concave function which
means that the center of mass calculation is a reasonable
defuzzifier. Elsewhere and in a different context, we have
successfully applied even more simple defuzzifiers [7].
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Figure 4. Rotational phase planes for inverted
pendulum on a cart (in radian per second and
radians).

The following values were used in the simulation:

i[5 oy e (32 63] wir -

1074, M = 0.455kg,m = 0.21kg,l = 0.61m,T = 0.01s,
and U = [-1000, 1000]. The off-diagonal terms in @, and
Q. reflect the coupling that must be modeled between § and
z due to the fact that there is only one control input but two
degrees of freedom in the system, namely the rotational and
translational components.
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Figure 5. Translational phase planes for in-

verted pendulum on a cart (in meters per sec-

ond and meters).

Figures 4 and 5 illustrate the rotational (pendulum) and
translational (cart) phase planes. The ‘‘o”’ symbol repre-
sents the initial conditions (the cart at the origin with the
pendulum in the vertical down position) and the ‘*x’’ sym-
bol represents the terminal conditions (the cart at the origin
with the pendulum balanced in the vertical up position). The
control history is shown in Figure 6. The system achieves its
desired objective of balancing the pendulum at the origin by
swinging the pendulum back and forth while the cart oscil-
lates around the origin. As the cart oscillates, the pendulum
gathers momentum. In the translational and rotational phase
planes, this motion is manifest as growing spirals. When
the amplitude increases sufficiently, the oscillation ceases
and the pendulum then converges to the vertical upright
position. Finally, the cart returns slowly to the origin.

5. Discussion

Fuzzy Logic Controllers usually determine a control by
defuzzifying a single utility. This defuzzifying process im-
plicitly assumes a utility maximizing perspective. Satisfic-
ing Fuzzy Logic Controllers use two utilities, and determine
admissible controls by the interplay between these two util-
ities. The use of two utilities can make controller design
more simple as well as create greater latitude in defuzzifier
selection.
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Figure 6. Control history for inverted pendu-
lum on a cart (in 0.01 sec increments).

References

[1] E. Cox. Fuzzy fundamentals. IEEE Spectrum, pages 58--61,
October 1992.

[2] J. Kim, Y. Moon, and B. P. Zeigler. Designing Fuzzy Net
Controllers Using Genetic Algorithms. IEEE Control Systems
Magazine, 15(3):66--72, 1995.

[3] I Levi. The Enterprise of Knowledge. MIT Press, Cambridge,
Massachusetts, 1980.

[4] J. M. Mendel. Fuzzy logic systems for engineering: A tutorial.
Proceedings of the IEEE, 83(3):345--377, March 1995.

[51 H. A. Simon. A Behavioral Model of Rational Choice. Quart.
J. Economics, 59:99--118, 1955.

[6] W.C. Stirling. Coordinated Intelligent Control Via Epistemic
Utility Theory . IEEE Control Systems Magazine, 13(5):21--
29, October 1993.

[7] W.C. Stirling, M. A. Goodrich, and R. L. Frost. Procedurally
rational decision-making and control. IEEE Control Systems
Magazine, 1996. To Appear.

[8] W.C. Stirlingand D. R. Morrell. Convex Bayes Decision The-
ory. IEEE Transactions on Systems, Man, and Cybernetics,
21(1):173--183, January/February 1991.

[91 L. A. Zadeh. The Concept of a Linguistic Variable and
it Application to Approximate Reasoning--1. Information
Sciences, 8:199--249, 1975.

276



