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Abstract

In previous work, we addressed how the world sometimes
mandates switches in human behaviors [2). This lead to
a characterization of how humans manage such mandato-
ry transitions. In addition to mandatory behavior switch-
es, there are also situations where humans exhibit dis-
cretionary behavior switches. In this paper, we present
a mathematical characterization of discretionary behavior
switches which is applicable to both modeling human be-
havior generation as well as to developing action selection
mechanisms for behavior-based robotics. We support this
model by analyzing behaviors observed in human subjects
and by synthesizing behaviors in a mobile robot.

1 Introduction and Previous Work

Sometimes changes in the environment mandate that peo-
ple and robots change behaviors. However, even when the
environment does not mandate a change in behavior, the
environment can afford such a change and people/robots
are free to choose to switch behaviors. In this paper, we
present a mathematical framework for discretionary behav-
ior switches. This framework uses the cost benefit tradeoff
of satisficing decision theory, and includes the notion of
goal-achieving/fault-avoiding behaviors. We take a some-
what unique approach to validating the model by not only
analyzing data obtained from human subjects who partici-
pated in a driving experiment using the Nissan CBR driv-
ing sirulator, but also synthesizing action selection mech-
anisms for a behavior-based robot architecture.

Multiple mental models. Many aspects of cognitive
decision-making have been described in terms of mental
models [4]. A mental model is an internal representa-
tion employed to encode, predict, and evaluate the con-
sequences of perceived and intended changes to the opera-
tor’s current state within the dynamic environment. We de-
fine a mental model M as a triplet consisting of the state of
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the environment © (including perceived and internal state
components), a set of decisions or actions U, and a set of
ordered consequences C that result from choosing u € U
when § € O obtains. According to this specification, a
mental model not only encodes the relation between the
input-action pair (6, ) and the predicted consequence c,
but also induces an evaluation of preferences among con-
sequences.

Human cognition can be described using multiple men-
tal models (treated as agents) which can be organized in-
to a three level, multi-resolutional society of interacting a-
gents corresponding to Rasmussen’s knowledge-based (K-
B), rule-based (RB), and skill-based (SB) behaviors [6].
At the KB level of this hierarchy, the agent role is super-
visory; at the RB level, the agent role is task management;
and at the SB level, the agent role is task execution. As-
sociated with each task-managing RB agent are a set of
task-executing SB agents. Unlike RB agents which can
be simultaneously enabled (multiple tasks can be simulta-
neously performed provided that attention can be suitably
scheduled), only a single SB behavior can be enabled for
each RB task. Since (a) only one SB behavior can be active
and (b) no single SB behavior is sufficient for all condition-
s in the world, we require a mechanism for switching from
one behavior to another.

Behavior-based Robotics. Employing bottom-up de-
sign, Brooks [1] proposed a layered architecture of increas-
ingly sophisticated skills, and termed this architecture the
subsumption architecture. Multiple skills are simultane-
ously active unless a higher level skill subsumes responsi-
bility for the lower level behavior. In keeping with the spir-
it of behavior-based robotics, we assume the existence of
a set of low level activities (like accelerating to a specified
speed), but restrict attention to the management of skills
(where skills are defined as patterned sequences of activ-
ities). These skills are managed by the task-management
program. Rather than requiring the subsumption of one
skill by a more sophisticated skill, we adopt a behavior-
generation hierarchy similar to the human model discussed
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above and consistent with other approaches to behavior-
based control (e.g., [5]). This allows us to treat robot action
selection and switches between SB mental model agents in
the same manner. We must therefore develop algorithms
for switching between skills in a given a task context.

Satisficing decision theory. To develop algorithms for
skill switching, we employ satisficing decision theory. The
notion of satisficing was first identified by Simon [7] who
addressed the issue of limited or bounded rationality by
defining an aspiration level, such that once this level is met,
the corresponding solution is deemed adequate, or satisfic-
ing. Satisficing Decision Theory (SDT) is a multi-attribute
extension [3] of Simon’s approach which employs and
compares two evaluation functions similar to the way ben-
efit and cost are compared in economics literature. The key
to this development lies in partitioning preferences over
consequences into a generalized type of benefit called ac-
ceptability, and a generalized type of cost called rejectabil-
ity.

Formally, let U denote the set of possible decisions or ac-
tions and let © denote the states of nature. For each de-
cision u € U and for each state of nature # € O, a con-
sequence results which is the effect of making decision »
when nature is in state . The acceptability p4 : U x © —
R and rejectability pg : U x © — R functions encode
the preference relations defined for each consequence (i.e.,
action/state-of-nature pair). The SDT decision rule may be
written as

Sp = {(u;0) : pa(u; 0) > bpr(u;6)}, M

where b is a weighting parameter that represents the rela-
tive importance of cost and benefit. In SDT, preferences
over consequences are represented by the benefit-like ac-
ceptability attribute and the cost-like rejectability attribute.
These attributes are compared to determine when action u
is admissible given state 6 (i.e., when consequences are sat-
isficing). For the speed management task in the context of
automobile driving, the corresponding set of driver skills
includes U = {CF, SR, AB}, where CF indicates car fol-
lowing, SR indicates speed regulation (free driving), and
AB indicates active braking. Also for the speed manage-
ment task, the vector of perceptual states (see, for exam-
ple, [2])is @ = [T}, Th,va] where T! is the inverse of
time-to-contact, T}, is time headway, and v 4 is the velocity
of my vehicle.

Suppose that a human is performing skill w € U. The
human monitors # via the RB mental model, and when
(u,8) € Sp no change in skill-based behavior is necessary.
However, when (u,8) € Ss, then the current behavior is
not acceptable and must be switched to a behavior that is

appropriate for the circumstances. The transition that oc-
curs when @ produces satisficing consequences at time ¢ but
ceases to do so at time ¢ + 1 is referred to as a perceptual
triggering event. It is a perceptual occurrence which man-
dates a switch in behaviors, but the choice of which skill to
choose is discretionary in nature.

2 Discretionary Switching

Skills must be changed when mandated by conditions in
the world, but the environment does not always mandate
which alternative skill should be selected. Additionally,
humans do (and robots should) switch skills discretionarily
even when the environment does not mandate a change.

2.1 Identification of Superior Alternatives

Satisficing, as we have defined it, is a notion of rational-
ity determined by comparing two aspects of the conse-
quences of making a decision. Under this rationality, a
decision can be admitted or rejected without reference to
other decisions. However, learning, memory, and the a-
bility to model the world permits an agent to compare the
consequences of one decision against another. This allows
a decision maker to compare the consequences of alterna-
tive decisions in an effort to improve performance. In the
two-attribute framework of satisficing decision theory, any
option that is dominated by another option (i.e., the first
option has lower acceptability and higher rejectability than
the second option) can be eliminated. It is interesting to
note (see [3]) that the set of non-dominated options is e-
quivalent to the set of those options which maximize the
hybrid utility ap 4 (u; 8) — (1 — a)pr(u; 8) for some trade-
off parameter o € [0,1]. This means that the set of non-
dominated options is equivalent to the set of maximizing
options when the tradeoff parameter « is completely in-
determinate. It also allows us to use simple maximization
as the mechanism for discretionarily choosing a behavior
once a decision to switch behaviors has been made.

2.2 Timing of Discretionary Switches

Whenever a perceptual triggering event occurs, we must
perform a search for a satisficing alternative; for our pur-
poses, this search is tantamount to finding the satisfic-
ing action that maximizes the difference between 14 and
pr. However, sometimes we search for superior alterna-
tives even when our current behavior is satisficing. Such a
search consumes attentional resources and should thus be
undertaken only if it is likely to effect superior behaviors.
We adopt the perspective that the likelihood of finding a
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superior behavior increases as the uninterrupted time spent
executing a skill increases. We model this by initializing
a random walk, and generating a search for dominating al-
ternatives whenever the value of the random walk process
exceeds a threshold.

3 Analysis: Automobile Driver Be-
havior Switching

In this section, we analyze the results of an experiment in
which human subjects responded to cut-in events in a simu-
lated automobile driving environment. We charaterize both
mandatory and discretionary behavior switches.

3.1 Experiment Description

Nissan’s SIRCA simulated driving environment includes
approximately six miles of highway with three lanes in
each direction and ambient traffic. In an experiment us-
ing the SIRCA environment, a subject performs steering
control but is constrained in longitudinal control. This
constraint prevents the subject from driving more than
(v* =~ 20m/s ~ 43mph). Since subjects prefer to drive
fast (and are encouraged to travel at maximum speed when
safe), subjects usually travel at this maximum speed when-
ever permitted by traffic. Thus, subjects are nominally
engaged in regulating speed unless the environment pre-
vents them from doing so. During the experiment (and on-
ly when the driver is traveling at 20m/s), a cut-in vehicle
passes the subject’s vehicle and cuts into the lane with a
ramdom initial time to contact 7,—1(0) and randomly se-
lected initial time headway 77%(0). Data were partitioned
into three classes corresponding to the three skills associ-
ated with the longitudinal vehicle control RB task: active
braking AB (brake pedal depressed), speed regulation SR
(car traveling at 20m/s), and car following CF (car acceler-
ating or decelerating, but neither using brakes nor traveling
at maximum speed).

3.2 Goal-Achievement versus Fault Avoid-
ance

Skilled behaviors come in at least two qualitatively differ-
ent varieties: goal-achieving and fault-avoiding!. A goal
achieving-behavior is acceptable when it leads to the like-
ly achievement of the goal and is rejectable when it leads
to a likely fault state. A fault-avoiding behavior is accept-
able when it leads away from a fault state and is rejectable
when it leads to no known goal state. The fundamental goal

!“Exploring” seems to be a third qualitatively different behavior.

of driving is usually to reach a destination, but this goal is
constrained by the need to avoid risks. We will use this dis-
tinction to discriminate between acceptable and rejectable
behaviors,

Within the context of the longitudinal vehicle control RB
task, car following and speed regulation are goal-achieving
skills; the long term goal is to reach a destination and this
translates into a short term objective of traveling as fast as
is safely allowed. Within the same context, braking is a
fault-avoiding skill; the long term goal is to avoid injury
and this translates into a short term objective of slowing
down the vehicle to avoid a collision.

3.3 Dichotomous Values

The values 4 and pr must be determined for each of
the three skills SR, CF, and AB. We base these values on
the overall goal of the driver. Therefore, both of the goal-
achieving skills, SR and CF, are more acceptable at lower
T, it is desirable to move forward if conditions are safe.
By contrast, AB is more acceptable in more dangerous cir-
cumstances (i.e., where T} is higher) because it acts to

- avoid or minimize a collision. Formally, x4 is a cumula-

tive measure of the percentage of times a particular skill
is used along the T, ! axis, building towards the more ac-
ceptable direction. For each experimental trial, we extract
the point at which each skill is initiated. The sets Isg, IcF,
and Iz p signify the points where the skills SR, CF, and AB
are initiated in the trials. The resulting acceptability values
for each skill are:

N(T;' > 7|Isn)
N(T:' > —oo|lsr)’

N(T* > 7)lcr)
N(T:? > —oolIor)’
N(T' < 1|IaB)
N(T:! < o|IaB)’

pa(SR, T, ' =17)

» uA(CFa Tc—l = T) =

pa(AB, T, ' =17)

where N(T; ! < 7|Igan) is number of points in the set
{6 = [T;1,Th] € Lan : T < 7} (or conversely for >).
These functions are shown in figure Figure 1.

Rejectability is based on where a particular skill ceases to
be used. T}, which reflects my car’s proximity to the car in
front of me, is used for calculating ugr. As T} decreases,
the SR skill is terminated in favor of the AB or CF skil-
1 indicating that, in the presence of other traffic, speeding
is likely to produce collisions; this means that rejectabili-
ty of SR increases as T}, decreases. AB is similar, except
that the skill is replaced by CF or SR as T}, increases. A-
gain, this is reasonable as it is a fault avoiding behavior,
but persisting in braking when no collision is imminent is
counterproductive toward reaching the destination. Given
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Figure 1: Acceptability: the solid line represents AB, the

dashed line represents CF, and the dotted line represents

SR.

the sets Esg and Eagp as the sets of points where the SR
and AB skills are terminated, respectively, the following
functions specify pg:

N(Tn > 7|Esr)
N(Ty > —oc|Egsr)’
N(Tn < 7|EaB)
N(Th < |EaB)’

pr(SR,Thp =T)

pr(AB,Th =1) =
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Figure 2: Rejectability: the solid line represents AB, the

dashed line represents CF, and the dotted line represents

SR.

CF is more complicated. In some cases, a driver terminates
the CF skill in favor of AB and at other times, a driver ter-
minates the CF skill in favor of SR. For each switch to AB,
pr(CF) increases towards low T}, and for each switch
to SR, pr(CF) increases towards high Tj. Formally, let
Ecr(skill) denote the set of states for which CF is termi-
nated and is replaced by skill. Because the experiment was
not designed to test switches from CF to AB skills, we use
the set Iap (the set of points where braking is initiated) as
an estimate of Ecr(AB). The rejectability of CF is given
by

pr(CE,Ty=7) = max[N (Tn < 7|Ecr (AB))

N(Ty < oo|Ecr(AB))’
N(Ty, > 7|Ecr(SR)) ]
N(Ty, > —oo|Ecr(SR))
which results in the V-shaped function in Figure 2. The

rejectability functions for the other skills are also shown in
Figure 2.

3.4 Mandatory Switches

This accuracy of this classification scheme is given by the
fraction of points in each starting set (the sets used to deter-
mine p 4) that are considered satisficing. one free parame-
ter: b. With b = 1.0, the number of points correctly clas-
sified as satisficing for SR, CF, and AB were 71%, 53%,
and 85%, respectively. Clearly, we can find b (for example,
b = 0) such that all points in Isg and Icr are satisfic-
ing, but this doesn’t help us identify the boundary of the
satisficing set. Instead, we want to match the satisficing
boundary to the states where behaviors cease to be exhib-
ited. We use a 75% classification accuracy as the standard
for determining when we have closely matched the bound-
ary. Decreasing b for SR to 0.96 and b for CF to 0.57,
increases the classification accuracy to 75% for both SR
and CF. Satisficing regions for these values of b are shown
in Figure 3.

1
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Figure 3: The satisficing sets. AB is satisficing to the

northwest of the solid line, CF is satisficing to the south

of the dashed line, and SR is satisficing to the southeast

of the dotted line. In the figure, the following symbols are

used: x indicates AB, O indicates CF, and o indicates SR.

3.5 Discretionary Switches

For the case of discretionary switching, a metric of su-
perior alternatives is also needed. As stated earlier, non-
domination is equivalent to optimization on the combined
values of u4 and pg. For the current data and with a
tradeoff parameter of @ = %, this measure distinctly s-
plits the state space into three areas where each skill dom-
inates. The partitioning is shown in Figure 4, and repre-
sents a first order approximation to the regions where dis-
cretionary switches can take place. By comparing Figure 4
to Figure 3 we observe, for example, that although CF be-
haviors are satisficing in the region of 7, ~ —0.2 and
T, ~ 2 and there is therefore no mandatory reason to
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Figure 4: Approximate boundaries of the non-dominated
sets. AB dominates in the northwest region, CF dominates
in the southwest region, and SR dominates in the southeast
region.

switch to SR, many SR skills are nevertheless present in-
dicating a discretionary bias toward this skill. Although
more work is needed to verify this trend, this indicates
that non-domination has some correspondence with discre-
tionary behavior switching.

4 Synthesis: Robot Behavior Switch-
ing

A robot operating in a multiple-robot society must be able
to interact with other robots. Such interaction must include
the ability to adapt robot speed in the presence of other
robots (and humans) but still achieve a goal of reaching a
destination. Based on the previous section, we decompose
robot behaviors in a hierarchical manner, and focus on the
longitudinal speed management task and three associated
skill-based behaviors: robot following, speed regulation,
and stopping.

4.1 Skills: Algorithm Descriptions

We implemented three robot behaviors that match the cor-
responding human skills: speeding, following, and stop-
ping. Speeding was implemented simply by setting the ve-
locity of the robot’s wheels to 20 inches per second. If the
velocity was less than this value, we increased the velocity
by 2 inches per second each sample time until the desired
velocity was obtained. Following was implemented using
a PD controller. This controller operated on the difference
between the actual time headway and a desired 1.5 second
time headway. This skill produced a natural following pat-
tern with the robot increasing following distance at high
speeds, and decreasing it at low speeds. We limited the
maximum acceleration to 1 inch per second each sample
time, and limited the maximum deceleration to 5 inches
per second each sample time. This maximum deceleration
is insufficient to cause the robot to safely stop when it is

travelling full speed and it encounters a stationary obstacle
(like a wall); thus, the robot must switch to the stopping
skill to avoid a collision. Stopping was implemented us-
ing the low level stop command. This command causes
the robot’s wheels to slow dowr! as fast as possible without
stressing the motors.

4.2 Experiment Description

Consider a hypothetical situation where a robot has identi-
fied a goal and is moving toward that goal. Suppose that the
path to the goal is a straight line but that other robots must,
at times, travel along this path too. Our objective is to have
the robot travel to the goal efficiently (in minimum time)
and safely (while avoiding collisions with other robots). In
the experiment, the robot travels through a 30m hallway to
a goal at the other end. At various random intervals, a sec-
ond human-controlled robot cuts in front of the first robot’s
desired path. Using mandatory and discretionary behavior
switching, the robot switches between its three skills.

-4.3 Values
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Figure 6: Rejectability: the solid line represents AB, the

dashed line represents CF, and the dotted line represents

SR.

Because the robot is much lighter than an automobile, we
adapted the values to match the robot’s dynamics. Plots of
p4 and pg for each robot skill are shown in Figures 5-6,
respectively. These lead to the satisficing region shown in
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Figures 7 and a non-dominated region qualitatively simi-
lar to Figure 4, but with a larger region of support for the
following skill. For all skills, we used b = 1.

When a skill is no longer satisficing, the optimal skill is
always switched to, since searching between three skills
is not computationally intensive. Additionally, a random
walk is used when a satisficing skill is in use to determine
when discretionary switch is considered. It is interesting to
note that even though the search time for an optimal skill is
negligible for this experiment, it is not advisable to choose
the “optimal” action at every time step. Data points on the
boundaries between the optimal regions for two skills can
result in undesirable switching (chatter) between the two
skills.

4.4 Results

5
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Figure 7: The satisficing sets. AB is satisficing to the

northwest of the solid line, CF is satisficing to the southeast

of the dashed line, and SR is satisficing to the southeast of

the dotted line. In the figure, the following symbols are

used: x indicates AB, [ indicates CF, and o indicates SR.

The p 4 and i g measures described above resulted in natu-
ral robot behavior, not too distinct from the human driving
simulator results, as shown in Figure 7. showing the same
satisficing regions shown above. Note that some skills
were used outside of satisficing regions. This is because
of the high degree of variance. Across the trials the mean
T, ! was 0.118, while the standard deviation was 1.72. To
compensate for such sudden noisy changes in T~ Land T},
we place a delay on a switch to braking. If the environ-
ment mandates a change to AB, we record the state but do
not perform the switch. If, on the subsequent time step,
a switch to AB is still mandated, then the braking is per-
formed. Hence, there are points for which braking appears
to be required but is not actually used.

5 Summary

We presented a mathematical framework for discretionary
behavior switches that was applied both to modeling hu-
man behavior generation and to robot action selection. We
demonstrated how this framework could be used to explain
and synthesize observed and desired behaviors.
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