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Model-Based Human-Centered Task Automation:
A Case Study in ACC System Design

Michael A. Goodrich and Erwin R. Boer

Abstract—Engineers, business managers, and governments are  As an alternative to case-specific, phenomenology-based de-
increasingly aware of the importance and difficulty of integrating  sjgn, an integrated model of human behavior-generation allows
technology and humans. The presence of technology can enhance, yegigner to expand attention to include not only how human

human comfort, efficiency, and safety, but the absence of human- beh b | hv thev d Such del
factors analysis can lead to uncomfortable, inefficient, and unsafe OPerators behave, but also why they do so. Such a model must

systems. Systematic human-centered design requires a basic unfot only reflect human processing, perception, and behavioral
derstanding of how humans generate and manage tasks. A very characteristics, but also facilitate accurate predictions and de-

useful model of human behavior generation can be obtained by rec- gcriptions of human behavior (particularly the potential behav-

ognizing the task-specific role of mental models in not only guiding . e . . . .
execution of skills but also managing initiation and termination of ioral modifications triggered by the introduction of automation)

these skills. By identifying the human operator's mental models [3l: [5]- With the availability of an integrated model, the de-
and using them as templates for automating different tasks, we ex- signer is in a position to construct theory-guided experiments
perimentally support the hypothesis that natural and safe inter- and model-guided designs.

action between human operator and automation is facilitated by From our experimental work, as well as from human factors

this model-based human-centered approach. The design of adap- . . . . . .
tive cruise control (ACC) systems is used as a case study in ineliterature, we can identify some important factors influencing

design of model-based task automation systems. Such designs inthe perceived safety and usefulness of automation systems. In
clude identifying ecologically appropriate perceptual states, iden- particular, the following four factors influence how humans use

tifying perceptual triggering events for managing transitions be-  gutomation design to support and/or take over certain aspects of
tween skilled behaviors, and coordinating the actions of automa- skilled human behavior.

tion and operator. o . .
Index Terms—Human-centered automation, mental models, sat- D leltatlpn§ :.ALlltomatlon .Sh.OUId safely an_d re“ably op-
isficing. erate within its intended limits, and these limits should be
easily identifiable and interpretable by human operators.
2) Responsibility: The transfer of authority between human
. INTRODUCTION and automation should be seamless, meaning neither the

ITH the rapid progress of technology, there is a con- operator nor the automation should be required to work
certed effort to use automated Systems to augment outside the limits of their Operation. Additionally, the op-
human abilities in safety critical tasks such as automo-  €rator should know who does what work and when.
bile driving, aviation, and process automation. However, a 3) Dynamics The dynamic execution behavior of automa-
lesson learned from process automation is that, in the ab- tion systems should be acceptabie and predictable by
sence of human factors considerations, even technologically —human operators under all conditions.
state-of-the-art systems can be more problematic than bene4) Efficiency: The automation should perform skilled ex-
ficial [1], [27], [32]. This lesson indicates the importance of ~ €cution more efficiently than the operator and thereby
including human factors in the automation design process so as relieve the operator of some of the physical and mental
to prevent “ironies of automation” [1]. burden of performing the task. Additionally, operation of
Human-centered automation is a magnificent ideal, but one  the system should impose minimal workload.
that is difficult to achieve in practice. One reason for this diffiwhen these human-centered design principles are practiced, the
culty is that much of human-factors analysis produces case-spaman operator is more likely to effectively interact with the
cific phenomenological data, that is, data reporting trends aadtomation.
correlations but without plausible explanations of cause and ef-This paper is written from a perspective thatk automation
fect. This compels the individual designer to make subjectigystemsdefined in the next section, are intended to safely
predictions and conjectures and this, in turn, causes human-cen-
tered design to often be more of an art than a science.

1This is associated with the notionténsparencyn the literature. However,
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A. Skill Initiation
Operator Automation Operator
Sheridan identifies ten levels of automation in human-com-

initiation termination puter decision-making on a responsibility spectrum ranging

_ . o from the operator deciding on a task and assigning it to the
Fig. 1. Timeline of transitions between human operator and automation ter. to th ter decidi task and : .
control. (Time increases from left to right.) The timeline indicates who i§OMPULET, 10 the computer deciding on a task and performing

given authority to execute a skilled behavior to accomplish a particular tagkie task without input from the operator [16]. Based on these

Automation authority begins at dnitiation event, and ends attermination vo extremes. automation that shares responsibility with

event. ’ e .
a human operator can be broadly classified into two main
categories:

promote operator Cofnfo” and system usability. In an _environ-l) Task Automation System3he operator chooses to del-
ment where automation and human share responsibility, safg ate skilled task execution to the automation to relieve some

and performance are enhanced when both parties derive t Usical or mental burden. Conventional and adaptive cruise
actions and decisions from a common ground. Such a com trol are examples of task automation systems
ground can be established by creating automation controllersz) Response Automation SysterTéie autométion pre-

that a) choose control via perception-based control [2], [4] a%gnpts human decision making and control and initiates skilled

b) present operator information in an ecologically—appropria{gsk execution to facilitate safety or efficiency. Collision

way [6], [9}-[12]. To th|_5 en_d, we cr_eate a_computgtlonal fram%fvoidance warnings and interventions are examples of response
work of human-machine interaction using multiple dynamic ;
dufomation systems.

mental model agents who coordinate skilled perception-base he essential distinction between these two categories is how

control mechanisms to generate satisfi¢ingehavior. These Lo ) .
L . - . the automation igitiated and, more precisely, who invokes the
dynamics include discrete switching as well as continuous

. 2 automation. In the first, the human operator initiates the automa-
control. They characterize the transitions between human c} P

. . i a}ﬂ)n whereas in the second, automation initiates itself.
machine control as well as dynamics within the operator’s

cognition itself, but do not (in this paper) include Iearnin% . .
. . . . . Skill Execution
and adaptation. They also characterize dynamic execution of o . .
skilled behavior as performed by the automation and the humarfAfter the automation is initiated, it proceeds to perform its
operator. assigned skilled task execution. The manner in which the au-
Throughout the paper, we will make extensive use of equg@mation executes this skill is important since some execution
tions and abbreviations. The following list summarizes the madghemes are more compatible with operator understanding than

frequently used notation: others. Moreover, if the task can be performed manually by the
1) KB, RB, and SB: knowledge base, rule base, and skPerator, then the operator may have preferences in how the task
base; is executed; these preferences influence the operator’'s expec-

2) SR, TR, BA: speed regulation, time-headway regulatioftions for automated skilled task execution and therefore the

and active braking; transparency of the automation. It is desirable for the automation

3) 4, u, c: state, action, and consequence; to perform the task in a way that conforms to the operator’s ex-
4) pa, pr, Sy: accuracy metric, liability metric, and satis-pectations and preferences, and that is amenable to interruption.

ficing set. Remaining “in the loop” requires being attentive and having ac-

curate and reliable expectations of the skilled-behavior of the

Il. AUTOMATION TAXONOMY automation.

Human iqtera_ction wi.th qutomation fo!lovys the timeline <.ji-C' Skill Termination
agrammed in Fig. 1. Initiation and termination of automation . _ i _ ) .
are functions of human desires and capabilities on the one handutomation will terminate if the assigned taskasmpleted
and machine design and capabilities on the other hand. Thus,2hdf the human operatantervenes Sincecompletionandin-
usefulness of an automation system is a function of both the dprventioncan both occur, it is important to design task au-
erator’s understanding of the dynamic machine-environment figmation systems that help operators detect and respond to the
teraction as well as the operator’s understanding of the autorligits of the automation. This observation leads to a second di-
tion. An automated system must facilitate not only seamle¥§ion among automation types. This division is exemplified by
transitions between automated and human skills, but also (H(ter's automation policies [29]. _
ambiguous assignment of responsibility for switching betweenl) Management by Exceptionihen operators can easily
these skills. Effectual operator understanding is facilitated [S¢t€ct and respond to the limits of automation, then the automa-
designing automation systems compatible with human attdfRn, once initiated, is responsible for system behavior unless

tional, perceptual-motor, motivational, and cognitive charactétnd until the operator detects an exception to nominal system
istics. behavior and terminates the automation. Examples of this termi-

nation policy include conventional and adaptive cruise control.

4The termsatisficewas used by Simon to denote the notion of being “good 2) Management by ConsentWhen the limits of automated
enough.” The etymology of the word is unclear to the authors; some referenﬁeﬁsh . t ilv identifiable b t then th
state that it is an old Scottish word, and other references state that it is a cot 1aVI0rS aré not easily identiiable by opérators, then the au-

position of the wordsatisfyandsuffice tomation, once initiated, must convey its limits to the operator
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and clearly indicate when it terminates itself. This allows the o
erator to develop accurate and reliable expectations of autor
tion termination by consenting to a limited scope of automat
behavior. Examples of this termination policy include timed de
vices and systems that perform a task with a clearly identifiak
state of completion (e.g., lane change, parking, and emerge|
stopping).

The essential distinction between these two classes is h
the automation iserminatedand, more precisely, who turns off
the automation. In the first (automation by exception), peopfés. 2. Working specification of a mental model. In the figure, arrows mean

. . . . __inflyence so, for example, an arrow running from the sensor-perception block
terminate the automation whereas in the second (aUtomatlor‘;ﬁylies that the mental model affects perception while at the same time

Sensor Behavior
Perception Actuation

consent) the automation terminates itself. perception affects the mental model.
D. Transitions Ill. M ODEL OF HUMAN BEHAVIOR GENERATION: MULTIPLE
While driving an automobile, many of us have had the fol- DYNAMIC MENTAL MODELS
lowing experiences: A human operator interprets and responds to sensory input ac-

1) We have been maintaining a safe but fast speed when saakding to the context established by a mental motielough
denly traffic slows and we are forced to switch from &ask-specific filtering of the external world [17] and [21]. The
“speed regulation” behavior to a “stop and go” behaviopperator must map environmental cues onto selected activities;

Such a switch isnandatedby the change in the environ-an efficientway to perform this mapping is to employ a task-spe-
ment. cific pattern of activities, and then implement these skills when

2) We have been contentedly following another vehicle fé@pPpropriate (i.e., when “afforded” by the environment [6] and
a long time when we suddenly decide that we should4])- In this context, the terractivity means the operator’s ac-

pass. Waliscretionarilychoose to switch from a “car fol- tions on the system (e.g., an activity is pushing the brake pedal
lowing” skill to an “overtaking” skill. or turning the steering wheel), and the teskill means a learned

In the process of coordinating behavioral skills, there dise sequence of operator activities. Within the overall context of
' goal-directed behavior generatidaskscan be defined and cor-

cretionaryswitches between behaviors andndatoryswitches i X . e
. : responding skills can be identified that may be used to accom-
between behaviors. Mandatory switches result from natur ) " : .
ish the task (depending on conditions in the environment).

“forcing” a principal agert (defined as either the operato . L9 . : .
. ) . : .~ Thus, behavior generation is organized into behavioral quanta
or the automation) to change its behavior, and discretion : .
. y N that correspond to separate mental mddetsh with their own
switches result when nature “affords” an alternate behavior

hich b desirabl dth incioal ¢ deci erceptually delineated operational domain. In this section, we
which may be more desirable and the principal agent deciqga sent a framework of human behavior generation that can be
whether to change or not.

o i L . used in the model-based design of human-centered automation.
When a principal agent is operating in a natural environment,

there will be times when both mandatory and discretionagy multiple Mental Models
behavior switches may occur. These behavior switches are . : :
A mental model is an internal mechanism employed to en-

examples of the more generarced and suggestedehavior . .
. : ! .~ . code, predict, and evaluate the consequences of perceived and
switches that emerge from the interaction between principa ! o

intended changes to the operator’s current state within the dy-

agents. When the operator is performing skilled task executiq mic environment. Formally, a mental model is a triplet
the automation casuggest change in behavior by generatmg:onsisting of the following:

a warning or informing the operator of a (in the automation’s 1 ved state of th . @
opinion) superior alternative, and the automation tamce a ) perceive state of the environmey
2) set of decisions or actiors;

change in behavior by intervening in system control or blockin .
9 . y gn system 9 3) set of ordered consequenagghat result from choosing
operator actions. When the automation is in control, the oper- )
u € U whenf € © obtains.

ator cansuggesta change in behavior by requesting a service

or giving input, and the operator céorcea change in behavior Acgord;rl?g tol t?'s st|)oet0|f|cat|?hn, a m(tentatl_ modgl not grllﬁ]/ en-
by terminating the automation or otherwise interverfing. codes the relation between the input-action g@jn) and the

"Note that some behaviors are describable by the stimulus-response model
found in behaviorist literature. Such behaviors are describeslitmiomous
meaning that they are performed without any intervening cognitive processes,
such as those associated with a mental model. We adopt the perspective in [25]
which questions the existence of sophisticated autonomous behaviors and in-
stead suggests that those behaviors which appear autonomous have some in-

SRather than using the teragent we use the terrprincipal agentto refer  tervening cognitive influence, albeit a minimal influence because executing the
to the operator and the automation because the former term is used to refdyabaviors is very efficient. Thus, the multiple mental model approach can be
mental model agents. used as an abstraction of autonomous behaviors too.

6The distinction between mandatory and discretionary switches is also im-8Our proposed model complements Wickens’ model of information pro-
portant in the design of decision support systems which form a significant cooessing [31]. The model proposed herein can be viewed as an elaboration of
ponent of high level task automation [20]. how working memory, long-term memory, and response selection interact.
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predicted consequenegbut also induces an evaluation of prefwhen this is appropriate. The role of an SB agent is to execute
erences (i.e., an ordering) among consequences (see Figaperception-based control latihat performs the task specified
This mapping and evaluation of consequences depends onliighe RB agent. The remainder of this section elaborates on
driver’'s own mental and physical state, so the mental model suitow RB and SB agents can be modeled using cognitively plau-
sumes these important elements of decision-making. The mesille descriptions of decision-making and perceptual-feasible
model M provides the context for meaningfully assessing sedescriptions of control, respectively.
sory information and generating purposeful behavior.

Based on limited attentional resources in human operatops, Rules: Skill Transitions

human behavior generation can be Qescrlbed using .mumpleSince each task may have multiple skills that can accomplish
mental models (treated as agents) which can be organized

l{p.'tg task for different environmental circumstances, successful

a society of interacting agents [21]. This societal structure N2k completion requires skills to be managed. Satisficing de-
only determines which agents contribute to operator behavie

but al hich ¢ | ttentional \fg;on theory (SDT) [13], [14], which employs and compares
ut aiso which agents can employ attentional reésources. g, o\ 5 yation functions similar to the way benefit and cost are
three-level [3], [28] multiresolutional society of interactin

mental models oraanized int hierarchical structur 0 ompared in economics literature, is an ideal tool to describe op-
ental modeis organize 0 a hierarchical Structure can oy, management of multiple skills. In SDT, preferences over

constructed corresponding to Rasmussen's knowledge-baig sequences are partitioned into a generalized type of benefit

(KB), rule-based (RB), and skill-based (SB) behaviors [26 alledaccurac ; ;

N ) ymeaningconformity to a standardand a gen-
[30]'.At the KB-level of this hierarchy, th? agent role is SUsralized type of cost calleliability meaningsusceptibility or
pervisory; at the RB-level, the agent role is task managemept;

@%posure to something undesirable our mental model con-

and_gt the SB—IgveI, the agent role is skilled ta?k execgﬂo[lgxt, recall thaty denotes the set of possible decisions or ac-
Intuitively speaking, the KB, RB, and SB agents think, momto[ions and® denotes the set of possible perceptual statésr

and control, respectively. each decisions € U and for each perceptual statec ©, a

Eag? d_mental rgoczfljﬁ/tehfan be belnr(;j\brlled/ disablled adn? _enéonsequence results which is the effect of making decigion
gagedidisengaged. Is enabledthe mental model Is when nature is in staté. The accuracyi,: U x © — R and

actively influencing human behavior generation, and thi’ébility uu: U x © 1 R functions are preference relations

g'sﬁbl.ed tf\]/(\a/hmental mdc;gel hast ?O d(;rEICL |Irg‘lue?tce ti;poﬂefined for each consequence (i.e., action/state-of-nature pair).
ehavior. Yvherengagedine mental mode’ holds atienton o ¢nsequences which are more accurate than liable are ac-

yv?ereb)t/ anro dnmﬁnﬁ‘_l |nforma3?]n IS ac;mfely %erlcel\lled a ptable [14], [15], from whence we can define the satisficing
interpreted, and whedisengagedhe mental model releasesg. oo~ {(w,8): 114 (us 0) > bur(u: 6)} whereb is a design
attention hence no such active perception occurs. In ter

. . . rameter that we leave unspecified here but identify in experi-
of Fig. 2, the mental model is enabled if the arcs betwe P bt P

h | model and behavior/actuati ive (hencoc>:
the mental model an ehavior/actuation are active ( eNCe:iven SDT, we can restrict attention to those states which

behavioru is actuated) and the mental model is engaged i ﬂgﬁe satisficing for a givem, and those skills which are satis-
arcs bet\{veen .the mental_model and sensor{percepnon are aq‘fefﬁg given the state of nature, respectively definedgs.) =
(hencd is actively perceived). Based on evidence that huma ia(u,0) > bup(u,0)} and Sp(0) = {u: pa(u,d) >
can monitor without controlling and control without attending, A, ’ . . '
we suppose that need not be enabled to be engaged, ngQ
conversely. Switching from one skill to another (terminating
one skill and initiating another) requires a fluency in enablin
disabling, engaging, and disengaging mental model age
Depending on the adopted model for attentional limitatio

(u,6)}. In terms of behavior management by an operator,

ppose a skill. € U is being used to produce behavior. The
perator monitor®, and wherd € S,(u) no change is nec-
%ssary. However, wheth ¢ Sy(u), the current behavior is not
r};{éceptable and must be terminated, and a behavior that is appro-
(e.g., single channel or limited resources), multiple men iate for the circumstances must be initiated. Given the manda-

- . ry need to terminate or the discretionary choice to terminate a
models may (under conditions of limited resources) or may n

Willed behavi killed behavior” € S;(#), includi
(under conditions of single channel attention) be engaged. fled behavioru, any skilled behavion” € 5, (¢), including

. ) . aytomated behaviors, can be initiated.
Discussion of KB agents is an area of future research (ana

is more relevant to a discussion of cognitive decision aids th%n
to a discussion of task and response automation). RB agernts
are responsible for detectingerceptual triggering event®p- Skills can be emulated by closed-loop controllers that operate
erationally defined as perceived conditions mandating a switeh environmental cues. These cues must be perceptually plau-
in behavior, and evoking an appropriate response. They dossble meaning that operators must be able to sense them. For ex-
by managing SB agents and determining which SB behavi@sple, automobiles drivers performing the speed management
are acceptable for the given environment. RB agents may atask can use vehicle speed, time headwayl},, and time to
monitor the SB agents and discretionarily switch to another skiibllision (or, equivalently, inverse time to collisidir*) as per-
ceptually feasible perceptual cues [10].
9Attentional sharing is necessary because operators have limited computa-

tional and memory resources. A simple attentional model schedules attentiodA perceptual statés more general thangerceived stateA perceived state
between agents. More realistic models for attention are an area of futureireludes those ecologically valid states that are immediately observable from

search. We refer the reader to [3], [8] for more about the role of attention in thfee environment, but a perceptual state includes both immediately observable
process. ecological states as well as some history of what has been observed in the past.

Skills: Perception-Based Dynamics and Control
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System dynamics can be represented using classical Nekiled operator behaviar, the operator can discretionarily ter-
tonian dynamics with a corresponding dynamic state veetominatew and initiate the automation only ifayro € Sy(6).
that, depending upon the actions of the operatand the ac-  In making the transition from automated to manual behavior,
tions of a disturbancB (denoted: 4, andu g, respectively), can a switch is mandated wheh ¢ S,(uauTo). Since operators
be described as a discrete time dynamical system to descidoe situated in the environment and thereby experience a dy-
how the stater changes over time (indexed W) yielding namic system, the stateis dynamic. The transition frorfi €
Tr11 = g(zk,ua,up). Shifting focus from a world centered Sy(uauTo) t0 ¢ & Sy(uauTo) is the perceptual triggering
(i.e., Newtonian physics) perspective to a human-centeredentthat mandates automation termination. This perceptual
perspective (i.e., perception-based dynamics), we construdriggering event is naturally detected in manual operation pro-
model of skilled behavior using a discrete time dynamical stateled! that the appropriate perceptual cues are receiving atten-
space representation that possesses the following five desirdiap.
features: We are now in a position to state the first hypothesis for de-
sirable human-centered automation.
2) Hypothesis 1: Mandatory Termination of Task Automa-
Feature 2: the space spanned Iy(denotedsp(6)) equals tion: Assumingd receives attent_|on, swnc_hes from a_utomated
sp(); to operatqr control via operator intervention are easiest for the
Feature 3: an internal dynamical model of perceptual stargPerator if there exists & C U such thatSy(uauro) =
o UueaSe(u). In words, if the limits of automation correspond
transitionsfx+1 = f(fr,ua4,up) can be con- N . -
/ .to the limits of a subset of natural operator skills, then the limits
structed f denotes the dynamical response in : : .
) of the automation are most likely to be perceived and detected
spacdl, andg denotes the related dynamical re;

sponse in space); by the operator.
Feature 4: a control lawu, = «(f, ) can be constructed The motivation for this hypothesis is related to the multiple

. mental model framework outlined in previous sections. The op-
from the internal model and the observed per- . . .

: - . "~ erator has an understanding of how his or her own skills should
ceptual state using cognitively plausible decisio

) ; Be used (i.e., experienced operators are good at managing their
mechanisms; : :
i - . . . own skills) and, more precisely, when and how mandatory
Feature 5: decision planes can be described inalowdimen- .~ . ,
. . - termination should occut. Task automation then becomes a
sional subspace &b(f) (i.e., decisions depend . .
on relatively few variables) means wherein the operator delegates to the automation the
y ' responsibility for actuating the skill. The operator thus disables
These five desirable features are satisfied by the multiple mertiadir own perceptual skills (i.e., an SB agent is disabled), but
model framework. This framework satisfies Features 1-3 besntinues to monitor the world hence the operator's appro-
cause correct mental models are perceptual state-based rgpriate mental models are engaged (i.e., a disabled SB agent
sentations of how consequences evolve in the real world. Fig-engaged). Thus, the operator is able to attend to relevant
thermore, the multiple mental models perspective allows somperceptual cues (although they may not do so) and, using these
mental models to act at the skill level (thereby satisficing Feaues, assess and understand the limits of the automation. This
ture 4) and others to act at the rule level (thereby satisficing Femderstanding translates into accurate and reliable expectations
ture 5). of the automation’s abilities, and these expectations facilitate
effective automation termination under the management by
. exception policy. In essence, the hypothesis states that when
D. Relevance to Task Automation the automation matches a subset of the operator’s skill set then
. . . . the operator can detect the operational limits of the automation.
By restricting attention to task automation, we limit the se{1 3) Skill Execution: The second hypothesis is relevant when

of problems that we address to those in which the operator d('as|fher the operator needs to estimate the current system state,

cretionarily initiates the automation; see [7], [9] for a discus- .
. . - such as when the system may need to be interrupted, or when
sion of human-centered response automation. In the remainger . . ;
. . . € operator experiences physical dynamics as a result of exe-
of this paper, we focus attention on task execution and task ter-. . . )
o : : . cuting a skill (e.g., feeling forces when an automobile deceler-
mination. In this section, we relate the multiple mental mode . .
. . .ates). Since operators use perceptual skills (or other afforded be-
framework to the task automation problem. We begin by dis- "
-haviors) to operate the system, then the system should emulate

cussing how skill management impacts the termination po“ﬁ{e operator in some sense if the system is to supplant operator
of task automation, and then discuss how the execution scheme P Y PP P

impacts the comfort and usability of the automation. UThere are two factors that influence the detection of a perceptual triggering

; . ; _event. The first is attention to appropriate perceptual cues. The second is the
1) Skill Managementlet uyro represent the skilled be ability to integrate those cues into an assessable description of the limits of

havior executed by the automation. Since the automation R§sem behavior. For experienced operators, most cognitive mistakes are charac-
limitations, there exist a set of environmental stdtdisat sup- terized by lack of attention rather than the ability to assess perceptual triggering

port automation (i.e., that are within the operational limits dt'e": o ,
12viandatory termination does not always occur when it should. Under con-

the aUtom?'t'on); thus, we (_:an |dent|fy_ the $gtusvro) = ditions of stress, fatigue, etc., humans may experience cognitive tunnel vision
{0: UAUTO 18 acceptable}. Given an environmental staleand  wherein a single task or limited set of tasks consumes all cognitive resources.

Feature 1: perceptual state variablés possibly different
from z, are perceivable by the operator;
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control. Design of such emulation-based automation can hétflows another vehicle at a desired time headway, and brake
ensure that the operator is both comfortable with system opeta-avoid collision (BA) wherein the driver reacts to significant
tion and confident in his or her ability to efficiently and safelydynamic disturbances such as emergency braking by a lead ve-
terminate the automation. hicle13Thus, the set of skills relevant to longitudinal vehicle
4) Hypothesis 2: Dynamics of Task Executiohssuming control (i.e., speed management) &re= {TR, SR, BA}. The
that a particular skill is appropriate for a given context, operatogstivities associated with these skills are pressing the brake or
are more likely to understand and prefer automation controllgtecelerator pedal.
that emulate human perception-based dynamics.
Stated simply, if operators perform a skill correctly and effiB. Transitions Between ACC and Driver Control

ciently then the system dynamics should mimic the operator.since we have restricted attention to task automation systems,
Doing so helps the operator develop reasonable expectatigRsare primarily interested in how the driver can sense when
and/or allows the operator to experience comfortable system g\=C has reached its operational limits and thus terminates ACC
namics. control. It is useful to associate ACC functions with a subset of
The motivation for this hypothesis is related to the nature ¢fie human driving skills described in the previous section. In the
human perception. We assume that either the operator has exigsence of other traffic, an ACC system regulates speed about
rience in performing the skill or will experience physical forcea preset value and thereby, automates SR, meaning the en-
when the skill is performed. In either case, the operator geasbled skillu is speedregulation. In the presence of other traffic,
erates expectations about how the automation will behave ard ACC system regulates time headway about a preset value
how such behavior will impact the operator. If these expectand thereby automates = TR (time headwayregulation).
tions are difficult to generate, then the operator will perceivEhe transition between these skills, including active braking, is
the automation as either a capricious companion or a compan#aritical aspect of ACC usability. Two alternative methods for
that should not be questioned. No matter which opinion of tlseich transitions are of importance: engine braking and active
automation is held, it is clear that mismatched expectations willaking. We argue that the active braking skill is distinct from
defeat the purpose of human-machine cooperation [22]. Givengine braking, where the former is limited to the Badking
that expectations are so important, we note that it can be diffictive) skill and the latter is used in the TR skill.
cult, orimpossible, to generate accurate expectations if the operl) Hypothesis 1:Based on the assumed perspective that
ator cannot associate environmental cues that are perceivablégc systems are designed to safely increase comfort, we are
humans with the actual automation behavior. Human-centef@marily interested in wher is such that the ACC is not
design is based in this observation; it is important for automgatisficing,uacc € Si(#). Such an event can occur if either
tion to respect how humans perceive the environment and Ht¢ ACC system malfunctions or the state of the environment
in a way that facilitates reasonable expectations. These expeliaQutside of the scope of the ACC system. Focusing on the
tions are best managed when the operating range of the autofiggond occurrence (we will assume that the first occurrence is
tion is aligned with the human operator, and when automatBggligible—an assumption that must be considered in practice)

execution of the behavior matches skilled human behavior, OUr task is to determine the perceptual trigger between satis-
ficing ACC behavior and unacceptable ACC behavior. Since the

limits of ACC behavior as a function of traffic, weather, time
IV." AUTOMOBILE DRIVERS AND ACC DESIGN of day, and infrastructure correspond to boundsSgffuscc),

Our approach to describing, predicting, and enhancing drivisis task translates into detecting and interpreting the bounds of
behavior is to identify the set of skills that automobile driverdie satisficing set. Hypothesis 1 becomes:
use to safely manage speed and interact with traffic. To manage) Hypothesis 1: Driver Intervention in Task Automa-
speed and interact with traffic, we suppose that drivers usdi@: Assumingé receives attention, switches from ACC to
set of learned skills [19]. Our approach then identifies how orsksiver control via driver intervention (i.e., forcing ACC to termi-
skill-based behavior is switched to another and how perceptidite) are easiest for the drivessif(uacc) = Sp(TR)US, (SR).
cues trigger such switches. This approach produces a computd? other words, an ACC system that automates both speed and
tional model that emulates driver behavior and, by associatifi@e headway regulation is most likely to facilitate attentionally
ACC behaviors with a subset of natural driver skills, can be efd@nageable and seamless transitions from automation to human
tended to predict how the driver switches between manual a#@ntrol. (Note that BA must be performed by the human which
automated behaviors by detecting and interpreting the opefa€ans that the brake is pushed. We restrict attention to systems
tional limits of the automation. These predictions are then supyhere pushing the brakes turns the ACC off, which means that

ported by experimental results and evidence gathered from &€ driver must turn it back on before the ACC will again af-
evant literature. fect vehicle behavior.) If Hypothesis 1 holds, then the set of ex-

isting perceptual cugsused by the driver to detect mandatory
switches to active braking can also be used to detect when the

o ) ~ ACC system should be disengaged (hence a management by ex-
Longitudinal control includes three closed-loop perception-

based controllers 0n|y one of which is enabled at a time: Speee]-?VVe do not consider alternative collision avoidance strategies such as
’ erving because these strategies emerge from the interaction between multiple

- . . W
r?gl'"at'on (SR) wherein the d”Ver.reQUIateS Spee‘?‘ about a ag'agents. Instead, we leave these areas for future work on the fusion of RB
sired value, time headway regulation (TR) wherein the drivagent behaviors.

A. Automobile Driving Example
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4) Implications From Hypothesis 1ACC automates two
skills normally performed by automobile drivers: speed regu-
lation and nominal car following. This leaves braking to avoid
collisions and other emergency behaviors to the driver. When
the behavior of an ACC system exceeds the support for SR/TR
skills how do drivers know when to intervene? Provided that
drivers can attend to the perceptual cues, two methods for
@) (b) detecting the need to intervene are possible. First, drivers can be
BA trained to learn the perceptual boundary and second, a surrogate
can be used to help the drivers detect the boundary. Since the
people who drive vehicles come from diverse backgrounds
with diverse skills and training, it is unlikely that training will
be universally effective. The second option is to use a surrogate
to assist drivers in detecting the boundary. This not only helps
drivers detect the need to intervene in ACC control, it also

(© (d) acts to train drivers regarding the limits of ACC behavior.
Fig. 3. Comparison of TR/SR domains and ACC domain. (a) TR/SR domdmowever, the design of such a surrogate is a nontrivial task as
groad_er tha:jn AAgg goma?ﬁb(tLAcscs) t%lsS(b(TR) gSSb%Srg)'u(b)sTgll?SR demonstrated by th_e difficulty of designing a useful .warning
(co)r,z?llg daonmain broadoenrqglgnI'rllcR(;ggzcl)méb’u(qlzﬁgc))szgb(TR)USZESR;: SySte'.“' Such W.ammg systems must b.e deSIQDed with CalferI
(d) ACC domain approximately equals TR/SR domaip(uscc) ~ attention to driver perceptual and information-processing
S5y(TR) U 5,(SR). capabilities. However, a carefully designed surrogate might
increase the safety of any ACC system since Hypothesis 1

ception automation policy is acceptable). If Hypothesis 1 is vis an ideal and difficult to reach in practice. Unfortunately, a
olated, then drivers require either training or a surrogate systéhirogate warning signal that is not aligned with a human’s
for detecting a mandatory switch (hence, a management by cbatural mental model boundaries may cause a human to adopt
sent automation policy should be used). Note that this requir&édit and see” strategy wherein the human waits to intervene
knowledge of a driver’s subjective perceptual boundaries béntil itis clear that the automation will fail; this can cause delay
yond which they actively press the brake (i.e., detection of tfii¢ the transition between automation and manual control, and
perceptual triggering event). As reported in subsequent sectidfis is undesirable in safety critical tasks.

these boundaries are determined by experiment.

3) Alternatives to Hypothesis 1in Figs. 3(a)—(d) the sup-
port for satisficing ACC behavior is shown in relation to the Since ACC systems produce physical forces on the operator
support for TR, SR, and BA behaviors for three idealized casesd require the operator to stay “in the loop”, the way an ACC
Compare each of the cases in Figs. 3(a)—(c) to Hypothesis Isirstem behaves is important. A useful method for assuring that
Fig. 3(d) wherein the sets overlap. For Fig. 3(a), the ACC systeR€C performance matches human expectations and produces
does not accomplish its stated objective of automating car falbmfortable execution dynamics is to have the ACC emulate
lowing and speed regulation behaviors and, consequently, is Heiman operator behavior.
ther successful from a designer’s perspective nor useful from al) Hypothesis 2:Again based on the assumed perspective
driver’'s perspective. that ACC systems are designed to safely increase comfort, we

For Fig. 3(b) the set of states for which ACC and TR/SR arecognize that ACC systems should be compatible with human
applicable are incompatible. Such a design can either mak@drceptual capabilities and desired comfort. Since automobile
difficult for drivers to intervene in ACC control, or require eithedrivers are experienced in regulating speed and time headway,
a period of driver adaptation to learn the limits of the new systethey have reasonable expectations about the performance of au-
or the inclusion of a surrogate system to indicate the limits tdmation. These expectations translate into the statement of Hy-
the ACC. For a useful system with a wide range of drivers, it {gothesis 2 as the following:
undesirable to design the ACC system that requires the driver t®) Hypothesis 2: Dynamics of ACC Behavidbrivers un-
extensively learn and carefully monitor the automation to prolerstand and prefer ACC controllers that emulate human per-
duce safe automation. ception-based dynamic control.

For Fig. 3(c), the ACC system exceeds the driver’s capabili- Because driver’s experience dynamical forces when an ACC
ties. Such a system appears attractive in that more driver behsystem operates, the ACC needs to be comfortable. This will re-
iors than just TR and SR are automated. The problem with tlyjgire some good signal processing and may even require a new
approach is that the ACC system does not automate all of ttlass of sensors. The alternative to this hypothesis is for engi-
BA skill. By contrast to Fig. 3(d) in which a driver knows whemeers to design ACC systems that operate in traditional ways
to brake because the driver has clearly defined boundaries aed run the risk of being uncomfortable or unsafe for the av-
tween TR/SR and BA skills, a driver has no such experienceénage driver. We discuss the consequences of such designs in
detecting the limits of ACC behavior. Unless the limits of thishe next section.
behavior are easily perceived by the driver, such a system ca) Alternatives to Hypothesis ZThe alternatives to Hypoth-
result in an unsafe ACC design. esis 2 include requiring humans to develop new expectations

TR, SR TR,SR ACC

limits limits

limits

C. Automation Dynamics
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Fig. 4. “Cutting in” problem. The lead vehicle prior and subsequent to the wr 6
cut-in event is represented by a shaded box above the ACC vehicle, and an open 4
box in front of the ACC vehicle, respectively. 2
0

of ACC behaviors, or adding information systems that help
hu.man S understand ACC beh.awors. The later approac.hﬁ?'. 5. Actual (dashed line) and approximated (solid line) membership
quires the same careful analysis of human perceptual ab|I|t|ﬁ,§CﬁonS: (@) accuracfa = —32.5.3 = —0.04) and (b) liability
and will likely shift the operator burden from physical controla = —4.9, 3 = 1.10).

to conscious monitoring. Such a shift can produce ironies of

automation and can decrease system safety [1]. The former e velocity between the driver’s vehicle and the lead vehicle).

proach assumes that humans_ can alr_nos_t ur_nversally learn ho(‘ﬁ’i\?en these perceptual values, a perceptual state can be defined
new system behaves and adjust their thinking to accommod & _ [T=1, Ty, va]”

this behavior. Not only is this risky from a liability perspective, a) Description: Automobile driving is a mix of cognitive

Zé (I:S OI ta}ssurlr?l(e Sl atr?rteﬁt deal (?pout th% ;Jntenbc:e(: users of éHS behavioral skills. When a driver delegates a task to automa-
t. IS Uniikely ‘Z luman fIVers V\]f' I € ? € ?S%Epresﬁon, the vehicle assumes responsibility for a behavioral skill.
past EXpErences and aways successiufly interact wi Poolr-%wever, the driver retains (meta) responsibility for detecting
designed ACC systems, espec!ally n sa_fety_cnt_lcal SItualioNgy o jimits of the automation and responding appropriately. We
4) Impllcatlon_s of Iﬂypotheas 2The |mpI|ca.t|on,s of Hy- conducted an experiment in which human subjects were placed
pothe;us 2 are simple: e|ther. translate the vgh|cle S faw SenE—%driving simulato¥ with a cruise control system engaged. At
da_lta Into a perceptgal domain and then c_ie_S|gn_ a controller hdom intervals, a vehicle cut in front of the subject’s vehicle
th's. domain, or reta_un a state space description in the sensor Rd compelled the subject to determine if the automation can
ma(;n andlthe? design a controller that emulates human brakgkgely perform the skill or if the driver needed to intervene. Em-
and acceleration. pirical estimates of accuracy and liability can be obtained as de-
V. EXPERIMENTAL EVIDENCE scribed below. Fig. 5 presents the resulting empirical estimates

Inthi . | id h nd the best fit curve to these estimates. Note that, for this ex-
n this section, we present not only evidence that supports ple, the ecologically valid state variables= [Ty, T2, o],

multiple mental model framework, but also evidence that sugs. headway, inverse time-to-collision, and velocity, respec-
ports the two hypotheses. Included in this evidence are resyit ly) suffice to describe the domain of experti8dg]. Data
from relevant literature that supports the human-machine intW'ere partitioned into two classeactive braking(brake pedal
action hypotheses. depressed) angdominal behavio(CC engaged, accelerator de-
pressed, or engine braking).
b) Empirical Estimates:To identify 4 and .y, our ob-

) ) jective is to find substates that trigger active braking. We there-

To test Hypothesis 1, we have gathered ewdence f.rom #e distinguish between nominal behavioe {SR, TR} and
transition between speed regulation and active braking. Wetive braking behaviar = BA. Our goal is thus to find when
present this evidence in this section. o 8 ¢ Sy(u) for u € {SR, TR}. Nominal operating conditions

1) Experiment I: Behavioral Quanta and Skill Switch€®  gccur when the brake pedal is not pressed. For both nominal
determine SDT-based models of driver behavior, we will focygq praking conditions, we select representative sample points
sequent to a cut-in event, we refer to the vehicle that cuts in&s for braking conditions, denot&RK. For trials when sub-
the lead or cut-in vehicle. In the figure,, andvp represent jects actively brake, the sub-state[&)!, 7;,]7 when braking
the velocities of the driver's vehicle and the lead vehicle, rés jnitiated is included iBBRK, and the sub-state(§~", 7;,]”
spectivelywr = (dR/dt) = vp — v represents the relative ¢
velocity between the vehicles anRirepresents the range (re|_ 14Nissan’s SIRCA simulated driving environment includes approximately six

ive di b h ! hicl defi . head miles of highway with three lanes in each direction and ambient traffic. In an
atlvg |stanc§) etwee'n 't € venic e?' We define time hea V@c}feriment using the SIRCA environment, a subject performs lateral control
and inverse time to collision, respectively,Bs= (R/v4) and butengages a cruise control (CC) system to perform longitudinal control about
Tc_l — —((vR)/R), whereuv 4 is the speed of the driver's ve-apreset conditione(* = _20 m/s R 43 mph). During_the experiment, a cut_-in

{ . . . ., vehicle passes the subject’s vehicle while the CC is engaged and cuts into the
h!de’ Risthe relat|v9 d'StanC? (range) between the driver's Vgne ith a specified relative velocityz (0) and randomly selected initial time
hicle and a lead vehicle, ang; is the rate of range change (rel-headwayT}, (0).

A. Multiple Mental Models: Experimental Support for
Framework
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when braking is terminated is includedNMOM; for trials when 1
subjects do not brake, the initial sub-stte*, 73,]7 in the trial

is included inNOM; and for trials where subjects only brake

(by anticipating the cut-in and then coming to a stop), the initial
sub-statg¢7~1, 73,]7 in the trial is included iBRK.

For notational purposes in the subsequent sections, let 0}
N(T = 7|CONDITION) denote the cardinality of the T B .
set of pointsT” = 7 given CONDITION. For example, 5l &é’o %§@?Oogo@o@o %ooé’é 500, |

O

N(T-* = 7|NOM) is the number of points in the set ioo % & o %, 5

{# € NOM: T~! = 7}. Under nominal condition® € NOM), ©Og O 008 0@

relative velocity must be considered acceptable to the driver _4| * * & o ©

hence the distribution of’;"! under nominal conditions is o ° o

an observable entity that provides information about what is

accurate. Clearly, i = 72 is accurat(_a,_theml < Ty mu_s.t '-50 05 1 15 5 25 3 35 4

be at least as accurate. This monotonicity property facilitates T

the computation of the accuracy function as the cumulative

distribution function Fig. 6. Scatter plot of nominal and braking perceptual states.

pa (T, =7)=1—Fpi(r|NOM) Classification can be performed by finding the valueh dhat
NC(TC—l <7 | NOM) optimally separates braking from nominal behavior. The value

=1- b = 0.53 is the minimax value over percent misclassifications,

—1 .
N (T“ < OO| NOM) percent false alarms, and percent missed detections and indi-

fates that over 85% of samples are correctly classified.

For classification purposes, we fit (via least squares) a sig s _ _
2) Experiment Il: Behavioral Quanta and Skill

function of the forml /e(=*("=A)) to 4 ( - ) yielding the func- _ , , ,
tion shown in Fig. 5(a). Switches: Because Experiment | relied on a fixed-base

When braking is initiatedd € BRK), time headway values driving simulator, _there is some guestion gbout how these
must be considered unacceptable hence the distribution of tiffgUltS rélate to situated driving in real vehicles. To test the
headways when the driver initiates braking is an observable &fnsfer of these results to driving, a second experiment was
tity that provides information about what is rejectable. Clearl§9ndUCted W'th profesglonal dnvgrs responding to unpre-
if T, = 7, is rejectable them; < 7 must be at least as re-dictable cut-in events with real vehicles on a test track. In the
jectable. This monotonicity property facilitates the computatio‘??(pe”mim’ r;[WO vehicles drive 'R, the E’f"‘r;'? Iﬁme on S‘, cllosed
of the liability function as the cumulative distribution function LSt track. The subject drives vehidlewhich follows vehicle

B. The drivers in vehicleé andB are required to maintain an

pr(Th = 7) = 1 — Fr, (r|BRK) assigned speed, (0) andvp until a chime rings in vehicle
’ Nh(T; < 7|BRK) A’s car. When the chime rings, the driver of vehideis to
=1- L= establish a natural following distance (i.e., drive as if vehigle

N(T. < 00| BRK) had just cut-in to vehicl@&'’s lane) while vehicleB maintains a

For classification purposes, we fit (via least squares) a sigid@nstant speed. Measurements inclutles 4, brake pressure,

function of the formi /e(=>("=A)) to 1., (- ) yielding the func- and throttle opening angle. Time headway and time to collision

tion shown in Fig. 5(b). were computed from these measurements. A complete descrip-
¢) Classification ResultsFor the driver to switch from tion of this experiment can be found in [10]. To perform the

one skill to another, it is necessary to identify wheg S,(¢). classificationya(7.7") andu (7)) were estimated, and tiie
Using 4 (T1) and (T}, ) from Fig. 5, we can construct the that minimizes the misclassification error was determined. The

set of statesS, = {6: pa(T7) > bu,(T,)} that support results indicate one false alarm and no missed detections.

nominal behavior, and the set of stat®s = {6: pa(77) <
bur(Th)} (superscript denotes complement) that do not sup
port nominal behavior. I € {TR,SR} andd € Sf then We now turn attention to experimental evidence that indicates
0 ¢ Sy(u). Thus, the lineua(T') = bur(T),) determines whatis an acceptable termination policy, and what is not accept-
when behavior must be switched from nominal to braking. lable.
other words, the line represents the boundargdfR). 1) Cruise Control: Cruise control systems have been used
Given the empirically derived membership functions, we can vehicles for many years. The continued installation of these
determine the boundary between nominal and braking behaystems not only attests to their usefulness in increasing driving
iors as a function ob by finding the perceptual statésfor comfort, but also demonstrates that drivers can safely detect
which pa (T 1) = bur(Ty). This is illustrated in Fig. 6 for perceptually triggering events and intervene to avoid collisions.
the data gathered in the simulator experiment, wheneicates Furthermore, we have performed experiments in which we have
6 € NOM and x indicates# € BRK. To the northwest of the identified the perceptual triggering events and interpreted these
line, BA is satisficing but TR and SR are not, and to the soutbvents as natural transitions from the speed-regulation driver
east of the line TR and SR (and, perhaps, BA) are satisficirgkill to either time-headway or collision-avoidance driver skills

B. Transitions: Experimental Support for Hypothesis 1
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(see Section V.A and [8], [12]). We thereby conclude that at- 2l
tentive drivers can appropriately interpret perceptual triggering : ©
events and intervene when situations arise beyond the intended Ab
limits of automation. Furthermore, we suggest that attention to
relevant perceptual cues is facilitated by the requirement that ¢
drivers must continue to steer the vehicle. This prevents the

driver from excessively diverting attention from the driving task.

Since attention is given to relevant perceptual cues and since -2
perceptual triggering events can be interpreted, we conclude the PR F B B R v S NS
cruise control automation technology is sufficient to justify a Th

management by exception automation policy. Fa 7 P wal oh lane traiectories f tessional dri th
. . 1g. /. erceptual phase plane trajectories Tor professional driver one wi
2) Advanced Cruise ControlConsider the results from -, conditions(T, (0), vr(0)) ~ (1 5,20 km/hr).

[23] wherein an ACC system that included a limited amount

of active braking was studied. Among other things, the study 06
reported that ACC users have “too large (of) expectations”

about ACC abilities, most ACC users waited to intervene until

a warning was received, and collisions that occurred (in the

driving simulator) when the ACC was engaged “could (not) T-1 °
be explained.. by decreased level of driver alertness” (which 0 B
may not hold when drivers are not engaged in an experimental
study). The first two of these findings suggest that when an 02 %
ACC system does more than automate TR and SR skills, then o 80,052
drivers have a difficult time safely detecting the limits of the SR 0R ‘,} ta 16 18
ACC system (there is no natural switch between skills). Instead, h

drivers sometimes adopt a “wait and see attitude” that allov#%. 8. Perceptual phase trajectory of unacceptable automated performance
the ACC system to reach its limits rather than proactivelyith initial conditions(73,(0), vx(0)) = (15,0 km/hr).

intervening to avoid an unsafe situation. The last finding
suggests that the negative effects of ACC behavior cannot be
entirely attributed to not attending to O ¢ N

ot
o,

.04

C. Dynamics: Experimental Support for Hypothesis 2

We now present evidence that suggests that when Hypothesis
2 is violated, the resulting performance of an ACC system is un- 2
acceptable or unnatural. Additionally, this evidence supports the
claim that people use perceptual cues to perform manual control :
in automobile driving. We refer the reader to other work on per- e T AT 17 18 14 15 16 17 1¢
ception-based control in [4], [6], [10], [18] for further evidence, T
including a correlation analysis and nonlinear regression angl. o. perceptual phase trajectory of unacceptable automated performance
ysis of the variables used to control braking. with initial conditions(7},(0), v(0)) = (1 s,60 km/hr).

1) Description: Two elementary PD controller were devel-
oped and tested in various cut-in scenarios. These PD controlleaction time) wheri’."! > 0 (vg < 0). Conversely, a driver
operated on the error between estimated raRgend desired is likely to accelerate whef=! < 0 (vg > 0). Thus, di-
rangeR* = v4 T}, where computation aR* from v 4 is a con- viding driver behavior into active braking and nominal (not-ac-
cession to technological constraints on estimatipg Instru-  tive) braking produces a division roughly &g L= 0 (vg =
mented vehicle were then equipped with the controllers, and the Second, wher,-! < 0, the factor determining dynamic
behaviors of the controllers were compared to the behaviorsdsfver behavior appears to be related to time headway. This
professional drivers who were placed in similar situations usirg observable from the driver response in Fig. 7 wherein the
the experimental set-up described in Section V.A2. driver first establishes zero relative velocity (and infinite time

2) Results: The data are classified into two categories: thoge collision) and then appears to regulate vehicle speed around
for which active braking occurs and those for which no sudhe time headway valug; ~ 1.65 s. Third, drivers establish
braking occurs, indicated in Figs. 7-9 withxaand ao, respec- steady-state (i.eyr ~ 0) behavior at different values df;’.
tively. The sequence ofs present after the cut-in event indicateThere is a significantP ~ 2 x 10~7) 7} difference between
the amount of time taken to react to the cut-in event. Itis helpfalibjects who participated in the experiment. For subject A the
to illustrate the perceptual phase plane trajectories subsequemi&an terminal headway 5 = 1.47, and for subject B the
the cut-in event for each data class (time histories can be foundan terminal headway & = 2.01. Interestingly, there are
in [10]). no significant within subject’ differences for different 4 (0)

From the experimental data, four observations are apparentvg conditions. Thus, we find evidence tha} influences
and worth noting. First, the decision to brake is made (ignorifgaking dynamics independently of,. Our conclusion is that
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driver's use time headway and time to collision as speed-ifellowing a lead vehicle, braking to avoid a collision, and regu-
dependent variables for controlling the dynamics of braking &sting speed about a desired value. When automation is added
well as the set point for car following. Fourth, the characterise a vehicle, some of these skill-based behaviors are performed
tics of the phase plane trajectory influence the acceptability afitomatically by the vehicle itself. By measuring human sub-
the automated performance. As shown in Fig. 7, people est@®ets’ responses to cut-in events in both driving simulator and
lish natural following distances by generaticmunterclockwise test track studies, we have presented experimental support that
trajectories in perceptual space. By contrast, automated coatural boundaries exist between automated speed regulation
trollers that fail to follow this counterclockwise trajectory aréconventional cruise control) and skill-based braking behaviors.
judged unacceptable by subjects. In the data shown in Fig.These experimental results are described in the theoretical
the test driver reported that the performance was unacceptadoel computational framework provided by using satisficing
because the braking action was too extreme given that the @gcision theory to describe switches between multiple mental
ative velocity, though positive, was small in magnitude. Thisiodels. Extending these results to ACC systems we hypoth-
“hard-braking plus low relative velocity” characteristic is manesize that, assuming an attentive driver, switches from ACC
ifest as an unacceptable clockwise trajectory in the perceptt@ldriver control (via driver intervention) are easiest if the
phase plane. Additionally, as shown in Fig. 9, not only musiperational limits of ACC behavior correspond to the natural
perceptual trajectories be counterclockwise they must also l@undaries between that of tepeed-regulation/car-following
smooth When trajectories are not smooth, subjects report a skill-based behaviors and that of thetive brakingskill-based
riod of rapid braking followed by a coasting interval which wasehavior. We conclude that advanced vehicle system design
then followed by another braking interval. This surge, thougtan benefit from careful analysis of driver behavior by pro-
moderate, reportedly felt awkward and unnatural and is unalitcing systems with an operational domain that is assessable
ceptable. by human drivers. We further conclude that the analysis of
human-vehicle interaction can be systematically performed
using a satisficing-based description of multiple mental model
VI. CONCLUSIONS AND FUTURE WORK dynamics.

A human centered approach to designing automation is intro-Thr.ough. 'Iearmng, ada}ptatmn,_ and. optimization, operators
ve identified the most informative signals as input and have

duced and motivated through a case study of automated car gve | - )
lowing systems. The fundamental design principle is to use t gtabllshed performance criteria that produce behaviors that

human operator as a template for automation. A model of h ave proven to result in a satisficing tradeoff between various

operators perform various tasks is required if a template-b [lyer needs (e.g., expediency, safety, and comfort). Utilizing

a . . o
approach to human-centered design is to be successful. ? 18 knowledge in the design of automa‘uon IS one step towar.d
uccessful human-centered automation, but much work still

model can be used to identify sub-components ofaparticul%lr ds o be done since modeling human behaviors in complex
task that are characterized by a region in perceptual state sp%%% s 1o be done since modeling himan behaviors in comple
ems is still very challenging.

and a corresponding behavioral skill. As the perceptual state
(e.g., vehicle, environment, and/or traffic) changes from one
skill domain to another, operators switch skills. These skills are

characterized by
. . 1] L. Bainbridge, “Ironies of automation Automatica vol. 19, no. 6, pp.
1) perceptual variables used to perform skilled perceptual[ ! 775-779, 19983 A 2 PP

motor control; [2] E.R.Boer, “Tangent point oriented curve negotiatidPdc. 1996 IEEE
2) perceptual variables used to decide when to initiate and Intelligent Vehicles Symypp. 7-12, Sept. 19-20, 1996.
. he skill 3] E. R. Boer, E. C. Hildreth, and M. A. Goodrich, “A driver model of
terminate the skill; attention management and task scheduling: Satisficing decision making
3) understanding of how operators evaluate performance; with dynamic mental models,” presented at the Proc. 17th Euro. Annu.
4) understanding of what control strategy operators adopt. gggf-l'lliffg‘”lggg's'on Making Manual Control, Valenciennes, France,
For example, drivers switch from speed regulation skill to car [4] —, “Drivers in pursuit of perceptual and virtual targets,” presented

following skill depending on the time headway and time to colli- at thelEEE Proc. Intelligent Vehicles SymStuttgart, Germany, Oct.

. . . . . i 28-30, 1998 pp. 291-296.
sion to a preceding vehicle. Itis hypothesized that automation of5; £ R “Boer and M. Hoedemaeker, “Modeling driver behavior with

these easily identifiable sub-components has several advantages different degrees of automation: A hierarchical decision framework of
over approaches based on other criteria (e.g., technological fea- interacting mental models,” presented at the 17th Euro. Annu. Conf.

- . . Human Decision Making Manual Control, Valenciennes, France, Dec.
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