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Designing Human-Centered Automation: Tradeoffs
In Collision Avoidance System Design
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Abstract—Technological advances have made plausible the de-including human factors in the automation design process so as
sign of automated systems that share responsibility with a human tg prevent “ironies of automation” [2].
operator. The decision to use automation to assist or replace a Collision and accident avoidance systems (CAASs) include
human operator in safety-critical tasks must account for not only L . . .
the technological capabilities of the sensor and control subsystems,S,yStemS that aid |.n lane keeping, car foIIowmlg, curve negotia-
but also the autonomy, capabilities, and preferences of the human tion, obstacle avoidance, etc. CAASs are an important compo-
operator. By their nature, such human-centered automation nent of advanced vehicle control systems and may be realized
problems have multiple attributes: an attribute reflecting human  with minimal or no changes to existing vehicles and highway
goals and capabilities, and an attribute reflecting automation infrastructure [5], [30]. When coupled with other aspects of in-

goals and capabilities. Although good theories exist that describe . . .
portions of human behavior generation, in the absence of a general telligent vehicles and highways, CAASs can serve to enhance

theory of human interaction with complex systems, it is difficult  Safety and increase highway throughput. As a result of much
to define and find a unique optimal multiattribute resolution to  current academic and industrial research, the complicated tech-
these competing design requirements. We develop a systematicnological and human factors associated with CAAS design are
approach to such problems using a multiattribute decomposition - yaing ynraveled thereby enhancing the desire to include CAASs
of human and automation goals. This paradigm uses both the . . - .

satisficing decision principle which is unique to two-attribute In Veh'de .des!gn [,1]' [8l, {7, ,[29]', In essencg, designers sgek
pr0b|em5, and the domination princip|e which is a common man- to a.) |dent|fy situations Whel‘em dr|VerS eXthIt Unsafe behaVIOI‘
ifestation of the optimality principle in multiattribute domains.  and b) design a CAAS that assumes some responsibility for
As applied to human-centered automation in advanced vehicle safety in these situations. In this paper, we formalize human-
systems, the decision method identifies performance valuations centered design principles and illustrate their application using

and compares the safety benefit of a system intervention against . . - -
the cost to the human operator. By so formulating the problem, &0 automation system that assists drivers avoid unsafe lane de-

the burden of proof is placed on the automation systemto invoke ~partures.
automation actions, the projected safety-enhancement must be o
compelling enough to justify the cost to the operator's autonamyA. Motivation

This effectually integrates human factors considerations into i
the automation design process from its inception. We illustrate CAASs are a type of real-time automated systems that share

the method by analyzing an automated system to prevent lane F€Sponsibility with a human operator in safety-critical tasks. Of
departures. particular significance is that human automobile drivers have

Index Terms—Advanced vehicle systems, decision making, widely varying levels of pgrceptual abilities, physical skills, and
human-centered automation, human factors, satisficing. technological understanding. Thus human factoustbe con-

sidered in designing CAASs. To satisfy the demands of a poorly

designed and overly sensitive CAAS, a driver may need to in-

crease workload which, in turn, can decrease driver situation

awareness, comfort, and even safety [23], [38]. For example, an

|. INTRODUCTION automated system can be designed to sense possible lane depar-

ITH the rapid progress of technology, there is a coffures using machine v_ision and warn (_jrivers of imp_ending de-

certed effort to use automated systems to augmé;ﬂrtures.Apoorly deggned Iane-keeplpg system'mlgh.t compel
human abilities in safety critical tasks such as automg_nv_e_rs to drive with mtense concentrf_zltlon on maintaining lane
bile driving, aviation, and process automation. However, RPSItion to prevent warnings from being triggered and, conse-
lesson learned from process automation is that, in the Aytently, deflect attention from the task of maintaining a safe

sence of human factors considerations, even technologicaiRe€d for traffic and road conditions. Similarly, the driver may
state-of-the-art systems can be more problematic than beffeY 100 much on the system if warnings and interventions are

ficial [56], [2], [42]. This lesson indicates the importance ofalesly assumed to guarantee safety in all circumstances [38].
Consequently, it is desirable to design for the complete system,

which consists of both CAAS technology as well as the human
driver. We use the termuman—-CAASystem to emphasize the
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avoid establishing an unrealistically high level of driver trust Since Simon, many researchers have presented alternative
in the system (maintain driver “in the loop”) [24]-[27], and c¥ormalisms of the satisficing concept [35], [36], [34], [33], [50],
be applicable to both the attentive and temporarily inattehtiv§s1] motivated primarily by the desire to make robust decisions
driver. in the presence of uncertainty. These developments compare a
The design solutions to these problems must account for nuility defined over the consequences of a decision to a deci-
only the purpose and abilities of automation, but also the pugion threshold. This decision threshold depends only on obser-
pose and abilities of the driver. Consequently, design of suehtions and not on decision consequences. SSDT is similar to
systems is at the very least a multiattribute problem with (oftehese other developments in that it addresses robustness [19]
times) competing goals and (possibly very) different roles. Fbut, by contrast to comparing a single utility to an action-in-
example, in CAAS operation the human commands the vehidependent threshold, SSDT compares two utilities defined over
but the automation may frequently interrupt the driver to sughe consequences of a decision against each other whence SSDT
gest or enforce a correction. Although good theories exist thaathematically generalizes these decision rules (i.e., the deci-
describe portions of human behavior generation [41], in the atien threshold depends upon both the state of nature and the
sence of a general theory of human interaction with complewnsequences that result from taking action).
systems, it is difficult to define and find a unique optimal reso- Building on both Simon’s work as well as the notion of
lution to such multiattribute human—CAAS problems [61]. Thisounded rationality, satisficing decision making has seen a re-
places the design of such systems in the class of ill-formed prajent resurgence of interest in the field of artificial intelligence.
lems wherein there is a lack of sufficient information, time, ofThis interest is primarily devoted to bounded search methods
resources to define or find the optimal solution [37]. lll-forme@nd has produced some interesting work in anytime algorithms
problems motivate the search for intelligent solutions, the susnd constrained optimization (see, for example, many papers
cess of which rests, to some degree, upon the belief that finding44] or the anytime algorithm tutorial [59]). These and the
the optimal decision is not necessary for making justifiable deelated economics-based approaches (such as [28]) propose that
cisions [9], [20], [21]. We present a formal and systematic deatisficing emerges from the constraints of bounded rationality
sign approach which replaces the objective of optimal desighd are therefore tantamount to constrained optimization.
with a less ambitious (and perhaps more robust) objective Sétisficing, as we use it, differs from these efforts in that it
avoiding error[49]. This design paradigm employs the satissecomes a formal decision principle in itself instead of either
ficing principle of Simon [45], [47], the domination principlea heuristic determining the structure or termination of a search
from multiattribute utility theory, and the mathematics of Levi'salgorithm or a variant of constrained optimization [32].
epistemic utility theory [31] in a theory called strongly satis- Human interaction with automation is an area of current
ficing decision theory (SSDT) [49], [12], [17]. Levi's theoryresearch interest in both academia and industry. Historically,
provides a set-based mathematical formalism necessary torsearch in human-centered automation has focused on aviation
corporate the notion of satisficing into system design. The rgnd process automation. Because of the variety of automobile
sulting design paradigm provides a method for systematicaliyivers, there are large variances in physical skills, perceptual
designing human—CAAS systems which justifiably avoid errgpjlities, technological understanding, etc. These variances
(e.g., false alarms, discomfort to the driver). This error aVOi%ake automating these Systems somewhat unique_ Conse-
ance perspective and its accompanying decision methodolegiently, it is sometimes difficult to translate research findings
extend to the design of other real-time systems where humagin other fields to driving. However, the fields of aviation and
share responsibility with automation for safety critical tasks. process control have some transfer to driving and some of this
work has been significant [25], [24], [26], [38], [2], [42], [53].
B. Overview of Related Literature Two types of automation systems are candidates for inclusion
The concept of satisficing, a decision-making paradigm thit advanced safety vehicles. We may broadly categorize these
differs from thede factoparadigm of optimality, was first in- astask automatiorandresponse automatioiTask automation
troduced by Simon [45]-[47]. Many cognitive scientists recogystems, such as conventional and advanced cruise control, are
nize that insistence on optimality is a misplaced requirementiltitiated by the driver with the purpose of relieving some of the
situations of limited resources and information, and that opfhysical or mental burden of performing a particular task (such
mality inadequately describes observed behavior in naturalisiié regulating speed). The difficulty in designing these systems
settings [46], [47], [9], [60]. Additionally, the definition of and iS in helping drivers detect and respond to the behavioral limits
reliance upon an optimal solution has been questioned by Zadéfthe automation. By contrast, response automation (of which
[57], [58], and other philosophers, scientists, and research€®ASs are a special case) such as lane assistance systems are
concerned with pragmatic decision making [20], [21], [48]. initiated by the automation to facilitate safer driving. The diffi-

_ ~ culty in designing these systems is not only to help drivers de-
In this paper, we do not address the problem of fully autonomous vehiclgset 579 respond to situations that fall outside their normal range
wherein drivers can be inattentive. Instead, we restrict attention to problem? . . .
where other tasks may use or deflect attention. of operation, but also to intervene when necessary to increase
2Examples of an ill-formed decision problem and an ill-formed contrgbafety. The primary purpose of task automation systems is to
problem are, respectively, the real-time optimal solution to the Travelingafely promote comfort, and the primary purpose of response
Salesman Problem, and the optimal control of a highly nonlinear system with - .
uncertain and ime-varying system parameters. Htomation sy_stems such as CAASs is to comfortably promote
3Also at 1998 NIPS Workshop on Simple Inference Heuristics versus Corﬁafety' Extensive human factors research has been performed on

plex Decision Machines, Breckenridge, CO, Dec. 1998. task automation [55], especially on advanced cruise control [3],
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[22], [40]. By contrast, systematic approaches to human-cen
tered response automation have received less attention in the li
erature [30], [29], [23], [39].

observed

state
X

C. Outline of Paper

This paper is divided into three sections. In Section Il we
identify design principles and the corresponding tradeoffs that
arise in the human-centered design of lane assistance systen

driving

In Section 1l we present a formal theory that allows a designer Stge
to systematically address human-centered design for problen
where human and automation share responsibility. In Section I\ consequences action

we use observations and measurements to systematically ide
tify design parameters and the resulting decision logic for our
example lane assistance system. Finally, we present conclusiot
from this work.

& valuection

a‘,g. 1. The design problem.

Il. CASE StuDY: CAAS DESIGN PRINCIPLES

It is necessary to design human—-CAAS systems whi
not only make the vehicle more safe, but which also allow
the driver to maintain normal attentive vehicle control; suchut also the states (positions, velocities, future positions, future
systems bridge the gap between unassisted driving and fullocities) of other vehicles. The state of the vehicle refers to
autonomous vehicles. In this section, we design the decisigie vehicle position, velocity, etc., and associated vehicle limi-
logic for a lane departure CAAS, and highlight importangations. The driver’s state includes the driver’s intentions (turn,
principles in preparation for introducing how SSDT can betop, change lanes, etc.), conditions (fatigued, intoxicated,
used to systematically design CAAS logic. alert, irritable, etc.), and limitations (visual acuity, reaction

To systematically design a CAAS, it is useful to consider time, etc.). Assuming that the driver will not change current
as a decision problem. In a decision problem, there are the feleering angle (methods for inferring driver intention are being
lowing elements: the state of the environméntobservations developed [43]), these three features are parametérized
of these stated’, the decisionsthat can be mad¥, the con- estimates of the Time to Lane Crossing (TLC) which is denoted
sequences¢’ that result when a decision is made given the cupy . Much experimental evidence exists that drivers use
rent state of the environment, and values that encode an agemt's to determine when to perform a lane-corrective steering
preference pattern over the set of decision consequences gtidn [10], [11]. We use TLC as the primary decision variable
Fig. 1). In this context, the CAAS design problem is to: i) idenpecause it can be perceived by drivers and therefore facilitates
tify states of nature (in this case, driving states) that produgéiver understanding and interaction with the automation [15],
unsafe consequences unless rectified, i) determine what actipng, [16]. An intuition into the applicability of TLC can be
can be taken to produce safe consequences, iii) properly assgsed from [4] which states, “TLC provides drivers with an
the actual consequences (including impact on safety and driégtimate of the criticality of the situation and is an upper bound
autonomy) that result when the CAAS actions are taken, and pf) the time available to turn the vehicle parallel to the road
determine a decision rule that selects an appropriate action &gin.” Additionally, TLC can be used in computational models
the observed state. Steps two and three must be carefully gt closely emulate skilled driving behavior [4].
ordinated so that, in an effort to address step one, the designeaithough a number of methods exist for estimating TLC in-
does not introduce problems that are worse than they were igluding those reported in [30], [29], for demonstration purposes
tially. In the following sections, we discuss states, actions, colye use a simple prediction of future lane positions that is dis-
sequences, values, and action selection for a human-centejigsked in Appendix I-A which is based on an estimate of the
lane departure system designed to produce the desirable aitrent vehicle state. (To reduce false alarm probability in prac-
sequence of increasing system safety without interfering wifige, it may be useful to consider more sophisticated estimates

driver autonomy. of TLC.) This simple TLC estimation scheme consists of three
steps: a) estimate the current vehicle state, b) predict the trajec-
A. Driving State tory of the vehicle, and c) estimate the time until lane departure.

There are three essential features which affect the con§@rmally, wheng,.(¢ 4 6t) denotes the estimate of lane posi-
quences of a CAAS action: the state of the driving environme&n Of the vehicle assuming fixed heading (i.e., fixed steering
the state of the vehicle, and the state of the driver. The st&fdle) at some future time+ 6¢, and whenyw andrw denote

of the driving environment includes not only the road profile,
5The TLC estimate used here tells us little about driver state since it is ob-
4Note that the set of relevant actions should, in practice, be restricted by taged under the assumption that the driver does not change the current steering
driving environment. In Fig. 1, we suppose that thelSatontains all possible angle (inattentive driver assumption). If the driver state can be inferred (atten-
actions, and then allow thaction selectiormodule to consider only relevant tive, preparing to make a lane change, etc.) then this information should be used
actions. to calculate a more reasonable TLC.
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vehicle and lane width (see Fig. 7(b) in Appendix I-A), respec-
tively, then time to lane crossing is defined as the time before
the vehicle’s lane position exceeds the lane boundary

Driving State

W — YW CAAS Action
7= Héill {6t: g (t + 6t)] > T} . 1)
t
Expected Expected
Safety Cost to
B. CAAS Actions Enhancement Driver
Given an estimate of TLC, the designer will determine a range .
of TLC values that indicate an unsafe driving situation; in this | gafet Likelihood , Likelihood
! c . . atety of effecting Driver f affecti
case, an impending lane departure. For these unsafe situatiol| Payoff safety Cost © 3 tecung
T1ver

it is desirable to have the vehicle act in such a way to increast
safety. Based on the work in LeBlaet al. [30], [29], two ac- _ .

. . . . . . Fig. 2. Decomposition of consequences and values.
tions are plausible: appropriately signal the driver of an im-
pending lane departure and thereby help the driver avoid the in-

. : . i . nce unwanted warnings and interventions incur a cost to the
cident, or intervene in lateral vehicle control in such a way thél 9
T

the departure is avoided and safety preserved. Thus we res (e (they compromise driver autonomy which can affect

. : driver patience, comfort, attention, and acceptance of the
ntion to th f CAA i = % whereuy ' o . B L
attention to the set of CAAS actions = {uyy, uy }, whereuy, CAAS), counterbalancing considerations should minimize un-

means the vehicle issues a warning to signal the driverzand ranted warnings and interventions. To account for these two
means the vehicle intervenes and takes (perhaps partial) con\f\@ g '

of the vehicle. Such a CAAS requires both a system to issu tiributes it is_ useful t(_) create numerical re_presentations of both

. . . Safety benefit and driver cost. We operationally refer to these
warning as well as a system to control the vehicle under inter-
vention conditions. The decision problem is to determine whi?rhu
u;'s to invoke given the estimateof the TLC. By their nature,
warnings do not directly control driver behavior and, hence, C|mpeding driver autonomy, respectively
be.classifi.eq among the.set of hortarosystems [39] yvhich re- We have thus decompc;sed the conéequences of invoking a
quire eXpl.'?'t conS|Fierat|on of bOt.h human anq engineering fa&AAS action into an accuracy attribute and a liability attribute.
tors. Additionally, it may be desirable to design mterventlon.is

such that drivers avoid completely surrendering vehicle controli]e utilities (or, more premsely, utility anq |n_ult|I|ty) are then
represented by numerical accuracy and liability functions. In

to the CAAS, ano_l this de_sire glso requires careful integration/gppendix 1-B. we obtain a two-factor structure of these func-
human factors with engineering design. tions by taking the expected value of a more general function.
This structure includes both thaluation which means either
safety payoff or driver cost and which is denoted.by:; 7),
Identification of a range of TLC values which indicate ayfthe CAAS action, as well as thikelihood which means the
unsafe driving situation require the designer to identify theropability of effecting the corresponding consequence given

likely consequences of a CAAS action and the preferengg@d which is denoted b§(u; 7). The result is the following:
patterns among these consequences. The set of consequences

for a human—CAAS lane departure assistance system can be expected valuatior- valuationx likelihood

partitio_ned intp t\Np afttributes resulting in two design criteria: p(u; 1) = J(u; 7Y(w; 7). 2)

a) “taking action in time to prevent road departures for the

largest possible set of departure conditions” to increase vehidleus we have not only decomposed the consequences of

safety, while b) “minimizing false warnings and unwante@arning or intervening into accuracy and liability attributes, we

interventions” to decrease interference with driver autononfjave also decomposed these attributes into valuation-likelihood

[29, p. 68]. If critical TLC values are misidentified thencomponents. This decomposition is beneficial because it

accidents can occur which could have been prevented fagilitates the systematic specification of utility functions. This

annoying warnings and undesirable interventions can be iss@ggomposition is diagrammed in Fig. 2 which corresponds to

to some drivers. Additionally, if the set of unsafe TLC valuekig. 3 from Section IV wherein the functions obtained from

is inflexible to individual drivers, the system can be mor&easurements are presented.

problematic than beneficial (e.g., some drivers may have to pay

excessive attention to the CAAS system to prevent unwanted

warnings/interventions, causing an increase in driver workload)To make a decision, the TLC estimateaccuracy function,

[23]. and liability function are determined and passed to the deci-
The primary purpose of the lane departure CAAS is tsion logic. We are looking to characterizevalues that justify

prevent road departures (maximize vehicle safety). Howev&AAS actions. The decision logic is based on two principles:
6 _ _ _a burden of proof concept similar to cost-benefit (liability—ac-
Loosely speaking, a hortatory system advises and encourages decision- . .

makers rather than explicitly controlls their decisions. Thus in a hortato racy) analysis, and a search through alternative CAAS ac-

system a decision-maker retains autonomy. tlons to compare the value of a warning against the value of an

merical representations @ecuracy meaning conformity
the fundamental design objective of increasing safety, and
gﬁbility, meaning exposure to the undesirable consequences of

C. Lane Departure Consequences and Preferences

Action Selection
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safety and comfort. These principles of rationality can be for-
mally described by satisficing decision theory. In this section,
we review a theory of strongly satisficing decisions that places

BAT! ~ 1 satisficing in a multiattribute, comparison-based mathematical
: 7 framework that precisely characterizes all decisions that qualify
S as satisficing. Throughout this section, we use the tetets-
S S TS sionandactioninterchangeably, though it is more proper to re-
T tain the termdecisionto include bothaction meaning a poten-

tial solution to the problem of determinirigow to behaveand
proposition meaning a potential solution to the problem of de-
terminingwhat to believe

JA eA
A. Satisficing Decisions
T T e e e S_imon [45] gddresseq the issue of limited or boungied ratio-
r r nality by defining anaspiration level such that once this level

(a) is met, the corresponding solution is deemed adequasatisr
ficing. The essence of satisficing is comparison but, by contrast
to Simon’s search-based notion, satisficing can be formalized
in a multiattribute decision theory wherein attributes are com-
prt i pared to determine justifiable decisions. For the special case of

two-attribute problems with one attribute representing the fun-
damental purpose of seeking a solution and the other attribute
representing proximate considerations in reaching this solution,
r the satisficing decision principle is appropriate.

1) Practical Decision Making:Generally, actions cannot be
characterized appropriately as being true or false, but may admit
functional characterizations instead, such as degree of appropri-
Ji ‘r ateness or inappropriateness, expensiveness or inexpensiveness,
etc. These characterizations will be determined by the condi-
tions and environment of the decision problem. SSDT was de-
veloped as an extension of Levi's epistemic utility theory [31]
to practical problems involving independent benefit and cost
attributes [18], [19]. In SSDT, actions are characterized by an
accuracy valuation: 4+ and aliability valuation . To form a

Fig. 3. Expected valuations as a function of decision and TLC—compa?é/Stematlc design procedure, it is necessary to give operational

Fig. 2. (a) Expected safety enhancement (accuracy) attribute from valuat@@finitions to characterize these notions.
and likelihood. (b) Expected driver cost (liability) attribute from valuation and . .
likelihood. Accuracy: conformity to a standard. In cognitive con-

texts the standard is factuality. In practical contexts, the
standard corresponds to the fundamental goal or objective
relevant to the problem, and accuracy corresponds to the
degree of success in achieving that goal.

(b)

intervention. The “burden of proof’ concept means that likely
safety enhancement must outweigh the likely cost to driver au-
tonomy, and is used to determine which CAAS actisheuld

be performed (when proof is sufficient to justify action). In Liability: susceptibility or exposure to something un-
other words, the likely safety enhancement must be compellingdesirable. In practical contexts, undesirable consequences
enough to justify the likely cost to driver autonomy. The dom- may be manifest in the form of costs or other proximate
ination concept means that some CAAS actions should not bepenalties that would accrue simply as a result of taking the
done because other CAAS actions exist which provide greate@ction. This cost is quantified in the liability function. Re-
safety enhancement with less cost to driver autonomy, and deteljecting consequences with high liability improves the set
mines which CAAS actionshould notbe performed (because of possible actions.

an alternative CAAS action is superior). The fundamental purpose of designing a CAAS is to increase

safety; for human—CAAS systems, the safety of the system s the
basis for accuracy, and, corresponds to the degree of success
the CAAS has in achieving this goal. However, CAASs can in-
In the previous section, we introduced principles that inflterfere with driver autonomy; the cost to driver autonomy is the
enced CAAS design and operation. From these principles, Wasis for liability, anduy corresponds to the degree to which
distilled the burden of proof and domination concepts as tiige CAAS interferes with driver autonomy. By defining these
principles of rational decision making in the tradeoff betweemvo attributes of the CAAS system, we have encoded both the

[ll. STRONGLY SATISFICING DECISION THEORY
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TABLE |
SUMMARY OF ACCURACY AND LIABILITY CONCEPTS

| Application | Accuracy pa | Liability py, |

Levi’s epistemic utility theory belief information cost
multi-attribute utility theory (economics) benefit cost
CAAS decisions safety payoff | driver autonomy cost

need to achieve the system’s purpose (safety), and the desirsatisficing for a given:, and those controls which are satisficing
consider the cost of action to the driver (autonomy). In practicgiven the state of nature respectively defined as

terms, the CAAS system should go unnoticed by the attentive

driver, but help the inattentive driver. These objectives trans- Sy(w) ={0: pra(u, 6) > bur(u, 6)}

late into design criteria of retaining driver autonomy while si- Sp(0) = {u: palu, 0) > bur(u, 6)}.

multaneously increasing system safety. A summary of concepts

related to accuracy and liability, including the human—-CAAS

system design proposed in this paper, is presented in.Table B. Strongly Satisficing Decisions

2) The Satisficing Decision Rulesing Levi's error avoid-  Although the sef, contains all possible actions that are legit-
ance principle, SSDT provides a method by which the accurggyate candidates for adoption, they generally will not be equal
and liability attributes can be mergetd:avoid error, a decision iy gverall quality. For example, two satisficing actions may have
maker eliminates those decisions which are more liable thagmilar accuracy values (i.e., be equally safe) but have signifi-
accurate Although the attributes used in the decision proceggintly different liability values (i.e., one costs the driver more),
employ utility-like structures obtained from ordering the comang implementing the one with the lower liability will yield es-
sequences of an action, each potential action is evaluated oz#ftially the same safety results with lower cost to the driver.

own merits without comparing it to other decisions; i.e., actiongys we are motivated to further refine the set of satisficing ac-
are not selected as a function of search, but rather as a fufigns. For every, € U/ let

tion of detecting particular environmental conditions. For the

Igne departure system example, an gction is satisficing if'it con- Ba(u; 0) ={v e U: pr(v; 0) < pr(u; 0)

tributes to driver safety more than it interferes with the driver's andyea(v; 0) > pau; 0)}

autonomy. By so formulating the problem, the burden of proof

is placed on the automation systetminvoke a CAAS actions, Br(u; 0) ={v € U: pr(v; 0) < p(u; 0)

the predicted safety enhancement must be compelling enough to andpa(v; 0) > pa(u; 0)} 4

justify the cost to the driver’'s autonomy. ] ] ] ]
Formally, let denote the set of possible decisions or action@nd define the set of actions that atectly betterthanu (i.e.,

and let® denote the states of nature. For each decisianyy St Of actions that dominate)

and for each state of natufe= ©, a consequence results which

is the effect of making decisiomwhen nature is in staté The

accuracyua:U x © — R and liability 17,: U x © — R set that is. B

membership functions are preference relations defined for ey !

consequence (i.e., action/state-of-nature pair). more liable tharu. If B(w; 8) = @, then no actions can be

In S.SI.DT' the_ set of all de.Ci.Si.O ns which cannot b_e JIUStiﬁ[Sreferred tas in both accuracy and liability, angis a (weakly)
ably eliminated is called theatisficing setThe comparative na- nPndominated action with respect t6. The set

ture of this rule can be identified (using one of the methods o
set-valued maximization or fuzzy logic in [18] and [19], respec- £(6) = {u € U: B(w; ) =0} (6)
tively) via the following equation:

B(u; 8) = Ba(u; ) U Br(u; 6) (5)

(u; ) consists of all possible actions that are less
le but not less accurate thanor are more accurate but not

contains all nondominated actions. The intersection of this set
Sy ={(w; 0): palu; 0) = bur(w; )} () with the satisficing set yields trgirongly satisficingset

whereb is termed the rejectivity index. Singey andy.;, are con- &,(6) = £(6) N S,(6). @)
structed independently, the rejectivity serves not only as a rela-

tive weighting, but also as a scaling factor which guarantees tig@bm the strongly satisficing set, we can define the support of
the functions representing the two attributes are comparaldecisionu as those states of nature for whiglis strongly sat-
(See Section IV-E for a discussion of héws used to represent jsficing

driver-dependent preferences for this relative weighting.) Given

(3), we can restrict attention to those states of nature which are supporf(u) = {6: u € &,(6)}. (8)

“For some problems, it is possible, useful, and perhaps essential to descrid&he domination principle and the satisficing principle are independent
the consequences of a decision using two attributes, provided a suitable methatibns. For some problems, the satisficing principle can be applied without
for merging these attributes can be found. As evidence to this claim, we cite ti@ng the domination principle (such as in time-constrained decision making),
engineering design examples in [18], [19], the usefulness of cost-benefit analtereas in multiattribute utility theory only the domination principle is
ysis, and the importance and success of multi-attribute utility theory in decisiapplied. In design problems that employ cost and benefit attributes, we propose
analysis [54]. incorporating both principles when possible.
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This set is the key to systematically identifying those conditiorizased on the desire to “prevent road departures for the largest

which justify the application of a CAAS action.

C. From Theory to Practice

possible set of departure conditions” [29, p. 68]. The function

9)

palu; 7) = au)re

The theoretical foundation developed in this section allows Yich is illustrated in Fig. 3(a), represents the safety enhance-
to identify the following design steps that can be used in systefant payoff for doing action when TLC equals-. The fol-

atically producing human-centered response automation. Fifgfying factors, depicted in their function form in the bottom
a problem must be identified wherein automation is a cand|dagﬁ)ts in Fig. 3(a), determine the accuracy.

for increasing safety. Second, possible solutions to the problem
need to be identified. Third, attributes of the consequences of
including automation must be identified, including the funda-
mental attribute of increasing safety and its companion attribute
of respecting driver autonomy. Fourth, functions must be iden-
tified that have structures which reflect attribute characteristics.
Fifth, given these structures parameters must be estimated using
careful human factors measurements and engineering analysis
of sensor and controller characteristics. Sixth, the resulting ac-
curacy and liability functions should be compared to determine
when evidence is sufficient to justify invoking one or more of
the CAAS alternatives, and alternatives should be compared to
eliminate actions which are dominated by other actions. Given
the resulting design, TLC must be estimated and CAAS actions
invoked, possibly adapting to driver desires and characteristics.

IV. CASE StuDY CONTINUED: FROM MEASUREMENTS TO
VALUES TO ACTIONS

We are now in a position to identify the accuracy and liability
functions which, in turn, will be used to determine when warn-
ings should be issued and interventions should be invoked. Iden-
tifying these functions is an exercise that includes both human
factors and engineering analysis. Selecting appropriate functio
structures and estimating appropriate function parameters bqt
depend on this analysis. Function selection follows the deco%-
position process diagrammed in Fig. 2 to produce the functio
shown in Fig. 3. In this section, we select function structures th
reflect the objective of comfortably promoting safety, and then
develop parameter estimates using not only data obtained fBm
the literature, but also a careful analysis and simulation of a pgnt
ticular driver—system interaction. (These measurements are ob-
tained from a model of driver behavior described in [13].) Using
the resulting values, we design the decision logic for the la
departure CAAS, and discuss how the safety/comfort trade?
should reflect individual driver preferences.

Valuation: Warnings or interventions are beneficial only

if they are issued early enough for the driver/vehicle to re-
spond to them. Therefore, the payoff for a CAAS action
increases as TLC increases whence an appropriate mono-
tonically increasing function is required. We use the linear
function J,(u; 7) = 7 depicted in the bottom left plot of
Fig. 3(a) to represent this characteristic because the time
available (for the driver in the case of a CAAS warning,
and for the controller in the case of a CAAS interven-
tion) to realign the vehicle with the road increases approx-
imately linearly with TLC.

Likelihood: As TLC increases, the relevance of the
CAAS action to the immediate vehicle state decreases.
This implies that the CAAS action is less likely to effect
driver/vehicle corrective behavior and this, in turn, implies
that the likely safety enhancement decreases. Therefore,
the likelihood of producing the desired safety-enhancing
consequence should be represented by monotonically
decreasing function. We use the exponentially decaying
functionf 4 (u; 7) = a(u)e=**)" depicted in the bottom
right plot of Fig. 3(a) to represent that the likelihood that a
CAAS action will enhance safety decreases exponentially
as TLC increases.

) Liability: The liability function should embody the
esign objective of avoiding interfering with driver autonomy.
‘L,early, warning a driver or intervening in vehicle control are
Lél?desirable if done too early because early CAAS actions
Imply more “false warnings and unwanted interventions” [29,
68] thereby interfering with driver autonomy by demanding
tention. The function

pr(u; 7) = Bu)r* F(r) (10)

ich is diagrammed at the top in Fig. 3(b), represents the cost
driver autonomy for taking actiomwhen TLC equals. The
following factors, depicted at the bottom of Fig. 3(b), determine

the liability.

A. Determining Values: Choosing the Function Structures

The function structures for the accuracy and liability func-
tions are the same for both warnings and interventions. In this

Valuation: A standard quadratic cost function is chosen
to represent the cost of early warning and intervention in-
dependent of lane departure concerns [23]. The quadratic

section, we discuss how these structures can be chosen to reflect cost indicates that the cost of interfering with driver be-

the objective of comfortably promoting safety. Recall that accu-
racy and liability are defined completely independently. Conse-
quently, in deriving the accuracy function focus is placed exclu-
sively on safety, and in deriving the liability funciton focus is
placed exclusively on driver autonomy. Also recall the general
form (2) whereu(u; 7) = J(u; 7)8(u; 7).

1) Accuracy: The accuracy function should embody the de-
sign objective of promoting safety. The accuracy valuation is

havior rapidly increases with TLC due to the fact that ac-
tions taken long before a lane departure will occur much
more often and be less helpful to the driver. This indicates
that early CAAS actions (those issued at large TLC values)
interfere with driver performance more than later actions
(those issued at small TLC values). The tefp{u; 7) =
A(u)7?* depicted in the bottom left plot of Fig. 3(b) repre-
sents this factor.
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TABLE I
ACCURACY AND LIABILITY VALUES.
l expected valuation | valuation | likelihood warning | intervention |
falwn) = ra@e ™ |+ | a(u) " | aluw) = & [alu) = &
pr(u;7) = Bu)?F(r) | Blw)r? F(r) Bluw)=1 | Blur) =5

» Likelihood: The likelihood of interfering with driver au- curacyp.(uw; 7) (represented by the solid line in Fig. 3(a)
tonomy requires information about false alarms. The likexchieves its maximum a{}** = 4.0.
lihood depends on the CAAS system false-alarm rate for Using careful simulation and analysis, the likely response
the attentive driver whendg,(w; 7) = F(7) wherel’'(7) characteristics of a driver can be determined by the time re-
is the likelihood of false alarm. Intuitively, because prequired to estimate the current lane position, denetedO for
dictions of future driving state and driver behavior beebservation), and the time to steer the vehicle to the lane center,
come more uncertain as the prediction horizon increaségnoted. (C for control). These characteristics determine the
the probability of falsely predicting a lane departure andecay ratex(«) and, consequently, the maximumef (u; 7).
thereby interfering with driver autonomy approaches cefhe control time - is defined® as the time required to steer the
tainty as TLC increases whendg7) approaches unity. vehicle from an initial state at the lane boundéyy(0)| = 1.1
This is illustrated in the bottom right plot in Fig. 3(b).  (according to the road and car dimensions in Appendix I-A) to
the center of the langy,.(tc)| = 0 in the absence of process
or measurement nois&Jsing simulations presented in [13], a
B. Determining Values Continued: Estimating Function first-order estimate of~ = 1.2 s is obtained. The observer time
Parameters to is defined as the time required for the observer to converge
from an initial estimation error equal to the lane crossing dis-
In this section, we discuss parameter selection for accuragycey,. (0) — 1,.(0)| = 1.1 to zero estimation errdg,.(to) —
and liability functions for both warnings and interventions. Wg, (¢ y| = 0 in the absence of contrdl.e., y,(£) = v,.(0) for
identify parameters using not only observations reported in t3¢ time). Using simulations presented in [13], a first-order esti-
literature, but also careful analysis and simulation of a modglate oft, = 2.2 s is obtained. Example time histories of these
of driver behavior and a description of a CAAS interventiogysks, obtained from a model of driver behavior [13], are shown
controller. Because we wish to allow for a decision logic whicfy Fig. 4. Accuracy is maximized when the decay parameter is
can account for various drivers, the parameters should be choggfo (v ) = 1/(tc +to). In words, a warning is most accu-
as general as possible. The accuracy and liability parametgig it it gives the driveto seconds to estimate the state of the
obtained from careful simulations and analysis are summarizgghicle andt seconds to control the vehicle.
in Table II. 2) Accuracy of InterventionsThe intervention accuracy
An important issue that deserves attention is the variation §doyld be maximum at that value ofwhich gives the CAAS
the parameters and3 because values and, consequently, de@pntroller time to control the vehicle to the lane center whence,
sion thresholds are determined by these parameters. The pigp- intervention, the same factors determine the shape of
cipal functions of thex parameter are to determine not only, , ;. 7) [represented by the dashed line in Fig. 3(a)] but
the timing when a warning/intervention is maximally accuratgmax and hencey(w;), must be determined. Two constraints
but also the relative accuracy of such behaviors. The prinCiRgétated by human factors influence the valuerf=. First,
function of theg parameter is to determine the relative liability;y intervention should not occur until some time after the
of warnings versus interventions. Sensitivity to these parame{@4rning occurs, giving a driver a chance to react to the warning.
values can only be determined by designing a CAAS and testiggcond, an intervention should occur early enough to allow
the system with human subjects (we illustrate how such tegig intervention controller to smoothly and safely intervene

can be used to seleatand; in our simulation study). We thus (actuator time constant). From the literature, a rough estimate
leave this area for future research, but note that some inforgg-(,,;) = 1/2 (implying rmax = 2 ) indicates that the

tion about sensitivity can be obtained by comparing the parafRtervention will best accomplish its purpose if applied at 2 s
eter values distilled from the human factors literature to thoggfore lane crossing and 2 s after warning.
values obtained from the simulation study. . Using careful simulation and analysis, the intervention
1) Accuracy of Warnings:The accuracy of awarning shouldaccuracy should be maximum at that value evhich gives the
be maximum at that value efwhich gives the driver time to es- cAAS controller time to control the vehicle. Since the CAAS
timate the current state and control the vehicle to the lane cent@jntroller is fully attentive, only controller time is relevant
The key to determining(«) is to note that the maximum value(;, — ¢ since the sensors continually monitor the road).
of yu4 occurs whenr = (1/a(w)). From the literature, Evans This yields a decay parameter efu;) = 1/t¢, which gives
indicates that most drivers respond to an unexpected drivighximum intervention accuracy at = 1.2, where we have
situation within an interval of 1.5 and 4.0 s, with an averaggsunded the performance of the intervention controller by the
value of 2.5 s [6, p. 121]. The value afuy ) = 1/4 (implying

TR — 4.0) is chosen as a rough estimate because the Wamin@lternative_ly,_t(_; can be defined as the time it takes for the_driver to cause
TL°C to reach infinity (no movement toward lane boundary). This measurement

will best accomplish 't§ purpose.(for most dr'VerS) if _s!gnaled icates that the vehicle is again under attentive driver control and assumes that
4 s before lane crossing. Thus independent of liability, the age driver is not engaged in unstable steering oscillations.
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Fig. 4. Convergence times: time to control vehicle from lane edge (100% error) to lane center, and time to observe true vehicle state from |laoe(®00%berr
error) to zero. Data were obtained from a model of skilled driving behavior.

estimates of driver behaviors (the CAAS controller should B&. Action Selection

at Ieas_t as _responsive_ as ‘ff‘ driver). . , To make a decision, accuracy, liability, and the TLC estimate
3) Liability of Warnings: From the literature, the nominal ;. 5 e getermined and passed to the decision logic. The decision
valuefi(uw) = (_)'2/6 ylelds_awarnmg th_reshold consistent (f(_)rlogic is based on two principles: the burden of proof concept
b =1, see Section IV-E) with those derived from the subjectivg o the satisficing principle), and the domination principle.
driver preferences reported in [30], [29]. Note that this pararyj; words, we use the “burden of proof’ principle to determine

eter is approximately driver-independent since it is determingd, ., cAAS actionshouldbe performed (when proof is suf-
for the "average” driver. _ ficient to justify action), and the domination principle to deter-

Using ca_refu_l simulation and_ analysis, we can Sétw)  mine when CAAS actionshould nobe performed (because an
equal to unity since only the ratigi(us)//(uw)) needs to be yermative CAAS action is superior). The burden of proof can
specified® The false alarm probability is defined as the likeliyeneng on the individual driver preferences whereas superiority
hood of predictingg, (1 +7)| > 1.1 (and thusinvoking @ CAAS jonends on system design. As will be shown in the next section,
action) when in facly, (¢+7)| < 1.1 (and thus no CAAS action yiq s 4 desirable property for systems which should be adapted
is warranted). This yields the cumulative distribution function i qividual driver preferences (or, in the more general automa-

- tion case, specific operator preferences).
F(r)= / P(|g-(t+ p)| > 1.1 and |y,.(t + p)| < 1.1)dp. 1) Burden of Proof: To determine the thresholds, andr;
0 below which warnings and interventions are respectively issued,

In the bottom right plot of Fig. 3(b), the line represents the enf!® Must compare the accuracy against the liability. When ac-
pirical cumulative distribution function for false TLC predictioncu_raCy exceeds liability then safe_ty interests outweigh costs to
under the conditions described in [13]. driver autonomy and a CAAS action should occur. To perform
4) Liability of Interventions: Clearly, 3(u;) = N x B(uw) sg_ch a comparison, we must ensure that. thg accuracy and lia-
sets the cost of an interventioN times higher than the Costb|I|ty valuations are_comparable: We do this via the paramnieter
of a warning. From the literaturéy — 4 produces an interven- that allows us to adjust the relative value of safety to autonomy

tion threshold that agrees with those derived from the subjecti‘%OI thereb_y adapt to individual dlffere_nces. The C”_t'cal TLC
driver preferences reported in [30], [29]. Careful measuremeffiues (defined as those values that delineate the region between
of N must be determined by experiment with human Subjecga.tlsflcmg_an_d_ nonsatisficing CAAS actions) occur when accu-
Such an experiment was beyond the capabilities of the driy&cy and liability are equal, which happens when the accuracy
model, and performing an appropriate experiment with hum&r‘?c,j liability functions (see, for example’, Fhe dlagrams n Fig. 5
subjects is beyond the scope of this paper. For the results which represent the accuracy and liability functions with pa-

ported using careful simulation and analysis, we subjectiveﬁ?meters selected using observations reported in the literature)
setN = 5 intersect

/
= & 3 y N = b . 11
1070 see this, observe that fof = b3(u., ) thenS,, = S,. Thus we set ™ arg, {fua(uw; 7) p(uws 7)) (11)
B(uw ) equal to unity, and determing « ) in relation to unity. 1 = arg {palur; 7) = bur(ug; 7)}. (12)
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Fig. 5. Application of decision principles. (a) Satisficing, or burden of proof, implies that a warnings justified only if 44 > bu; which occurs when

7 < 77, and (b) domination implies that; is justified only if g4 (us; 7) > pa(uw; 7) (in this casep r(ur; 7) > pr(uw; 7) for all - whenceu; is not
dominated by, only whenu s(uz; 7) > pa(uw; 7)) which occurs whemr < r°<v. The function parameters in these figures are obtained from observations
reported in the literature.

For7 < 7{; (to the left of the intersection value), accuracy exiability and higher accuracy than does intervention (i.e., an in-
ceeds liability and, hence, the warning action should be invokeadrvention is dominated by a warning) whence
Forr > 7y (to the right of the intersection value), liability ex- £ >
_ s (uw) ={r > 0}
ceeds accuracy and, hence, the warning action should not be c [y < e
invoked. A similar argument holds for interventions in relation (up) ={r < 7°}
to 7. In Fig. 5(a), the accuracy afy exceeds the liability for
T < 14, = 2.03 s. Thus the region of support for warning an®. Critical Thresholds

intervention is delineated by Critical thresholds are defined via the strongly satisficing set

S, N € using (11)—(13) as
W =Ty (14)
71 = min(7°M, 77) (15)

The accuracy ofi; exceeds the liability for alt < 77 = 1.01 and the regions of support are defined as those TLC measure-
s. Note that for many driversy,, = 2.03 s is within the range ments which invoke a CAAS response, and are given by
of normal operation. .

2) Eliminating Inferior Alternatives:Since, in general, supporCusy ) ={r: 7 < 7w}
warnings will always be less invasive than interventions, support(ur) ={r: 7 < 71}-
attention should be restricted to liability functions defined sudResults for parameters obtained from the literature are shown in
thatpp(ur; 7) > pr(uw; 7) for all 7 > 0. We ensured this Fig. 6(a), wherey; andry, represented by the solid and dashed
by setting3(ur) = N3(uw) for N > 1. Additionally, warn- lines, respectively, are plotted as function$ diVhenb = 1, the
ings more effectively promote safety for large TLC whereagsulting decision thresholds agree with those reported in [30],
interventions more effectively promote safety for small TLJ29]. The two horizontal dotted lines indicate the two critical
Clearly, if there are TLC measurements for which warnings nealues ofr for a nominal value ob = 1, which is represented
only promote safety more than interventions, but are also léssthe vertical dotted line. For this valuelothe resulting values
invasive than interventions, then interventions are not useftdr v andr; coincide with those values proposed in [30], [29].
The critical value (defined as the value that delineates the rar@bserve that the; curve becomes constant for values less than
of nondominated CAAS actions}*™ can be identified as abouth = 0.15. This occurs because warnings dominate inter-
that value for whichu .4 (uw; 7) intersectsu s (us; 7). For the ventions forr > 7o,
accuracy and liability valuations shown in Fig. 3, this critical Given the accuracy and liability functions obtained from
value occurs at the intersection of the two accuracy functionsareful analysis and simulation of a driver model, the critical

values ofr are identified and plotted as a function bfin
W = arg {palus; 7) = paluw; 7)) (13) Fig. 6(b). Note that intervention occurs only when the time
to lane crossing is less than 1.57 s. Thus no interventions

Forr < 7% poth warning and intervention actions are permiszan occur unless the system predicts, via (16) and (17) in
sible since neither CAAS actions is obviously superior, but f&ppendix I-A, that the driver will leave the lane within about
T > 7% only warning is permissible since it has both loweone-and-a-half seconds.

Syluw) ={m:7 < Ty}
Sp(ur) ={r:7 < 717}

T
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o : no action | o no action

Fig. 6. Critical times for warning and intervention as a functiorb d6r (a) rough estimates and (b) driver model data. Flparameter is a driver-dependent
measure of the subjective disposition toward accepting assistance from the warning/intervention system.

E. Driver Dependence inal value ofb) , then the experimentally determined nominal

The accuracy and liability functions have been identified ifi value can be (slightly) adjusted to conform to their individual
a careful analysis presented in the previous sections. This aigferences. Atone extreme, drivers who do notwantthe CAAS
ysis has assumed that all drivers exhibit a similar value structuf¥Stem to be a factor can be accommodated by letting oc.
However, it is desirable to allow the resulting decision thresrO" these drivers, the strongly satisficing set is empty unless
olds to depend upon individual driver preferences. This can be= 0-0- At the other extreme, drivers who, for the sake of
done by adjusting the relative importance of comfort and safet¢fety, do not mind frequent interventions or continuous warn-
by adapting and thereby allow for individual differences in thed9S can be accommodated by letting- 0.0. These drivers
way drivers interact with a system such as a CAAS. receive a constant warning (sineg- = oc), but no interven-

A nominal value forb can be experimentally determined adion unlessr < 74" (sincer; = 7). A similar reasoning
follows. For any value ob there exist critical thresholdg and €N be eémployed to adjust the system to changing driving con-
mw, and for each; andry there is a probability of falsely pre- ditions (such as sensor noise, wegther, traffic dens@y, narrow
dicting a lane departure as specified Byr;) and F(ry ). By road shoulder width, etc.), or to adjust the system to important
specifying an acceptable false-alarm rate, a corresponding PBErator-specific tolerances. _ o
jectivity can be determined. For example, based on the driver'W0 Observations are worth noting: a) because the decision
model, a rejectivity ob = 10/e yieldsry = 0.76 s andr; = rule is set-valued, it is possible that both warning and interven-

0.61 s, corresponding a 6.9% chance of falsely warning an 4¢n can occur simultaneously and b) there is a graded sequence
tentive driver and a 3.7% chance of falsely intervening, respéd-CAAS actions which increase in severity as the observed TLC

tively.11 Thus the likelihood that an attentive driver will receivélecreases (awarning is less severe than an intervention). These
a false CAAS action is small, but not negligible. The "ke“hoo&bservatlons are consistent with the design principles advocated

of false alarm can be reduced, but at the expense of decreasifigk?3] Which call for a gradual increase in the severity of warn-
smaller warning and intervention times. ings (which is a form of the coordination of multiple warnings).

Ideally, the decision logic should not only allow for variationd”0tentially, these observations are compatible with the desire to
in (and permit adaptation to) individual driver preferences, bAEVeloP @ system which adapts to changing environments, in-
should also adapt to changing situations (when, for exampTéL,‘d'”g situation-adaptive autonomy. The.problems of how and
drivers are navigating a sequence of difficult curves wherel{en t0 adapt the CAAS system and which measurements are
they accept TLC values lower than those acceptable in nofost effective in guiding adaptation are important areas of fu-
inal straight-lane driving) and allow for situation-adaptive ajre research.
tonomy [25], [24], [26], [27]. This can be done by adjusting the
rejectivity b as a function of the driver’s disposition or judg- V. CONCLUSIONS

ment. If there are drivers for whom a nomirtabalue is inap- | this paper, we described a plausible design process to pro-
propriate (which may be the case when, for example, typicglice human-centered collision and accident avoidance systems
environmental conditions are substantially different from thos(@AASs). Within this design process, both safety-enhancing at-
which determined the false-alarm rate and, therefore, the nofipytes as well as autonomy-inhibiting attributes must be identi-
11These percentages appear high, but should be interpreted against the nge(either explicitly, as we have done, or implicitly USing sound

rate of times when TLC drops below critical thresholds for a real driver rathéengineering judgment”). These attributes should be compared
than for the driver model.
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(a) ®

Fig. 7. Predicting TLC. (a) Predected positiah4(t) is measured counterclockwise from vertical), and (b) lane departure position. In the figure, the relative
widths of the vehicle and the road have been distorted to facilitate the definition of parameters; the dashed line denotes the center of the ldth@ainidesho
confused with the dashed line which separates lanes on real two-lane roads.

to tradeoff between these two competing design requirements) The current state of the vehicle can be estimated using an

and thereby produce a CAAS that comfortably promotes safety.  observer operating on the vehicle system described by a
It appears that in systems designed to comfortably increase dynamics equation with state (see Fig. 7)

operator safety, tradeoffs are frequently handled by setting intu- . . T

itively obtained thresholds. Fortunately, this intuitive design ap- = [yr, Gry By AE, 6, 4]

proach can be formalized and, consequently, systematized using and the elements of this vector are defined as follaws:

strongly satisficing decision theory. Rather than arbitrarily ag-  is the lateral distance between the vehicle center of gravity

gregating safety-enhancing and autonomy-inhibiting design cri-  and the center of the lan&s = ¢ — ¢, € is the yaw angle

teria into a single performance valuation and then extremizing  of the vehicle body, is the desired yaw angle set by the

this valuation, these two criteria should instead be translated road,u = §, ¢ is the front wheel steering angle,is the

into two independent numerical attributes which are compared  road curvature, and denotes time differentiation. A de-

to determine when CAAS actions are appropriate. This com-  scription of a useful dynamics model and corresponding

parison places the “burden of proof’ on the automation system, optimal observer is subsequently provided.

and requires that evidence be compelling enough to justify theb) The predicted lateral position of the vehicle at titne 6t

cost to operator autonomy. This comparison and the selection can be obtained by assuming that the driver maintains

of dominating actions determine which set of CAAS actions current steering angle and by using the current estimates

are appropriate for the observed environment. The flexibility of  ¢,.(¢) andA&(¢) as follows? [Fig. 7(a)]:

the resulting design methodology motivates future research ef- . N R

forts to a) apply the principles of situation-adaptive autonomy Gr(t+0t) = Gn(t) + VOt tan[AE(t)] (16)

to such systems, b) coordinate multiple automated actions; i.e.¢) The smallestt such thaty,.(t+6t)| exceeds a fixed value

determine conditions which describe when an action can be (the lane boundary) is the TLC estimateln Fig. 7(b)

safely combined with other actions, and c) continue exploring  the vehicle and road are diagrammed. The dashed line

theory-based models of human driving behavior that include  respresents the lane center, and the distance from this lane

how humans react to the introduction of automated systems center to the center of the car is the lateral lane position

[15]. 4. The dotted line is plotted at a distance of one-half of a
vehicle width from the lane boundary. If the center of the
APPENDIX | car crosses the dotted line, then the edge of the car leaves
the lane. Thus for a road width efs = 3.65 m, a portion
A. Model of Vehicle Dynamics of avw = 1.45 m wide vehicle has departed the lane if its

Assuming that the driver does not change steering angle,
. | TLCg . . h b % di 9 h gh ?ZThis estimate holds for sufficiently smalt. For the simulations presented
simple estimation scheme can be performed In the thr@; 31 v/s: = 0.25 m which is much smaller than the average curve length of

following steps. 25 m.
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lateral deviation exceedsw —vw/2) = 1.1 m. Formally, value a CAAS action because it promotes safety. However, con-

the time to lane crossingis defined as siderations of driver autonomy induce us to consider the cost of
. _ . invoking a CAAS action (or, equivalently, the benefit of not in-
= I%Ln{ét; |9-(t + 68)| > 1.1} (17)  voking a CAAS action). Thus we associatg(u, ) with the

) ] ) ) consequenceS? wherein we value CAAS inaction because it
_The dynamics of steering can be estimated by a linear systgf teres with driver autonomy (the payoff for correctinaction).
given by 1) Accuracy: From a strictly safety-enhancement perspec-
i = Az + Bu tive, whenever inaction leads to a lane departure then invoking
a CAAS actionis correct, and whever action causes a lane depar-
y=Cz (18) ture then the actionis incorrect. The designer must determine the
wherez = [y, i, Ae, Aé, 8, 5|7, and the elements of this consequences_a_mq pr(_)bability of incorrect a}ction_s. If the impact
vector are defined as follows; is the lateral distance betweer@nd the probability is high then no CAAS action will ever be jus-
the vehicle center of gravity and the center of the lake, = tified. Clearly, the impact of |.nvo.k|ng a CAAS action thqt WI||.
€ — eq, € is the yaw angle of the vehicle body; is the desired Cause a lane departure (taking incorrect action where inaction
yaw angle set by the road, = §, § is the front wheel steering Would have been safe) is significant. However, a reliable CAAS

angle is the road curvature, ariddenotes time differentiation. @ction will never cause a lane departure (e.g., a warning will

The vehicle parameters are given by never cause the vehicle to swerve off the road, and an interven-
) ) tion will never cause a lane departure) except through the mit-
0 1 0 0 0 0 0 igating consequence of interfering with driver autonomy. Thus
0 5 A % B A-— V2 0 any cost for falsely invoking a CAAS action is appropriately as-
0 0 0 1 0 0 0 signed to the cost for interfering with driver autonomy. Thus the
A= A A b= ff for taking acti be entirely determined by the safet
0 4 —A; 4 B, A, 0 payoff for taking action can be entirely determined by the safety
0 0 0 0 0 0 1 benefit that will result; i.e., any CAAS action has nonnegative
0 safety payoff.
0 O 0 0 0 0

- - The precise utility of the action depends on a) the probability
whereV is the vehicle speed and where thgs and B;’s are that the action will produce nominal consequences (no lane de-

defined as follows: parture) given the current driving state and b) the safety payoff
—2(Cys + Ciy) 2Coply + Ciply) that accrues assuming that the action_ produce_s nominal_ conse-
A = — Ay = - guences. Recall that a consequence is a function of action and
2 2 driving statec(u, 6). The probability that action produces safe

Az = Alorly + Cosly) Ay = —2Ceyly + Corly) (nominal) consequencesu, #) € N given the current state is

L I, given byp(c(u, 8) € N|8) = py(u|f) whereN is the random

B, = 2 By = 2lfICSf 2 variable

m

I andl, are the distance from center of gravity to the front and
rear axles, respectivelg; » andC;,. are the cornering stiffness
of the front and rear tires, respectively, and where the oufputrhe payoff of an action is the increase in safety that results from
is observed from the state vectovia the mapping taking action, and this is denoted By («; #). Combining these
factors gives

Nodw if c(u, 8) €N
10, otherwise.

1 0 0 0 0O
01 0 0 0 O
a(u, 8) = Ja(u; pn(u|). 19
c-lo o100 0 pa(u, 0) = Ja(u; 0)py(ulf) (19)
0 00 1 00 Taking the expected value of (19) with respect to the probability
0 00 001 of statef given observatior and assuming, for simplicity, dis-

. . . . . crete states, yields
The numerical values used int he simulation were obtained from y

[52], and velocity was set t = 25 m/s. palu; ) = Z Ja(u; 0)pn (u|6)p(8]z). (20)
€O

B. Mathematical Structure of the Decision Problem . _ -

Within the scope of this paper, we assume fiétz) = §(6—x)

In this appendix, we develop the necessary decision th"?/?ﬁereé is a delta function; this is equivalent to assuming that

retic foundation to justify our derivation of accuracy and Ii—Our observation: precisely determines. Given this assump-
ability evaluations. In designing CAAS systems, we are COHon (20) becomes

cerned with how actions will affect safety and driver autonomy.
Thus we restrict our attention to a two-attribute consequence set palu; ) =Ja(u; 2)py(ulz)

C = C? x C* whereC“ represents the consequence to driver = Ja(ws 7)alu; 7) 1)
autonomy and’® represents the consequence to safety. The au-

tomated safety-enhancing system attempts to minimize the casiere the observation equals the time to lane crossingand
to operator autonomy while simultaneously maximizing safet§s(u; ) is the likelihood that CAAS actiom will produce
We associated 4 (u, ) with the consequence&s® wherein we accurate (i.e., nominal or safe) consequences given
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2) Liability: From a strictly driver-autonomy perspective, [4]
whenever action interferes with driver autonomy then invoking
a CAAS action is incorrect, and whenever action does not inter-s
fere with driver autonomy then invoking a CAAS action is cor-
rect. The liability function encodes the cost of incorrect CAAS [6]
action. Since all CAAS actions impact driver autonomy, any 7
CAAS action has nonnegative driver cost.

The precise cost of the action depends on a) the probability{el
that the action will produce fault consequences (effectual inter-
ference with driver autonomy) and b) the interference cost that
accrues assuming that the action produces fault consequences.
The probability that the action will interfere with driver au- (9]
tonomy is tantamount to the probability that the driver perceives
a CAAS action as irrelevant to the current circumstances. Re-
call that a consequence is a function of action and driving state”
¢(u, ). The probability that action produces interference (fault)[11]
consequencedu, §) € N given the current state is given by
p(c(u, 6 € F|0)pr(u|0) whereF is the random variable

podw if c(u, #) € F
10, otherwise.

The cost of an action is the increase in interference that results
from taking action, and this is denoted #y(u; 6). Combining  [14]
these factors gives

pr(u, 6) = Jp(u; 0)pr(uld).
Taking the expected value of (22) with respecpé|x) gives
pr(u; z) =Y Ji(u Opr(ulf)pdlz).  (23)

6o

Within the scope of this paper, we assume t{é{x) = 6(6—x)
whereé is a delta function; this is equivalent to assuming that[18]
our observation: precisely determine8. Given this assump-
tion, (23) becomes

[12]

(13]

(22) [15]

[16]

[17]

(19]

pr(u; ) =Jp(u; z)pr(ulz) [20]
= Jp(u; T)e (w5 7) (4 2y
where the observatian equals the time to lane crossingand  [22]

£r,(u; 7) is the likelihood that CAAS actiom will produce
liable (i.e., fault or interfering) consequences given

3) Summary: Equations (21) and (24) have the form identi- [23]
fied in (25)

expected valuatios:- valuationx likelihood

[24]
fl )y =J(u; 7)(u; )

(25)

wherevaluationmeans either driver cost or safety payoff, re-[25]
spectively, andikelihoodmeans the likely consequences given
the measured time to lane crossing. [26]

REFERENCES

[1] R. W. Allen, “The driver’s role in collision avoidance systems, Gol-
lision Avoidance Systems: Issues & Opportunities—RReston, VA,
Mar. 1994, supported by ITS America Safety and Human Factors Com-

[27]

mittee and The National Traffic Safety Administration, pp. 33-51. [28]
[2] L. Bainbridge, “Ironies of automation Automatica vol. 19, no. 6, pp.
775-779, 1983. [29]

[3] M. Baker and M. Van Aerde, “Evaluation of transportation impacts
arising from acc system deployment,” iRroc. 1997 Intelligent

Transportation Systems CoriBoston, MA, Nov. 1997.

53

E. R. Boer, E. C. Hildreth, and M. A. Goodrich, “Drivers in pursuit of
perceptual and virtual targets,” iroc. IEEE Intelligent Vehicles '98
Symp. Stuttgart, Germany, Oct. 28—-30, 1998.

A. Burgett, “Crash avoidance holds key to safer US highwayES:
Intell. Transport. Systpp. 94-98, Sept. 1996.

L. Evans,Traffic Safety and the Driver New York: Von Nostrand Rein-
hold, 1991.

J. Forbes, T. Huang, K. Kanazawa, and S. Russel, “The BATmobile: To-
ward a Bayesian automated taxiit. Joint Conf. Artificial Intelligence
submitted for publication.

L. M. Forbes, “DISCUSSION: The driver’s role in collision avoidance
systems,” in Collision Avoidance Systems: Issues & Opportuni-
ties—Proc, Reston, VA, Mar. 1994, sponsored by ITS America Safety
and Human Factors Committee and The National Traffic Safety
Administration, pp. 53-57.

G. Gigerenzer and D. G. Goldstein, “Reasoning the fast and frugal
way: Models of bounded rationalityPsychol. Reyvol. 103, no. 4, pp.
650-669, 1996.

H. Godthelp, “Vehicle control during curve drivingluman Factors

vol. 28, no. 2, pp. 211-221, Apr. 1986.

H. Godthelp, P. Milgram, and G. Blaauw, “The development of a time-
related measure to describe driving strategitiman Factorsvol. 26,

no. 3, pp. 257-268, June 1984.

M. A. Goodrich, “A theory of satisficing control,” Ph.D. dissertation,
Brigham Young University, Provo, UT, 1996.

M. A. Goodrich and E. R. Boer, “Maintaining driver autonomy with
collision avoidance systems: A satisficing approach,” Cambridge Basic
Res., Nissan Res. Devel., Inc., Cambridge, MA 02142, Tech. Rep.
TR-97-2, 1997.

——, “Multiple mental models, automation strategies, and intelligent
vehicle systems,” inEEE/IEEJ/JSAI Int. Conf. Intelligent Transporta-
tion SystemsTokyo, Japan, Oct. 5-8, 1999, pp. 859-864.

M. A. Goodrich, E. R. Boer, and H. Inoue, “Brake initiation and braking
dynamics: A human-centered study of desired ACC characteristics,”
Cambridge Basic Res., Nissan Res. Develop., Inc., Cambridge, MA
02142, Tech. Rep. TR-98-5, 1998.

—, “A model of human brake initiation behavior with implications for
ACC design,” inlEEE/IEEJ/JSAI Int. Conf. Intelligent Transportation
SystemsTokyo, Japan, Oct. 5-8, 1999, pp. 86-91.

M. A. Goodrich, W. C. Stirling, and R. L. Frost, “A satisficing approach
to intelligent control of nonlinear systems,” ifroc. 1996 IEEE Int.
Symp. Intelligent ContrpDearborn, Ml, Sept. 15—18, 1996.

——, “Atheory of satisficing decisions and controlEEE Trans. Syst.,
Man, Cybern.—Pt. Avol. 28, pp. 763-779, Nov. 1998.

——, “Model predictive satisficing fuzzy logic controlJ[EEE Trans.
Fuzzy Systvol. 7, pp. 319-332, June 1999.

Y. C. Ho, “Heuristics, rules of thumb, and the 80/20 propositidBEE
Trans. Automat. Contrvol. 39, pp. 1025-1027, May 1994.

——, “On the numerical solutions of stochastic optimization problem,”
IEEE Trans. Automat. Confwol. 42, pp. 727-729, May 1997.

R. M. Hogan, “Impact of physical disengagement on driver alertness:
Implications for precursors of a fully automated highway system,” in
Proc. 1997 Intelligent Transportation Systems CdBéston, MA, Nov.
1997.

A. D. Horowitz and T. A. Dingus, “Warning signal design: A key
human factors issue in an in-vehicle front-to-rear-end collision warning
system,” inProc. Human Factors Soc. 36th Annu. Meétlanta, GA,

Oct. 1992, pp. 1011-1013.

T. Inagaki, “Situation-adaptive responsibility allocation for human-cen-
tered automation,Trans. Soc. Instrum. Contr. Engrol. 31, no. 3, pp.
292-298, 1995.

T. Inagaki and K. Inoue, “Adaptive choice of a safety management
scheme upon an alarm under supervisory control of a large-complex
system,”Reliab. Eng. Syst. Safetyol. 39, pp. 81-87, 1993.

T. Inagaki and M. Itoh, “Trust, autonomy, and authority in human-ma-
chine systems: Situation-adaptive coordination for systems safety,” in
Proc. CSEPC 19961996, pp. 176-183.

——, “Trust, autonomy, and authority in human—-machine systems: Sit-
uation-adaptive coordination for systems safety,” Inst. Inform. Sci. Elec-
tron., Univ. Tsukuba, Tsukuba 305, Japan, Tech. Rep. ISE-TR-96-138,
Sept. 1996.

B. E. Kaufman, “A new theory of satisficing,J. Behav. Econvol. 19,

no. |, pp. 35-51, 1990.

D. J. LeBlanc, G. E. Johnson, P. J. T. Venhovens, G. Gerber, R. DeS-
onia, R. D. Ervin, C.-F. Lin, A. G. Ulsoy, and T. E. Pilutti, “CAPC: A
road-departure prevention systedEEE Contr. Syst. Magvol. 16, pp.
61-71, Dec. 1996.



54

(30]

(31]
(32]
(33]
(34]

(35]

(36]
(37]

(38]

[39]

(40]

[41]
[42]

[43]

[44]
[45]
[46]
[47]
(48]

[49]

(50]
(51]

[52]

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 1, NO. 1, MARCH 2000

D. J. LeBlanc, P. J. T. Venhovens, C.-F. Lin, T. E. Pilutti, R. D. Ervin, [53]
A. G. Ulsoy, C. MacAdam, and G. E. Johnson, “A warning and inter-
vention system to prevent road-departure accidentsTh& Dynamics

of Vehicles on Roads and Tracks, Proc. 14th IAVSD Symgegel, Ed.,  [54]
Ann Arbor, MI, Aug. 1996.
I. Levi, The Enterprise of Knowledge Cambridge, MA: MIT Press, [55]

1980.

G. Lilly, “Bounded rationality: A Simon-like explication,J. Econ. Dyn.
Contr, vol. 18, pp. 205-230, 1994. [56]
T. Matsuda and S. Takatsu, “Algebraic properties of satisficing decision
criterion,” Inform. Sci, vol. 17, no. 3, pp. 221-237, 1979.

——, “Characterization of satisficing decision criterionriform. Sci,
vol. 17, no. 2, pp. 131-151, 1979.

M. D. Mesarovic, “Systems theoretic approach to formal theory [58]
of problem solving,” inTheoretical Approaches to Non-Nunierical
Problem Solving R. Banerji and M. D. Mesarovic, Eds. Berlin,
Germany: Springer, 1970, pp. 161-178.

M. D. Mesarovic and Y. Takahara, “On a qualitative theory of satisfac- [60]
tory control,” Inform. Sci, vol. 4, no. 4, pp. 291-313, Oct. 1972.

A. Meystel,Autonomous Mobile Robots Singapore: World Scientific,
1991.

N. Moray, “Designing for transportation safety in the light of percep-
tion, attention, and mental model&¥gonomicsvol. 33, no. 10/11, pp.
1201-1213, 1990.

J. Murray and Y. Liu, “Hortatory operations in highway traffic manage-
ment,” IEEE Trans. Syst., Man, Cybern.—Pt.\&l. 27, pp. 340-350,
May 1997.

L. Nilsson, “Safety effects of adaptive cruise controls in critical traffid
situations,” inProc. Steps Forward, Vol. IJlYokohama, Japan, Nov.
9-11, 1995, 2nd World Congr. Intelligent Transport Systems, p
1254-1259.

R. W. Proctor and T. Van Zandtluman Factors in Simple and Complex|~
Systems Boston, MA: Allyn and Bacon, 1994. 1
J. Reason, “Cognitive aids in process environments: Prostheses
tools?,”Int. J Man—Machine Studiesol. 27, pp. 463-470, 1987.

R. Rensink and E. Boer, Eds., “Cambridge Basic Research 1996 Ann
Report,” Nissan Res. Devel., Inc., Cambridge, MA, Tech. Rep. CBR TR
96- 10, Dec. 1996.

[57]

(59]

(61]

K. Vincente, “Should an interface always match the operator's mental
model?,”CSERIAC Gatewayvol. 8, no. |, 1997. Published by Crew
Syst. Ergonomics Inform. Anal. Ctr.

D. von Winterfeldt and W. Edward8ecision Analysis and Behavioral
Research Cambridge, U.K.: Cambridge Univ. Press, 1986.

N. J. Ward, Automation of task processes: An example of intelligent
transportation systems, , Paper based on ITS Focus Workshop entitled
Intelligent Transport Systems and Safety, Feb. 29, 1996.

Y. Xiao, P. Milgrarn, and D. J. Doyle, “Planning behavior and its func-
tional role in interactions with complex system$ZEE Trans. Syst.,
Man, Cybern.—Pt. Avol. 27, pp. 313-324, May 1997.

L. A. Zadeh, “What is optimal? (Editorial) JRE Trans. Inform. Theory
vol. IT-4, p. 3, Mar. 1958.

—, “Maximizing sets and fuzzy Markoff algorithms|EEE Trans.
Syst., Man, Cybern.—Pt.,@ol. 28, pp. 9-15, Feb. 1998.

S. Zilberstein, “Using anytime algorithms in intelligent systemal”
Mag. pp. 73-83, Fall 1996.

C. E. Zsambok and G. KleitNaturalistic Decision Making Hillsdale,

NJ: Erlbaum, 1997.

Special Issue on Human Interaction with Complex SystertsZE
Trans. Syst., Man, Cybern.—Pt. Way 1997.

Michael A. Goodrich (S'92-M'97) received the
B.S. cum laud¢, M.S., and Ph.D. degrees in
electrical and computer engineering from Brigham
Young University, Provo, UT in 1992, 1995, and
1996, respectively.

From 1996 to 1998, he was a Research Associate
with Nissan Cambridge Basic Research, Nissan
Research and Development, Inc., Cambridge, MA,
where he maintains status as a Visiting Scientist.
Since 1998, he has been with the Computer Science
Department at Brigham Young University where

he is an Assistant Professor. His research interests include modeling and

S. Sen, Ed., “Satisficing Models,” AAAI Spring Symp., Stanford, CAcontrolling intelligent systems, decision theory, multiple-agent learning and

Tech. Rep. SS-98-05, March 23-25, 1998.

H. A. Simon, “A behavioral model of rational choiceluart. J. Econ.
vol. 59, pp. 99-118, 1955.

—, “Invariants of human behavior&nnu. Rev. Psychohol. 41, pp.
1-19, 1990.

——, The Sciences of the ArtificiaBrd ed. Cambridge, MA: MIT
Press, 1996.

M. Slote,Beyond Optimizing Cambridge, MA: Harvard Univ. Press,
1989.

W. C. Stirling, M. A. Goodrich, and R. L. Frost, “Procedurally rational
decision-making and control,[EEE Contr. Syst. Mag.vol. 16, pp.
6675, Oct. 1996.

S. Takatsu, “Decomposition of satisficing decision problentisiérm.
Sci, vol. 22, no. 2, pp. 139-148, 1980.

, “Latent satisficing decision criterion|hform. Sci, vol. 25, no. 2,
pp. 145-152, 1981.
M. Tomizuka, J. K. Hedrick, and H. Pham, “Integrated maneuvering

coordination, human-centered engineering, fuzzy logic, and estimation theory.

Erwin R. Boer (S'92-M'92) received the M.S. de-
gree in electrical engineering from Twente Univer-
sity, The Netherlands in 1990, and the Ph.D. degree
in electrical engineering from the University of llli-
nois, Chicago in 1995.

Since 1995, he has been a Research Scientist at
Nissan Cambridge Basic Research, Cambridge, MA.
His current research interests include human—ma-
chine interaction, control, and image processing and
in particular their application in the development
of human-centered operator-assist systems. Since

control for automated highway systems based on a magnetic ref@890, he has been affiliated with the Center for Clouds Chemistry and Climate
ence/sensing system,” Calif. PATH Res. Rep., Tech. Rep. UCB-IT&t Scripps Institution of Oceanography conducting research in the areas of

PRR-95-12, 1995.

remote sensing, image processing, and scientific data visualization.



