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ABSTRACT
It is often desirable for a human to manage multiple robots.
Autonomy is required to keep workload within tolerable
ranges, and dynamically adapting the type of autonomy
may be useful for responding to environment and workload
changes. We identify two management styles for managing
multiple robots and present results from four experiments
that have relevance to dynamic autonomy within these two
management styles. These experiments, which involved 80
subjects, suggest that individual and team autonomy ben-
efit from attention management aids, adaptive autonomy,
and proper information abstraction.

Categories and Subject Descriptors
H.5.m [Miscellaneous]

General Terms
Human Factors

Keywords
Human-Robot Interaction, Teams, Adjustable Autonomy,
Dynamic Autonomy

1. INTRODUCTION
Much current research focuses on allowing a single hu-

man to manage a team of robots. From this research, there
appear to be two paradigms that are most frequently dis-
cussed: the sequencing management style and the playbook
management style.
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In the sequencing style, the human sequentially attends
to individual robots giving them instructions and then ne-
glecting them for a period of time. Each robot takes a
turn receiving full attention from the human, and the hu-
man must schedule neglect and interaction intervals to avoid
conflicts [9, 11]. At the extreme of very sophisticated au-
tonomy, the problem becomes similar in spirit to air traffic
control [18]; at this extreme, the human’s role is less about
directing robot behavior and more about deconflicting and
sequencing activities [24]. At the other extreme of very sim-
ple autonomy, the problem is one of teleoperating one robot
while other robots wait for attention.

In the playbook-style1, the human manages clusters or sub-
teams of agents, and issues high level directives that the
agents implement in a coordinated manner. The human
must plan and select relevant plays, identify agents to clus-
ter into subteams, and act in a supervisory role to determine
failures and intervene when necessary. At one extreme, the
human gives high-level directives that are performed by a
swarm of low-intelligence robots [2]. At the other extreme,
the human identifies one play from a set of possible plays;
this play requires close coordination among or strong role
distinctions between the robots.

Another area of current research is addressing how ad-
justable autonomy can be utilized to support a human who
must manage a team of robots under conditions of dynamic
workload in a changing environment [13, 6]. The motiva-
tions for doing so are twofold. First, the realization that
robots often act in a volatile environment suggests that a
static “autonomy level” will not be sufficient to maintain
high levels of performance. Second, adjusting autonomy
has known benefits for increasing the engagement level of
humans, as compared to purely supervisory interaction [13].

Typically, research in adjustable or dynamic autonomy
addresses only the sequential management style. We believe
that it is desirable to apply dynamic autonomy to support
each of the two management styles described above. This
concept is illustrated in Figure 1. On the x-axis, the auton-
omy level of a single robot can be shifted. By moving to
the right, the robot can be neglected for a longer period of
time but may not allow as high a level of performance and
may require longer interaction intervals [21, 20, 7]. On the

1The use of the term playbook in HRI-related domains was
coined by Miller [15]. Because his term is so descriptive, we
use it to describe the general class of management styles.
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Figure 1: Dynamic autonomy under sequential and
playbook autonomy paradigms.

y-axis, the capabilities of a cluster of robots can be shifted.
By moving up, more robots can be included in a cluster
and the coordination required among these robots becomes
more critical. Such cluster capability can include the abil-
ity to retask robots from sequential to playbook-style in-
teractions and the capability of performing team autonomy.
This latter concept is operationally defined as the ability
of team members to autonomously coordinate their activi-
ties to perform some shared goal. Dynamic autonomy for
large multi-robot teams should consider shifting individual
autonomy and cluster capabilities to balance workload and
maintain acceptable levels of performance. When designing
technology to support dynamic autonomy within this frame-
work, the way information is presented to a human must also
be considered. We refer to this information as Information
Support indicating the need to support both playbook and
sequential management styles.

The goal of this paper is to explore how people manage
robots under different autonomy levels and different coor-
dination capabilities. To accomplish this goal, we describe
four experiments that address fundamental aspects of man-
aging a team of robots. The relevance of the experiments
to dynamic autonomy with information support are dia-
grammed in Figure 2. The first experiment primarily ad-
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Figure 2: Projecting experiments onto the dynamic
autonomy design space.

dresses the need to provide explicit support for attention
management when autonomy increases and sequential man-
agement is used. The second experiment addresses the need
to allow playbook management style when robot autonomy
is insufficient to allow humans to meet workload demands.
The third experiment explores how team autonomy can im-
prove performance and how it benefits from the adaptive
autonomy of individual robots. The fourth experiment ex-
plores how team-level management may allow an operator

to neglect certain types of information that appear critical
in a sequential-only style interaction.

2. RELATED LITERATURE
Developing autonomy for multiple robots has received care-

ful attention in the literature. Examples include task shar-
ing [23], sensor network coverage [5], and coordinated ex-
ploration [4]. When humans are introduced to manage such
teams, there are a variety of approaches that can be used. At
the swarm level of control, one approach blends behavior-
based autonomy with human input [1]. At the other ex-
treme, there is a large body of work on air traffic control [19].

There are a number of studies that explore autonomy be-
tween these two extremes. Wang et al. explored how hu-
mans manage multiple robots in a search and rescue do-
main under either manual or coordinated control; their re-
sults strongly favored coordinated control [26]. Sellner et
al. performed a similar study where four autonomy config-
urations, including two variations of sliding autonomy, were
managed by a human working on a construction task with a
team of heterogeneous robots [12]. In this study, the trade-
offs between time to completion, quality of behavior, and
operator workload were strongly evident. This result em-
phasizes the importance of using dynamic autonomy when
the world is complex and varies over time. Kaminka and El-
maliach explored how making coordination between robots
explicit can reduce failures and improve consistency, in con-
trast to traditional interfaces [14]. This result complements
the observations in our fourth experiment where presenting
information relevant to coordination quality improves per-
formance. Finally, Barber et al. discuss how allowing the
decision-making framework of a team of agents can benefit
from dynamic adaptive autonomy [3].

There is an extensive literature on dynamic autonomy.
In the interest of space, we note the three concepts that
have most influenced this paper. The first concept is Sheri-
dan’s definition of 10 levels of automation [25], extended
more recently to include various aspects of human machine
interaction [22]. A study that applies such levels in a prob-
lem where humans must manage multiple assets using ad-
justable autonomy is presented in [13]. Miller et al. have
written extensively on playbook-style interactions; see for
example [15].

The work in this paper relies heavily on descriptions of ne-
glect tolerance and interface efficiency [7]. Applying these
concepts to multi-robot control has produced a mathemat-
ical bound on the number of robots that a single operator
can manage [21, 20]. This model has been extended to in-
clude factors that affect situation awareness and attentional
conflicts [16].

3. EXPERIMENT 1: ATTENTION
In the first experiment, we explore how different attention

aids affect how a human manages a team of robots under
sequential-style management when the robots can use dif-
ferent levels of autonomy. Attention management is critical
because achieving maximum fan-out [20, 7] requires timely
attention to avoid penalties due to wait times [16].

The experiment was a secondary task experiment. The
primary task was for a human to guide a robot through
a maze to a goal using the map-based interface shown in
Figure 3. When the goal was reached, that goal disappeared
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Figure 3: Simple interface for guiding a robot
through a maze.

The secondary task was to solve two-digit addition and
subtraction problems that appeared to the side of the screen
by selecting the correct answer from four choices. Subjects
were informed whether they selected the correct answer or
not. The experiment was performed with simulated robots,
but all autonomy levels were validated2 on physical robots.

Subjects were instructed to guide the robot to the se-
ries of goals as quickly as possible while solving as many
math problems as possible. The entire map with all obsta-
cles was presented to the operator at all times. The experi-
ment was 2x2 corresponding to two types of autonomy and
two types of attention support. The two types of auton-
omy were: (a) teleoperation and (b) path-based, where the
operator dropped a series of waypoints that led the robot
to the goal. Importantly, the autonomy failed occasionally
meaning that the robot would get stuck and require human
attention. When the robot became stuck or when it reached
a goal, it required operator assistance. Two conditions were
explored: (a) an audible alarm paired with a flashing icon
indicating a stuck robot, and (b) no notification.

This experiment design is an abstract type of sequential-
style management. The primary robot control task repre-
sents periods where an individual robot requires complete
attention from the operator. The secondary math task rep-
resents periods where a robot was neglected because the op-
erator turns attention to other tasks. Average results from
16 subjects are illustrated in Figure 4. The data represent
the amount of time that the robot is stopped, either because
it is stuck or because it has reached its terminal waypoint.
Note that when the level of autonomy is high (waypoint
instead of teleoperation), in the absence of a prompt from
the interface, subjects are significantly slower (p < 0.05) at
detecting and managing a stuck robot. When the interface
prompts the operator, this effect disappears.

The conclusion from this experiment is that higher levels
of autonomy make it possible for an operator to become en-
gaged in another task. This result, which replicates similar

2For this and subsequent experiments, “validation” means
that the algorithms were applied to physical robots and
demonstrated to produce analogous behaviors.

0

0.5

1

1.5

2

2.5

3

Self Paced

To
ta

l N
um

be
r o

f S
ec

on
ds

 S
to

pp
ed

no path planner & no
beep
no path planner & beep

path planner & no beep

path planner & beep

Figure 4: Time required to notice that a robot is
stopped.

findings from the general human factors literature [17], is
not surprising but it has implications for adjustable auton-
omy. In Experiment 3, we will see that allowing the robot to
adapt autonomy when it gets stuck contributes to improved
performance. A caution is, however, in order. Similar to
the way that false alarms can substantially reduce the effec-
tiveness of warnings [10], automatically changing autonomy
introduces the risk of making unwarranted adaptations and
thereby reducing or negating the benefit of this technology.

4. EXPERIMENT 2: WORKLOAD
In the second experiment, we observe that people some-

times adapt to high-workload situations by employing playbook-
style management. Some of the results from this experiment
were originally presented in [8], but the emphasis of that
paper was on developing a model for predicting the perfor-
mance of a team. In this paper, we discuss when the model
failed and why.

In the experiment, neglect impact and interface efficiency
curves were identified for two types of autonomy: (a) a form
of teleoperation (P) and (b) region-of-interest (R), which al-
lows an operator to specify a general target location of the
robot but requires the robot to autonomously perform obsta-
cle avoidance and path planning to reach this location. Ex-
pected performance declines as the amount of time the robot
is neglected grows, and expected performance increases as
the amount of time the human interacts with the robot in-
creases. Thus, by controlling the interaction rate (including
both frequency and duration of interaction), it is possible
to find that interaction rate which maximizes the expected
team performance. This is very important under dynamic
autonomy because some autonomy levels experience a large
performance hit when either world complexity or operator
workload increase, and others do not. For example, the per-
formance of teleoperation in this experiment was negatively
impacted by operator workload (see Figure 5), but region of
interest control was not. The data were obtained for sim-
ulated robots, but the autonomy was validated on physical
robots. Under the assumption that humans will select an
interaction rate that will maximize the expected total of
individual robot performances, it is possible to predict the
behavior of a team of robots.

This model was tested by having humans control a team
of three robots with mixtures of the two autonomy levels
(all the same level, or two of one level and one of the other).
When a robot reached a goal, a new goal would appear at
and a new goal appeared.
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Figure 5: Under teleoperation, more time on task
improves performance more when workload is low.
Performance is measured as the fraction of the op-
timal rate of approaching the goal.

a random location in the environment; any robot can go to
any goal at any time. Three levels of world complexity were
considered. Results for the highest world complexity are

Figure 6: Time required to accomplish the task for
a high world complexity.

shown in Figure 6, which is replicated from [8]; results for
low and moderate world complexities are not shown because
predictions are close to observed behavior. These results use
time to complete the task as the inverse measure of team
performance; high bars are bad, and low bars are good. 23
subjects participated in the experiment.

The key observation is that the predictions for low levels
of autonomy, those with two or more teleoperated robots
(denoted by the P’s), suggest that people will do worse than
they actually do. The reason for this difference is that peo-
ple do not use sequential-style management as was intended.
The experiment was designed under the assumption that
the operator would sequentially cycle through robots, guid-
ing them toward a goal. At the highest world complexity,
neglect tolerance for the low autonomy levels was not suffi-
cient to allow the operator to sequentially service the robots
during the available neglect times.

To compensate, operators qualitatively changed their man-

agement paradigm from sequential style to a simple playbook-
style; operators abandoned the “one robot to one goal”
model and adopted a “zone defense” approach. In this ap-
proach, operators would distribute the robots throughout
the world. If a goal was near a robot, that robot received
guidance toward that goal; goals far from a robot were ig-
nored. When a robot reached a goal and the new goal ap-
peared, the operator evaluated the set of robots and the set
of goals, and (re-)assigned a subset of the robots to a subset
of goals.

The fact that operators switched strategies when workload
became too high yields two observations. First, it confirms
the long-identified tendency of real people in real situations
to use autonomy in ways that differ from its intended use.
Second, it suggests that operators may shift management
styles to cope with changing workload conditions. This im-
plies that adjustable autonomy should not restrict itself to
changing autonomy levels for individual robots, but should
also consider changing management styles as needed.

5. EXPERIMENT 3: COORDINATION
In the third experiment, we explored how people utilize

various individual levels and team levels of autonomy to ac-
complish a mission that cannot be performed by an indi-
vidual robot alone. This experiment was also performed in
simulation, but all team and robot behaviors were verified
on omnidirectional physical robots.

Individual robot behaviors were developed from basic move-
to-point and path-planning capabilities. These behaviors in-
clude: Wander, Follow, and Unstick. The Wander behavior
caused a robot to wander around the world randomly. The
Follow behavior caused a robot to track the nearest enemy
robot within sonar range. This behavior was very sensitive
to malfunctions in the sonar sensors. The Unstick behavior
was designed to guide the robot in the opposite direction of
the nearest obstacle if the robot stopped moving.

In addition to individual robot behaviors, a Team-Move
behavior was created. The entire team of robots could be
commanded to move to a point in the maze. When this
command was issued, the current configuration of the robots
became a type of loose formation. The centroid of this for-
mation was used to represent the location of the formation,
and the team-move command was interpreted as a desired
location for the centroid. Each robot communicated its po-
sition to the others and proceeded to a point that would
maintain as closely as possible the original formation. Each
robot moved through the maze toward its destination along
a path specified by the path planner, thus the formation was
not maintained while robots were moving. For mazes of at
least medium complexity the team-move command caused
robots to converge on a point from all different directions.

It is possible to transition between autonomy levels using
either adjustable and adaptive autonomy. Adjustable auton-
omy requires the operators to invoke a change in automated
behavior. In this experiment, this meant that the operator
could choose to change from one mode to another. In con-
trast, adaptive autonomy means that the robot can change
behavior without input from the operator. In this experi-
ment, adaptive autonomy included (a) initiating a Wander
if no command is issued, (b) switching to Following if an op-
ponent is encountered when Wandering, and (c) using the
Unstick behavior (i) while going-to-point (continuing to des-
tination), (ii) while Wandering, or (iii) while Following.
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The set of adjustable, adaptive, and team-level autonomy
configurations that were used in the experiment are shown in
Table 1. The large number of possible configurations makes

Mode Autonomy

1 Teleoperation
2 Adjustable Autonomy
3 Adjustable + Adaptive Autonomy
4 Adjustable Autonomy + Adaptive Autonomy

+ (Non-adaptive) Team Autonomy
5 Adjustable + Adaptive Autonomy

+ (Adaptive) Team Autonomy

Table 1: Categories of individual and team behav-
iors. Team autonomy means that the robots can
execute the Team Move behavior. In non-adaptive
team autonomy, the robots stop after completing the
assigned move; in an adaptive team move, individual
robots automatically select a new behavior.

it difficult to test each possibility in an experiment with
human subjects. Reasonable configurations were selected in
a pilot experiment, but these particular configurations allow
only general observations to be made about the effects of
autonomy.

These experiments use the autonomous behaviors accord-
ing to Table 2. If no autonomy is listed, the default is for
the robot to wait for the human to issue a command.

Autonomy Mode

Wander Command 2, 3, 4, 5
Follow Command 2, 3, 4, 5
Automatically wander if no new command 3, 5
Automatically follow while wandering 3, 4, 5
Unstick while going-to-point 3, 4, 5
Unstick while wandering 3, 4, 5
Unstick while following 2, 3, 4, 5
Team Move 4, 5

Table 2: Exact configurations of individual and team
behaviors.

The experiment consisted of a team of three robots, man-
aged by a human, that try to tag three autonomous robot
opponents. Opponent robots autonomously wander through
the world avoiding other robots. An opponent is tagged if
two of the pursuer robots are simultaneously within a small
threshold distance from them. The game ends when all op-
ponent robots are tagged. A secondary spatial reasoning
task (Tetris) interrupted at random intervals and lasted for
a variable amount of time. During these interruption times,
the human can neither intervene nor monitor the robots.

Eleven subjects participated in the experiment. As an es-
timate of performance, we measured the amount of time that
at least one robot on the team was within sonar distance of
an opponent. This measure estimates instantaneous perfor-
mance of an individual robot because the nature of the task
requires robots to be within a close proximity to their oppo-
nents to be successful. Figure 7 shows the average number
of sonar contacts per second across subjects. The figure
shows this metric both when the operator is performing the
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Figure 7: Efficiency of individual autonomy as mea-
sured by the frequency that at least one robot is in
contact with an opponent.

primary robot-management task and when the operator is
performing the secondary task; we refer to these conditions
as periods of attention and neglect, respectively.

Three quantitative observations from the experiment are
relevant to this paper. First, autonomy tends to improve
the performance of individual robots. This is seen by sum-
ming the number of sonar contacts per second across the
neglect and attention period; modes 5 and 3 are best, fol-
lowed by 2 and 4, and then 1. Second, good performance by
an individual does not necessarily translate into good team
performance; in this game, at least two robots must be in
proximity to an opponent to tag it. A measure of team
performance is the amount of time it takes to complete the
game. As shown in Figure 8, adjustable and adaptive au-
tonomy tend to improve team performance.
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Figure 8: Efficiency of team autonomy as measured
by the duration of the game.

Third, autonomy tends to shift what humans do during
periods of interaction. This is seen by comparing the rela-
tive performance within autonomy modes during attention
and neglect periods. Higher relative performance during in-
teraction than during neglect indicates that the autonomy is
easy to control but not tolerant to neglect. Higher relative
performance during neglect than interaction indicates that
the people must work to invoke strategies during periods
of interaction, but that these strategies are relatively robust
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when the team is neglected. Thus, autonomy mode 3, which
is a sequential management style, benefits from adjustable
and adaptive autonomy by allowing periods of interaction
to be maximally efficient. Autonomy mode 5, by contrast,
is more of a playbook-style interaction which also includes
adaptive autonomy. Interaction periods do not produce as
many sonar contacts with the opponents as mode 3, but ne-
glect periods produce many more contacts. This indicates
that, although people spend more time planning during in-
teraction periods, the resulting plans are robust during pe-
riods of neglect.

Equally important to the objective data, subjective eval-
uation of the results indicates how people cope with the dif-
ferent autonomy levels. In mode 1, subjects tended to adopt
a “zone defense” approach (similar to Experiment 2) by dis-
tributing robots uniformly throughout the maze and then
driving an enemy toward one of their teammates. In mode 2,
subjects tended to adopt a supervisory control strategy of
putting all robots into a Wander mode, and then switch-
ing a robot’s behavior to a Follow mode when close to an
opponent. In mode 3, subjects also tended to use a supervi-
sory control strategy, but waited until a robot automatically
began to Follow an opponent before intervening. When a
robot began to Follow, they would guide another robot to
the area to help. Interestingly, mode 4 tended to induce
humans to adopt a very similar behavior to mode 3. Very
few subjects used the Team-Move mode; when they did use
this mode they were effective during periods of interaction
but ineffective during periods of neglect. Mode 5 induced
similar behavior, but automatically Wandering or Following
allowed more neglect tolerance and caused more subjects to
use team autonomy than in Mode 4.

Two conclusions are suggested by these results. First, ad-
justable and adaptive autonomy, if designed correctly, do
allow people to more successfully manage robots under the
sequential management style. However, they may perform
better if the different agents operate under different auton-
omy levels, some teleoperated and some using guided auton-
omy. Second, team-level autonomy may not always improve
performance, but it may shift how people spend their time
and thus alter workload and neglect tolerance.

6. EXPERIMENT 4: INFORMATION
In the fourth experiment, we explore the type of infor-

mation that best supports an operator managing a team of
robots. More precisely, we explore how timing, cost, and
spatial information can be used in playbook-style manage-
ment.

The type of mission in the experiment is a three-robot co-
ordinated timing mission. Such missions include both (a) si-
multaneous or sequential rendezvous where robots must meet
at a desired point and (b) coordinated strike missions where
robots must reach target points at approximately the same
time or in a sequence. The mission requires that the robots
be deployed from different physical locations and pass through
risky terrain to arrive at three different locations simultane-
ously or in a sequence within some user-specified tolerances.
Velocity and path constraints imply that the robots cannot
stop and that the robots cannot follow arbitrary paths.

Given a range of velocity and path constraints, a set of
individual robot paths from a starting point to an assigned
destination are identified. These paths are parameterized
by the range of arrival times. For example, suppose that

the path planner identifies five paths that satisfy the path
constraints. For path 1, the velocity constraints imply that
the robot can travel to the goal in no fewer than t1 seconds
and in no more than τ1 > t1 seconds. Thus, it is possible for
the robot to arrive, using path 1, within the interval (t1, τ1).
Feasible paths 2-5 have similar intervals. Associated with
each path and arrival time is a cost function; paths that
expose the robot to risk have a higher cost than paths that
do not, and arrival times that expose the robot to risk for
longer amounts of time have higher cost than those that do
not. If two or more paths can produce the same arrival time,
only the path with lowest cost is considered.

The problem is for a human to select a set of paths that
satisfy the timing constraint and that minimize team cost.
To support the decision-making process of the human, there
are three types of information that can be presented: feasible
arrival times, path cost, and paths for each robot on the
team. This is a playbook-style of interaction since the task
of the human is to select a plan that minimizes total cost
to the team. The human is given discretion in selecting the
total cost and path, since there may be tradeoffs involved
in the choice. For example, one robot may be disposable or
one target less important, so it may be useful to allow this
robot to have greater cost and other robots to have less cost
even if the accumulated team cost is higher than another
choice.

Figure 9: GUI that displays individual costs as a
function of feasible arrival times. Discontinuities oc-
cur when paths change to satisfy constraints.

We explored the relative benefits of four types of information-
presentation configurations. Configuration 1, shown in Fig-
ure 9, used McLain’s notion of a coordination function and
presented the user with a graph that represented cost versus
arrival time. The user can select candidate arrival times and
explore the total and relative costs to each robot. Configu-
ration 2, shown in Figure 10, used a standard spatial display
that showed areas of risk and possible paths. The user can
select or modify a possible path for an individual robot and
see the paths of other robots automatically change to paths
that satisfy the timing constraints. Configuration 3, which
is not shown in a figure because it is so simple, presents
only the set of feasible arrival times and allows the opera-
tor to select from these times. Configuration 4, shown in
Figure 11, presents only information on individual and to-
tal team cost. The operator can change the amount of cost
for a single robot or the total team costs by dragging the
top of the cost bar; team cost and the cost to the other
robots automatically change to the minimum feasible path
that satisfies the timing constraints.
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Figure 10: GUI that displays path information and
allows the operator to cycle between feasible arrival
times by testing different paths for an individual
robot.

Thirty subjects participated in the experiment, which was
a 4× 2× 3 design corresponding to the four types of inter-
face, two maze complexities, and three types of constraints:
(i) none, (ii) constrained path in which some regions of the
world were forbidden and (iii) constrained cost in which cer-
tain vehicles were required to have minimum cost. A full fac-
torial experiment was performed. Dependent measures in-
cluded response time, workload (both the number of mouse
clicks and NASA TLX), and solution quality (in terms of
overall team cost). Each subject performed each of the tests
which were presented in pseudo-random order.

An ANOVA was performed to evaluate effects. Interest-
ingly, the type of interface yielded no significant response-
time difference among four of the six complexity-constraint
combination, only making a difference when there was a
path constraint. Under the path constraint condition, the
spatial-presentation interface reduced response times com-
pared to the other interfaces. Importantly, although there
was not generally a significant difference in response time,
there was a significant difference both in workload and in
performance across the interfaces. Figure 12 indicates that
the spatial interface was perceived as significantly harder to

Figure 11: GUI that provides only individual and
team costs.

Conf 4Conf 3 Conf 2 Conf 1

Figure 12: NASA TLX measurements across inter-
face types.

use than the other interfaces as measured by NASA TLX;
mouse clicks produced similar results. Although the spatial
display required more work, it did not produce better deci-
sions. Recall that decision quality measures the amount of
risk exposure experienced by the robots. The spatial inter-
face produced significantly more costly solutions than the
other interfaces, even when controlling for maze complexity
and path constraints.

The results from this experiment have implication for pre-
senting information to operators using playbook manage-
ment styles. If there are factors that determine the quality
of coordination (such as cost), it is sometimes better to allow
operators to explore tradeoffs in this space without giving
them direct control over robot behaviors. In this experi-
ment, allowing an operator to control individual robots by
altering their paths allowed the operator to alter the exe-
cution of the play, but at the cost of worse paths and more
workload; this holds even though the other robots automati-
cally adapted their behavior to satisfy the timing constraint.
Thus, we conclude that managing clusters of robots may re-
quire managing the parameters of coordination rather than
the behavior of robots within a particular set of constraints
imposed by the selected play. For the coordinated timing
mission discussed herein, we suggest that each type of infor-
mation be available and used as required for the specifics of
the task.

7. CONCLUSIONS
It is often desirable to have a human manage multiple

robots, but increasing the number of robots can increase
the human’s workload. One way to mitigate this is to allow
adjustable and adaptive autonomy to support both individ-
ual and team autonomy. In this paper, we presented four
experiments that help focus attention on important issues
that arise when we seek to create such systems. Experi-
ment 1 suggests that high robot autonomy frees the opera-
tor to become engaged in another task, which might require
information to be presented in a way that helps the human
manage attention. Experiment 2 suggests that adjusting
autonomy should include the ability to change management
styles between sequential and playbook (and back) to cope
with shifts in workload. Experiment 3 suggests that ad-
justable and adaptive autonomy have the power to improve

31



both sequential and playbook management. Experiment 4
suggests that team-level performance may be improved by
allowing the control of quality parameters (e.g., cost and
timing) rather than robot behaviors. An important area of
future work is studying how information should be presented
when either individual-level or team-level autonomy changes
in response to shifts in workload.
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