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Designing Human-Centered Automation: Tradeoffs
in Collision Avoidance System Design
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Abstract—Technological advances have made plausible the de-
sign of automated systems that share responsibility with a human
operator. The decision to use automation to assist or replace a
human operator in safety-critical tasks must account for not only
the technological capabilities of the sensor and control subsystems,
but also the autonomy, capabilities, and preferences of the human
operator. By their nature, such human-centered automation
problems have multiple attributes: an attribute reflecting human
goals and capabilities, and an attribute reflecting automation
goals and capabilities. Although good theories exist that describe
portions of human behavior generation, in the absence of a general
theory of human interaction with complex systems, it is difficult
to define and find a unique optimal multiattribute resolution to
these competing design requirements. We develop a systematic
approach to such problems using a multiattribute decomposition
of human and automation goals. This paradigm uses both the
satisficing decision principle which is unique to two-attribute
problems, and the domination principle which is a common man-
ifestation of the optimality principle in multiattribute domains.
As applied to human-centered automation in advanced vehicle
systems, the decision method identifies performance valuations
and compares the safety benefit of a system intervention against
the cost to the human operator. By so formulating the problem,
the burden of proof is placed on the automation system:to invoke
automation actions, the projected safety-enhancement must be
compelling enough to justify the cost to the operator’s autonomy.
This effectually integrates human factors considerations into
the automation design process from its inception. We illustrate
the method by analyzing an automated system to prevent lane
departures.

Index Terms—Advanced vehicle systems, decision making,
human-centered automation, human factors, satisficing.

I. INTRODUCTION

W ITH the rapid progress of technology, there is a con-
certed effort to use automated systems to augment

human abilities in safety critical tasks such as automo-
bile driving, aviation, and process automation. However, a
lesson learned from process automation is that, in the ab-
sence of human factors considerations, even technologically
state-of-the-art systems can be more problematic than bene-
ficial [56], [2], [42]. This lesson indicates the importance of
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including human factors in the automation design process so as
to prevent “ironies of automation” [2].

Collision and accident avoidance systems (CAASs) include
systems that aid in lane keeping, car following, curve negotia-
tion, obstacle avoidance, etc. CAASs are an important compo-
nent of advanced vehicle control systems and may be realized
with minimal or no changes to existing vehicles and highway
infrastructure [5], [30]. When coupled with other aspects of in-
telligent vehicles and highways, CAASs can serve to enhance
safety and increase highway throughput. As a result of much
current academic and industrial research, the complicated tech-
nological and human factors associated with CAAS design are
being unraveled thereby enhancing the desire to include CAASs
in vehicle design [1], [8], [7], [29]. In essence, designers seek
to a) identify situations wherein drivers exhibit unsafe behavior
and b) design a CAAS that assumes some responsibility for
safety in these situations. In this paper, we formalize human-
centered design principles and illustrate their application using
an automation system that assists drivers avoid unsafe lane de-
partures.

A. Motivation

CAASs are a type of real-time automated systems that share
responsibility with a human operator in safety-critical tasks. Of
particular significance is that human automobile drivers have
widely varying levels of perceptual abilities, physical skills, and
technological understanding. Thus human factorsmustbe con-
sidered in designing CAASs. To satisfy the demands of a poorly
designed and overly sensitive CAAS, a driver may need to in-
crease workload which, in turn, can decrease driver situation
awareness, comfort, and even safety [23], [38]. For example, an
automated system can be designed to sense possible lane depar-
tures using machine vision and warn drivers of impending de-
partures. A poorly designed lane-keeping system might compel
drivers to drive with intense concentration on maintaining lane
position to prevent warnings from being triggered and, conse-
quently, deflect attention from the task of maintaining a safe
speed for traffic and road conditions. Similarly, the driver may
rely too much on the system if warnings and interventions are
falesly assumed to guarantee safety in all circumstances [38].
Consequently, it is desirable to design for the complete system,
which consists of both CAAS technology as well as the human
driver. We use the termhuman–CAASsystem to emphasize the
human driver “in the loop” and design a human–CAAS system
which explicitly addresses driver autonomy through human cen-
tered design. Such a human–CAAS system should a) reduce
mutual adaptation between human and system (driver need not
continually relearn the system and readjust driving strategy), b)
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avoid establishing an unrealistically high level of driver trust
in the system (maintain driver “in the loop”) [24]–[27], and c)
be applicable to both the attentive and temporarily inattentive1

driver.
The design solutions to these problems must account for not

only the purpose and abilities of automation, but also the pur-
pose and abilities of the driver. Consequently, design of such
systems is at the very least a multiattribute problem with (often
times) competing goals and (possibly very) different roles. For
example, in CAAS operation the human commands the vehicle
but the automation may frequently interrupt the driver to sug-
gest or enforce a correction. Although good theories exist that
describe portions of human behavior generation [41], in the ab-
sence of a general theory of human interaction with complex
systems, it is difficult to define and find a unique optimal reso-
lution to such multiattribute human–CAAS problems [61]. This
places the design of such systems in the class of ill-formed prob-
lems2 wherein there is a lack of sufficient information, time, or
resources to define or find the optimal solution [37]. Ill-formed
problems motivate the search for intelligent solutions, the suc-
cess of which rests, to some degree, upon the belief that finding
the optimal decision is not necessary for making justifiable de-
cisions [9], [20], [21]. We present a formal and systematic de-
sign approach which replaces the objective of optimal design
with a less ambitious (and perhaps more robust) objective of
avoiding error [49]. This design paradigm employs the satis-
ficing principle of Simon [45], [47], the domination principle
from multiattribute utility theory, and the mathematics of Levi’s
epistemic utility theory [31] in a theory called strongly satis-
ficing decision theory (SSDT) [49], [12], [17]. Levi’s theory
provides a set-based mathematical formalism necessary to in-
corporate the notion of satisficing into system design. The re-
sulting design paradigm provides a method for systematically
designing human–CAAS systems which justifiably avoid error
(e.g., false alarms, discomfort to the driver). This error avoid-
ance perspective and its accompanying decision methodology
extend to the design of other real-time systems where humans
share responsibility with automation for safety critical tasks.

B. Overview of Related Literature

The concept of satisficing, a decision-making paradigm that
differs from thede factoparadigm of optimality, was first in-
troduced by Simon [45]–[47]. Many cognitive scientists recog-
nize that insistence on optimality is a misplaced requirement in
situations of limited resources and information, and that opti-
mality inadequately describes observed behavior in naturalistic
settings [46], [47], [9], [60]. Additionally, the definition of and
reliance upon an optimal solution has been questioned by Zadeh
[57], [58], and other philosophers, scientists, and researchers
concerned with pragmatic decision making [20], [21], [48].3

1In this paper, we do not address the problem of fully autonomous vehicles
wherein drivers can be inattentive. Instead, we restrict attention to problems
where other tasks may use or deflect attention.

2Examples of an ill-formed decision problem and an ill-formed control
problem are, respectively, the real-time optimal solution to the Traveling
Salesman Problem, and the optimal control of a highly nonlinear system with
uncertain and time-varying system parameters.

3Also at 1998 NIPS Workshop on Simple Inference Heuristics versus Com-
plex Decision Machines, Breckenridge, CO, Dec. 1998.

Since Simon, many researchers have presented alternative
formalisms of the satisficing concept [35], [36], [34], [33], [50],
[51] motivated primarily by the desire to make robust decisions
in the presence of uncertainty. These developments compare a
utility defined over the consequences of a decision to a deci-
sion threshold. This decision threshold depends only on obser-
vations and not on decision consequences. SSDT is similar to
these other developments in that it addresses robustness [19]
but, by contrast to comparing a single utility to an action-in-
dependent threshold, SSDT compares two utilities defined over
the consequences of a decision against each other whence SSDT
mathematically generalizes these decision rules (i.e., the deci-
sion threshold depends upon both the state of nature and the
consequences that result from taking action).

Building on both Simon’s work as well as the notion of
bounded rationality, satisficing decision making has seen a re-
cent resurgence of interest in the field of artificial intelligence.
This interest is primarily devoted to bounded search methods
and has produced some interesting work in anytime algorithms
and constrained optimization (see, for example, many papers
in [44] or the anytime algorithm tutorial [59]). These and the
related economics-based approaches (such as [28]) propose that
satisficing emerges from the constraints of bounded rationality
and are therefore tantamount to constrained optimization.
Satisficing, as we use it, differs from these efforts in that it
becomes a formal decision principle in itself instead of either
a heuristic determining the structure or termination of a search
algorithm or a variant of constrained optimization [32].

Human interaction with automation is an area of current
research interest in both academia and industry. Historically,
research in human-centered automation has focused on aviation
and process automation. Because of the variety of automobile
drivers, there are large variances in physical skills, perceptual
abilities, technological understanding, etc. These variances
make automating these systems somewhat unique. Conse-
quently, it is sometimes difficult to translate research findings
from other fields to driving. However, the fields of aviation and
process control have some transfer to driving and some of this
work has been significant [25], [24], [26], [38], [2], [42], [53].

Two types of automation systems are candidates for inclusion
in advanced safety vehicles. We may broadly categorize these
astask automationandresponse automation. Task automation
systems, such as conventional and advanced cruise control, are
initiated by the driver with the purpose of relieving some of the
physical or mental burden of performing a particular task (such
as regulating speed). The difficulty in designing these systems
is in helping drivers detect and respond to the behavioral limits
of the automation. By contrast, response automation (of which
CAASs are a special case) such as lane assistance systems are
initiated by the automation to facilitate safer driving. The diffi-
culty in designing these systems is not only to help drivers de-
tect and respond to situations that fall outside their normal range
of operation, but also to intervene when necessary to increase
safety. The primary purpose of task automation systems is to
safely promote comfort, and the primary purpose of response
automation systems such as CAASs is to comfortably promote
safety. Extensive human factors research has been performed on
task automation [55], especially on advanced cruise control [3],
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[22], [40]. By contrast, systematic approaches to human-cen-
tered response automation have received less attention in the lit-
erature [30], [29], [23], [39].

C. Outline of Paper

This paper is divided into three sections. In Section II we
identify design principles and the corresponding tradeoffs that
arise in the human-centered design of lane assistance systems.
In Section III we present a formal theory that allows a designer
to systematically address human-centered design for problems
where human and automation share responsibility. In Section IV
we use observations and measurements to systematically iden-
tify design parameters and the resulting decision logic for our
example lane assistance system. Finally, we present conclusions
from this work.

II. CASE STUDY: CAAS DESIGN PRINCIPLES

It is necessary to design human–CAAS systems which
not only make the vehicle more safe, but which also allow
the driver to maintain normal attentive vehicle control; such
systems bridge the gap between unassisted driving and fully
autonomous vehicles. In this section, we design the decision
logic for a lane departure CAAS, and highlight important
principles in preparation for introducing how SSDT can be
used to systematically design CAAS logic.

To systematically design a CAAS, it is useful to consider it
as a decision problem. In a decision problem, there are the fol-
lowing elements: the state of the environment, observations
of these states , the decisions4 that can be made , the con-
sequences that result when a decision is made given the cur-
rent state of the environment, and values that encode an agent’s
preference pattern over the set of decision consequences (see
Fig. 1). In this context, the CAAS design problem is to: i) iden-
tify states of nature (in this case, driving states) that produce
unsafe consequences unless rectified, ii) determine what actions
can be taken to produce safe consequences, iii) properly assess
the actual consequences (including impact on safety and driver
autonomy) that result when the CAAS actions are taken, and iv)
determine a decision rule that selects an appropriate action for
the observed state. Steps two and three must be carefully co-
ordinated so that, in an effort to address step one, the designer
does not introduce problems that are worse than they were ini-
tially. In the following sections, we discuss states, actions, con-
sequences, values, and action selection for a human-centered
lane departure system designed to produce the desirable con-
sequence of increasing system safety without interfering with
driver autonomy.

A. Driving State

There are three essential features which affect the conse-
quences of a CAAS action: the state of the driving environment,
the state of the vehicle, and the state of the driver. The state
of the driving environment includes not only the road profile,

4Note that the set of relevant actions should, in practice, be restricted by the
driving environment. In Fig. 1, we suppose that the setU contains all possible
actions, and then allow theaction selectionmodule to consider only relevant
actions.

Fig. 1. The design problem.

but also the states (positions, velocities, future positions, future
velocities) of other vehicles. The state of the vehicle refers to
the vehicle position, velocity, etc., and associated vehicle limi-
tations. The driver’s state includes the driver’s intentions (turn,
stop, change lanes, etc.), conditions (fatigued, intoxicated,
alert, irritable, etc.), and limitations (visual acuity, reaction
time, etc.). Assuming that the driver will not change current
steering angle (methods for inferring driver intention are being
developed [43]), these three features are parameterized5 by
estimates of the Time to Lane Crossing (TLC) which is denoted
by . Much experimental evidence exists that drivers use
TLC to determine when to perform a lane-corrective steering
action [10], [11]. We use TLC as the primary decision variable
because it can be perceived by drivers and therefore facilitates
driver understanding and interaction with the automation [15],
[14], [16]. An intuition into the applicability of TLC can be
gained from [4] which states, “TLC provides drivers with an
estimate of the criticality of the situation and is an upper bound
on the time available to turn the vehicle parallel to the road
again.” Additionally, TLC can be used in computational models
that closely emulate skilled driving behavior [4].

Although a number of methods exist for estimating TLC in-
cluding those reported in [30], [29], for demonstration purposes
we use a simple prediction of future lane positions that is dis-
cussed in Appendix I-A which is based on an estimate of the
current vehicle state. (To reduce false alarm probability in prac-
tice, it may be useful to consider more sophisticated estimates
of TLC.) This simple TLC estimation scheme consists of three
steps: a) estimate the current vehicle state, b) predict the trajec-
tory of the vehicle, and c) estimate the time until lane departure.
Formally, when denotes the estimate of lane posi-
tion of the vehicle assuming fixed heading (i.e., fixed steering
angle) at some future time , and when and denote

5The TLC estimate used here tells us little about driver state since it is ob-
tained under the assumption that the driver does not change the current steering
angle (inattentive driver assumption). If the driver state can be inferred (atten-
tive, preparing to make a lane change, etc.) then this information should be used
to calculate a more reasonable TLC.
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vehicle and lane width (see Fig. 7(b) in Appendix I-A), respec-
tively, then time to lane crossing is defined as the time before
the vehicle’s lane position exceeds the lane boundary

(1)

B. CAAS Actions

Given an estimate of TLC, the designer will determine a range
of TLC values that indicate an unsafe driving situation; in this
case, an impending lane departure. For these unsafe situations
it is desirable to have the vehicle act in such a way to increase
safety. Based on the work in LeBlancet al. [30], [29], two ac-
tions are plausible: appropriately signal the driver of an im-
pending lane departure and thereby help the driver avoid the in-
cident, or intervene in lateral vehicle control in such a way that
the departure is avoided and safety preserved. Thus we restrict
attention to the set of CAAS actions , where
means the vehicle issues a warning to signal the driver, and
means the vehicle intervenes and takes (perhaps partial) control
of the vehicle. Such a CAAS requires both a system to issue a
warning as well as a system to control the vehicle under inter-
vention conditions. The decision problem is to determine which

’s to invoke given the estimateof the TLC. By their nature,
warnings do not directly control driver behavior and, hence, can
be classified among the set of hortatory6 systems [39] which re-
quire explicit consideration of both human and engineering fac-
tors. Additionally, it may be desirable to design interventions
such that drivers avoid completely surrendering vehicle control
to the CAAS, and this desire also requires careful integration of
human factors with engineering design.

C. Lane Departure Consequences and Preferences

Identification of a range of TLC values which indicate an
unsafe driving situation require the designer to identify the
likely consequences of a CAAS action and the preference
patterns among these consequences. The set of consequences
for a human–CAAS lane departure assistance system can be
partitioned into two attributes resulting in two design criteria:
a) “taking action in time to prevent road departures for the
largest possible set of departure conditions” to increase vehicle
safety, while b) “minimizing false warnings and unwanted
interventions” to decrease interference with driver autonomy
[29, p. 68]. If critical TLC values are misidentified then
accidents can occur which could have been prevented or
annoying warnings and undesirable interventions can be issued
to some drivers. Additionally, if the set of unsafe TLC values
is inflexible to individual drivers, the system can be more
problematic than beneficial (e.g., some drivers may have to pay
excessive attention to the CAAS system to prevent unwanted
warnings/interventions, causing an increase in driver workload)
[23].

The primary purpose of the lane departure CAAS is to
prevent road departures (maximize vehicle safety). However,

6Loosely speaking, a hortatory system advises and encourages decision-
makers rather than explicitly controlls their decisions. Thus in a hortatory
system a decision-maker retains autonomy.

Fig. 2. Decomposition of consequences and values.

since unwanted warnings and interventions incur a cost to the
driver (they compromise driver autonomy which can affect
driver patience, comfort, attention, and acceptance of the
CAAS), counterbalancing considerations should minimize un-
warranted warnings and interventions. To account for these two
attributes it is useful to create numerical representations of both
safety benefit and driver cost. We operationally refer to these
numerical representations asaccuracy, meaning conformity
to the fundamental design objective of increasing safety, and
liability , meaning exposure to the undesirable consequences of
impeding driver autonomy, respectively.

We have thus decomposed the consequences of invoking a
CAAS action into an accuracy attribute and a liability attribute.
The utilities (or, more precisely, utility and inutility) are then
represented by numerical accuracy and liability functions. In
Appendix I-B, we obtain a two-factor structure of these func-
tions by taking the expected value of a more general function.
This structure includes both thevaluation, which means either
safety payoff or driver cost and which is denoted by ,
of the CAAS action, as well as thelikelihood, which means the
probability of effecting the corresponding consequence given
and which is denoted by . The result is the following:

expected valuation valuation likelihood

(2)

Thus we have not only decomposed the consequences of
warning or intervening into accuracy and liability attributes, we
have also decomposed these attributes into valuation-likelihood
components. This decomposition is beneficial because it
facilitates the systematic specification of utility functions. This
decomposition is diagrammed in Fig. 2 which corresponds to
Fig. 3 from Section IV wherein the functions obtained from
measurements are presented.

D. Action Selection

To make a decision, the TLC estimate, accuracy function,
and liability function are determined and passed to the deci-
sion logic. We are looking to characterizevalues that justify
CAAS actions. The decision logic is based on two principles:
a burden of proof concept similar to cost–benefit (liability–ac-
curacy) analysis, and a search through alternative CAAS ac-
tions to compare the value of a warning against the value of an
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Fig. 3. Expected valuations as a function of decision and TLC—compare
Fig. 2. (a) Expected safety enhancement (accuracy) attribute from valuation
and likelihood. (b) Expected driver cost (liability) attribute from valuation and
likelihood.

intervention. The “burden of proof” concept means that likely
safety enhancement must outweigh the likely cost to driver au-
tonomy, and is used to determine which CAAS actionsshould
be performed (when proof is sufficient to justify action). In
other words, the likely safety enhancement must be compelling
enough to justify the likely cost to driver autonomy. The dom-
ination concept means that some CAAS actions should not be
done because other CAAS actions exist which provide greater
safety enhancement with less cost to driver autonomy, and deter-
mines which CAAS actionsshould notbe performed (because
an alternative CAAS action is superior).

III. STRONGLY SATISFICING DECISION THEORY

In the previous section, we introduced principles that influ-
enced CAAS design and operation. From these principles, we
distilled the burden of proof and domination concepts as the
principles of rational decision making in the tradeoff between

safety and comfort. These principles of rationality can be for-
mally described by satisficing decision theory. In this section,
we review a theory of strongly satisficing decisions that places
satisficing in a multiattribute, comparison-based mathematical
framework that precisely characterizes all decisions that qualify
as satisficing. Throughout this section, we use the termsdeci-
sionandaction interchangeably, though it is more proper to re-
tain the termdecisionto include bothaction, meaning a poten-
tial solution to the problem of determininghow to behave, and
proposition, meaning a potential solution to the problem of de-
terminingwhat to believe.

A. Satisficing Decisions

Simon [45] addressed the issue of limited or bounded ratio-
nality by defining anaspiration level, such that once this level
is met, the corresponding solution is deemed adequate, orsatis-
ficing. The essence of satisficing is comparison but, by contrast
to Simon’s search-based notion, satisficing can be formalized
in a multiattribute decision theory wherein attributes are com-
pared to determine justifiable decisions. For the special case of
two-attribute problems with one attribute representing the fun-
damental purpose of seeking a solution and the other attribute
representing proximate considerations in reaching this solution,
the satisficing decision principle is appropriate.

1) Practical Decision Making:Generally, actions cannot be
characterized appropriately as being true or false, but may admit
functional characterizations instead, such as degree of appropri-
ateness or inappropriateness, expensiveness or inexpensiveness,
etc. These characterizations will be determined by the condi-
tions and environment of the decision problem. SSDT was de-
veloped as an extension of Levi’s epistemic utility theory [31]
to practical problems involving independent benefit and cost
attributes [18], [19]. In SSDT, actions are characterized by an
accuracy valuation and aliability valuation . To form a
systematic design procedure, it is necessary to give operational
definitions to characterize these notions.

Accuracy: conformity to a standard. In cognitive con-
texts the standard is factuality. In practical contexts, the
standard corresponds to the fundamental goal or objective
relevant to the problem, and accuracy corresponds to the
degree of success in achieving that goal.

Liability: susceptibility or exposure to something un-
desirable. In practical contexts, undesirable consequences
may be manifest in the form of costs or other proximate
penalties that would accrue simply as a result of taking the
action. This cost is quantified in the liability function. Re-
jecting consequences with high liability improves the set
of possible actions.

The fundamental purpose of designing a CAAS is to increase
safety; for human–CAAS systems, the safety of the system is the
basis for accuracy, and corresponds to the degree of success
the CAAS has in achieving this goal. However, CAASs can in-
terfere with driver autonomy; the cost to driver autonomy is the
basis for liability, and corresponds to the degree to which
the CAAS interferes with driver autonomy. By defining these
two attributes of the CAAS system, we have encoded both the
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TABLE I
SUMMARY OF ACCURACY AND LIABILITY CONCEPTS

need to achieve the system’s purpose (safety), and the desire to
consider the cost of action to the driver (autonomy). In practical
terms, the CAAS system should go unnoticed by the attentive
driver, but help the inattentive driver. These objectives trans-
late into design criteria of retaining driver autonomy while si-
multaneously increasing system safety. A summary of concepts
related to accuracy and liability, including the human–CAAS
system design proposed in this paper, is presented in Table I.7

2) The Satisficing Decision Rule:Using Levi’s error avoid-
ance principle, SSDT provides a method by which the accuracy
and liability attributes can be merged:to avoid error, a decision
maker eliminates those decisions which are more liable than
accurate. Although the attributes used in the decision process
employ utility-like structures obtained from ordering the con-
sequences of an action, each potential action is evaluated on its
own merits without comparing it to other decisions; i.e., actions
are not selected as a function of search, but rather as a func-
tion of detecting particular environmental conditions. For the
lane departure system example, an action is satisficing if it con-
tributes to driver safety more than it interferes with the driver’s
autonomy. By so formulating the problem, the burden of proof
is placed on the automation system:to invoke a CAAS actions,
the predicted safety enhancement must be compelling enough to
justify the cost to the driver’s autonomy.

Formally, let denote the set of possible decisions or actions,
and let denote the states of nature. For each decision
and for each state of nature , a consequence results which
is the effect of making decisionwhen nature is in state. The
accuracy and liability set
membership functions are preference relations defined for each
consequence (i.e., action/state-of-nature pair).

In SSDT, the set of all decisions which cannot be justifi-
ably eliminated is called thesatisficing set. The comparative na-
ture of this rule can be identified (using one of the methods of
set-valued maximization or fuzzy logic in [18] and [19], respec-
tively) via the following equation:

(3)

where is termed the rejectivity index. Since and are con-
structed independently, the rejectivity serves not only as a rela-
tive weighting, but also as a scaling factor which guarantees that
the functions representing the two attributes are comparable.
(See Section IV-E for a discussion of howis used to represent
driver-dependent preferences for this relative weighting.) Given
(3), we can restrict attention to those states of nature which are

7For some problems, it is possible, useful, and perhaps essential to describe
the consequences of a decision using two attributes, provided a suitable method
for merging these attributes can be found. As evidence to this claim, we cite the
engineering design examples in [18], [19], the usefulness of cost–benefit anal-
ysis, and the importance and success of multi-attribute utility theory in decision
analysis [54].

satisficing for a given , and those controls which are satisficing
given the state of nature respectively defined as

B. Strongly Satisficing Decisions

Although the set contains all possible actions that are legit-
imate candidates for adoption, they generally will not be equal
in overall quality. For example, two satisficing actions may have
similar accuracy values (i.e., be equally safe) but have signifi-
cantly different liability values (i.e., one costs the driver more),
and implementing the one with the lower liability will yield es-
sentially the same safety results with lower cost to the driver.
Thus we are motivated to further refine the set of satisficing ac-
tions. For every let

and

and (4)

and define the set of actions that arestrictly betterthan (i.e.,
set of actions that dominate)

(5)

that is, consists of all possible actions that are less
liable but not less accurate than, or are more accurate but not
more liable than . If , then no actions can be
preferred to in both accuracy and liability, andis a (weakly)
nondominated8 action with respect to. The set

(6)

contains all nondominated actions. The intersection of this set
with the satisficing set yields thestrongly satisficingset

(7)

From the strongly satisficing set, we can define the support of
decision as those states of nature for whichis strongly sat-
isficing

support (8)

8The domination principle and the satisficing principle are independent
notions. For some problems, the satisficing principle can be applied without
using the domination principle (such as in time-constrained decision making),
whereas in multiattribute utility theory only the domination principle is
applied. In design problems that employ cost and benefit attributes, we propose
incorporating both principles when possible.
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This set is the key to systematically identifying those conditions
which justify the application of a CAAS action.

C. From Theory to Practice

The theoretical foundation developed in this section allows us
to identify the following design steps that can be used in system-
atically producing human-centered response automation. First,
a problem must be identified wherein automation is a candidate
for increasing safety. Second, possible solutions to the problem
need to be identified. Third, attributes of the consequences of
including automation must be identified, including the funda-
mental attribute of increasing safety and its companion attribute
of respecting driver autonomy. Fourth, functions must be iden-
tified that have structures which reflect attribute characteristics.
Fifth, given these structures parameters must be estimated using
careful human factors measurements and engineering analysis
of sensor and controller characteristics. Sixth, the resulting ac-
curacy and liability functions should be compared to determine
when evidence is sufficient to justify invoking one or more of
the CAAS alternatives, and alternatives should be compared to
eliminate actions which are dominated by other actions. Given
the resulting design, TLC must be estimated and CAAS actions
invoked, possibly adapting to driver desires and characteristics.

IV. CASE STUDY CONTINUED: FROM MEASUREMENTS TO

VALUES TO ACTIONS

We are now in a position to identify the accuracy and liability
functions which, in turn, will be used to determine when warn-
ings should be issued and interventions should be invoked. Iden-
tifying these functions is an exercise that includes both human
factors and engineering analysis. Selecting appropriate function
structures and estimating appropriate function parameters both
depend on this analysis. Function selection follows the decom-
position process diagrammed in Fig. 2 to produce the functions
shown in Fig. 3. In this section, we select function structures that
reflect the objective of comfortably promoting safety, and then
develop parameter estimates using not only data obtained from
the literature, but also a careful analysis and simulation of a par-
ticular driver–system interaction. (These measurements are ob-
tained from a model of driver behavior described in [13].) Using
the resulting values, we design the decision logic for the lane
departure CAAS, and discuss how the safety/comfort tradeoff
should reflect individual driver preferences.

A. Determining Values: Choosing the Function Structures

The function structures for the accuracy and liability func-
tions are the same for both warnings and interventions. In this
section, we discuss how these structures can be chosen to reflect
the objective of comfortably promoting safety. Recall that accu-
racy and liability are defined completely independently. Conse-
quently, in deriving the accuracy function focus is placed exclu-
sively on safety, and in deriving the liability funciton focus is
placed exclusively on driver autonomy. Also recall the general
form (2) where .

1) Accuracy: The accuracy function should embody the de-
sign objective of promoting safety. The accuracy valuation is

based on the desire to “prevent road departures for the largest
possible set of departure conditions” [29, p. 68]. The function

(9)

which is illustrated in Fig. 3(a), represents the safety enhance-
ment payoff for doing action when TLC equals . The fol-
lowing factors, depicted in their function form in the bottom
plots in Fig. 3(a), determine the accuracy.

• Valuation: Warnings or interventions are beneficial only
if they are issued early enough for the driver/vehicle to re-
spond to them. Therefore, the payoff for a CAAS action
increases as TLC increases whence an appropriate mono-
tonically increasing function is required. We use the linear
function depicted in the bottom left plot of
Fig. 3(a) to represent this characteristic because the time
available (for the driver in the case of a CAAS warning,
and for the controller in the case of a CAAS interven-
tion) to realign the vehicle with the road increases approx-
imately linearly with TLC.

• Likelihood: As TLC increases, the relevance of the
CAAS action to the immediate vehicle state decreases.
This implies that the CAAS action is less likely to effect
driver/vehicle corrective behavior and this, in turn, implies
that the likely safety enhancement decreases. Therefore,
the likelihood of producing the desired safety-enhancing
consequence should be represented by monotonically
decreasing function. We use the exponentially decaying
function depicted in the bottom
right plot of Fig. 3(a) to represent that the likelihood that a
CAAS action will enhance safety decreases exponentially
as TLC increases.

2) Liability: The liability function should embody the
design objective of avoiding interfering with driver autonomy.
Clearly, warning a driver or intervening in vehicle control are
undesirable if done too early because early CAAS actions
imply more “false warnings and unwanted interventions” [29,
p. 68] thereby interfering with driver autonomy by demanding
attention. The function

(10)

which is diagrammed at the top in Fig. 3(b), represents the cost
to driver autonomy for taking actionwhen TLC equals . The
following factors, depicted at the bottom of Fig. 3(b), determine
the liability.

• Valuation: A standard quadratic cost function is chosen
to represent the cost of early warning and intervention in-
dependent of lane departure concerns [23]. The quadratic
cost indicates that the cost of interfering with driver be-
havior rapidly increases with TLC due to the fact that ac-
tions taken long before a lane departure will occur much
more often and be less helpful to the driver. This indicates
that early CAAS actions (those issued at large TLC values)
interfere with driver performance more than later actions
(those issued at small TLC values). The term

depicted in the bottom left plot of Fig. 3(b) repre-
sents this factor.
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TABLE II
ACCURACY AND LIABILITY VALUES.

• Likelihood: The likelihood of interfering with driver au-
tonomy requires information about false alarms. The like-
lihood depends on the CAAS system false-alarm rate for
the attentive driver whence where
is the likelihood of false alarm. Intuitively, because pre-
dictions of future driving state and driver behavior be-
come more uncertain as the prediction horizon increases,
the probability of falsely predicting a lane departure and
thereby interfering with driver autonomy approaches cer-
tainty as TLC increases whence approaches unity.
This is illustrated in the bottom right plot in Fig. 3(b).

B. Determining Values Continued: Estimating Function
Parameters

In this section, we discuss parameter selection for accuracy
and liability functions for both warnings and interventions. We
identify parameters using not only observations reported in the
literature, but also careful analysis and simulation of a model
of driver behavior and a description of a CAAS intervention
controller. Because we wish to allow for a decision logic which
can account for various drivers, the parameters should be chosen
as general as possible. The accuracy and liability parameters
obtained from careful simulations and analysis are summarized
in Table II.

An important issue that deserves attention is the variation of
the parameters and because values and, consequently, deci-
sion thresholds are determined by these parameters. The prin-
cipal functions of the parameter are to determine not only
the timing when a warning/intervention is maximally accurate
but also the relative accuracy of such behaviors. The principal
function of the parameter is to determine the relative liability
of warnings versus interventions. Sensitivity to these parameter
values can only be determined by designing a CAAS and testing
the system with human subjects (we illustrate how such tests
can be used to selectand in our simulation study). We thus
leave this area for future research, but note that some informa-
tion about sensitivity can be obtained by comparing the param-
eter values distilled from the human factors literature to those
values obtained from the simulation study.

1) Accuracy of Warnings:The accuracy of a warning should
be maximum at that value ofwhich gives the driver time to es-
timate the current state and control the vehicle to the lane center.
The key to determining is to note that the maximum value
of occurs when . From the literature, Evans
indicates that most drivers respond to an unexpected driving
situation within an interval of 1.5 and 4.0 s, with an average
value of 2.5 s [6, p. 121]. The value of (implying

) is chosen as a rough estimate because the warning
will best accomplish its purpose (for most drivers) if signaled at
4 s before lane crossing. Thus independent of liability, the ac-

curacy (represented by the solid line in Fig. 3(a)
achieves its maximum at .

Using careful simulation and analysis, the likely response
characteristics of a driver can be determined by the time re-
quired to estimate the current lane position, denoted( for
observation), and the time to steer the vehicle to the lane center,
denoted ( for control). These characteristics determine the
decay rate and, consequently, the maximum of .
The control time is defined9 as the time required to steer the
vehicle from an initial state at the lane boundary
(according to the road and car dimensions in Appendix I-A) to
the center of the lane in the absence of process
or measurement noise. Using simulations presented in [13], a
first-order estimate of 1.2 s is obtained. The observer time

is defined as the time required for the observer to converge
from an initial estimation error equal to the lane crossing dis-
tance to zero estimation error

in the absence of control(i.e., for
all time). Using simulations presented in [13], a first-order esti-
mate of 2.2 s is obtained. Example time histories of these
tasks, obtained from a model of driver behavior [13], are shown
in Fig. 4. Accuracy is maximized when the decay parameter is
set to . In words, a warning is most accu-
rate if it gives the driver seconds to estimate the state of the
vehicle and seconds to control the vehicle.

2) Accuracy of Interventions:The intervention accuracy
should be maximum at that value ofwhich gives the CAAS
controller time to control the vehicle to the lane center whence,
for intervention, the same factors determine the shape of

[represented by the dashed line in Fig. 3(a)] but
and, hence , must be determined. Two constraints

dictated by human factors influence the value of . First,
an intervention should not occur until some time after the
warning occurs, giving a driver a chance to react to the warning.
Second, an intervention should occur early enough to allow
the intervention controller to smoothly and safely intervene
(actuator time constant). From the literature, a rough estimate
of (implying 2 s) indicates that the
intervention will best accomplish its purpose if applied at 2 s
before lane crossing and 2 s after warning .

Using careful simulation and analysis, the intervention
accuracy should be maximum at that value ofwhich gives the
CAAS controller time to control the vehicle. Since the CAAS
controller is fully attentive, only controller time is relevant
( since the sensors continually monitor the road).
This yields a decay parameter of , which gives
maximum intervention accuracy at , where we have
bounded the performance of the intervention controller by the

9Alternatively,t can be defined as the time it takes for the driver to cause
TLC to reach infinity (no movement toward lane boundary). This measurement
indicates that the vehicle is again under attentive driver control and assumes that
the driver is not engaged in unstable steering oscillations.
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Fig. 4. Convergence times: time to control vehicle from lane edge (100% error) to lane center, and time to observe true vehicle state from lane width error (100%
error) to zero. Data were obtained from a model of skilled driving behavior.

estimates of driver behaviors (the CAAS controller should be
at least as responsive as a driver).

3) Liability of Warnings: From the literature, the nominal
value yields a warning threshold consistent (for

, see Section IV-E) with those derived from the subjective
driver preferences reported in [30], [29]. Note that this param-
eter is approximately driver-independent since it is determined
for the “average” driver.

Using careful simulation and analysis, we can set
equal to unity since only the ratio needs to be
specified.10 The false alarm probability is defined as the likeli-
hood of predicting (and thus invoking a CAAS
action) when in fact (and thus no CAAS action
is warranted). This yields the cumulative distribution function

and

In the bottom right plot of Fig. 3(b), the line represents the em-
pirical cumulative distribution function for false TLC prediction
under the conditions described in [13].

4) Liability of Interventions: Clearly,
sets the cost of an intervention times higher than the cost
of a warning. From the literature, produces an interven-
tion threshold that agrees with those derived from the subjective
driver preferences reported in [30], [29]. Careful measurement
of must be determined by experiment with human subjects.
Such an experiment was beyond the capabilities of the driver
model, and performing an appropriate experiment with human
subjects is beyond the scope of this paper. For the results re-
ported using careful simulation and analysis, we subjectively
set .

10To see this, observe that forb = b�(u ) thenS = S . Thus we set
�(u ) equal to unity, and determine�(u ) in relation to unity.

C. Action Selection

To make a decision, accuracy, liability, and the TLC estimate
are determined and passed to the decision logic. The decision

logic is based on two principles: the burden of proof concept
(i.e., the satisficing principle), and the domination principle.
In words, we use the “burden of proof” principle to determine
when CAAS actionsshouldbe performed (when proof is suf-
ficient to justify action), and the domination principle to deter-
mine when CAAS actionsshould notbe performed (because an
alternative CAAS action is superior). The burden of proof can
depend on the individual driver preferences whereas superiority
depends on system design. As will be shown in the next section,
this is a desirable property for systems which should be adapted
to individual driver preferences (or, in the more general automa-
tion case, specific operator preferences).

1) Burden of Proof: To determine the thresholds and
below which warnings and interventions are respectively issued,
we must compare the accuracy against the liability. When ac-
curacy exceeds liability then safety interests outweigh costs to
driver autonomy and a CAAS action should occur. To perform
such a comparison, we must ensure that the accuracy and lia-
bility valuations are comparable. We do this via the parameter
that allows us to adjust the relative value of safety to autonomy
and thereby adapt to individual differences. The critical TLC
values (defined as those values that delineate the region between
satisficing and nonsatisficing CAAS actions) occur when accu-
racy and liability are equal, which happens when the accuracy
and liability functions (see, for example, the diagrams in Fig. 5
which represent the accuracy and liability functions with pa-
rameters selected using observations reported in the literature)
intersect

(11)

(12)
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Fig. 5. Application of decision principles. (a) Satisficing, or burden of proof, implies that a warningu is justified only if � � b� which occurs when
� � � , and (b) domination implies thatu is justified only if� (u ; �) � � (u ; �) (in this case,� (u ; �) > � (u ; �) for all � whenceu is not
dominated byu only when� (u ; �) � � (u ; �)) which occurs when� < � . The function parameters in these figures are obtained from observations
reported in the literature.

For (to the left of the intersection value), accuracy ex-
ceeds liability and, hence, the warning action should be invoked.
For (to the right of the intersection value), liability ex-
ceeds accuracy and, hence, the warning action should not be
invoked. A similar argument holds for interventions in relation
to . In Fig. 5(a), the accuracy of exceeds the liability for

2.03 s. Thus the region of support for warning and
intervention is delineated by

The accuracy of exceeds the liability for all 1.01
s. Note that for many drivers, 2.03 s is within the range
of normal operation.

2) Eliminating Inferior Alternatives:Since, in general,
warnings will always be less invasive than interventions,
attention should be restricted to liability functions defined such
that for all . We ensured this
by setting for . Additionally, warn-
ings more effectively promote safety for large TLC whereas
interventions more effectively promote safety for small TLC.
Clearly, if there are TLC measurements for which warnings not
only promote safety more than interventions, but are also less
invasive than interventions, then interventions are not useful.
The critical value (defined as the value that delineates the range
of nondominated CAAS actions) can be identified as
that value for which intersects . For the
accuracy and liability valuations shown in Fig. 3, this critical
value occurs at the intersection of the two accuracy functions

(13)

For both warning and intervention actions are permis-
sible since neither CAAS actions is obviously superior, but for

only warning is permissible since it has both lower

liability and higher accuracy than does intervention (i.e., an in-
tervention is dominated by a warning) whence

D. Critical Thresholds

Critical thresholds are defined via the strongly satisficing set
using (11)–(13) as

(14)

(15)

and the regions of support are defined as those TLC measure-
ments which invoke a CAAS response, and are given by

support

support

Results for parameters obtained from the literature are shown in
Fig. 6(a), where and , represented by the solid and dashed
lines, respectively, are plotted as functions of. When , the
resulting decision thresholds agree with those reported in [30],
[29]. The two horizontal dotted lines indicate the two critical
values of for a nominal value of , which is represented
by the vertical dotted line. For this value of, the resulting values
for and coincide with those values proposed in [30], [29].
Observe that the curve becomes constant for values less than
about . This occurs because warnings dominate inter-
ventions for .

Given the accuracy and liability functions obtained from
careful analysis and simulation of a driver model, the critical
values of are identified and plotted as a function ofin
Fig. 6(b). Note that intervention occurs only when the time
to lane crossing is less than 1.57 s. Thus no interventions
can occur unless the system predicts, via (16) and (17) in
Appendix I-A, that the driver will leave the lane within about
one-and-a-half seconds.
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Fig. 6. Critical times for warning and intervention as a function ofb for (a) rough estimates and (b) driver model data. Theb parameter is a driver-dependent
measure of the subjective disposition toward accepting assistance from the warning/intervention system.

E. Driver Dependence

The accuracy and liability functions have been identified in
a careful analysis presented in the previous sections. This anal-
ysis has assumed that all drivers exhibit a similar value structure.
However, it is desirable to allow the resulting decision thresh-
olds to depend upon individual driver preferences. This can be
done by adjusting the relative importance of comfort and safety
by adapting and thereby allow for individual differences in the
way drivers interact with a system such as a CAAS.

A nominal value for can be experimentally determined as
follows. For any value of there exist critical thresholds and

, and for each and there is a probability of falsely pre-
dicting a lane departure as specified by and . By
specifying an acceptable false-alarm rate, a corresponding re-
jectivity can be determined. For example, based on the driver
model, a rejectivity of yields 0.76 s and
0.61 s, corresponding a 6.9% chance of falsely warning an at-
tentive driver and a 3.7% chance of falsely intervening, respec-
tively.11 Thus the likelihood that an attentive driver will receive
a false CAAS action is small, but not negligible. The likelihood
of false alarm can be reduced, but at the expense of decreasingly
smaller warning and intervention times.

Ideally, the decision logic should not only allow for variations
in (and permit adaptation to) individual driver preferences, but
should also adapt to changing situations (when, for example,
drivers are navigating a sequence of difficult curves wherein
they accept TLC values lower than those acceptable in nom-
inal straight-lane driving) and allow for situation-adaptive au-
tonomy [25], [24], [26], [27]. This can be done by adjusting the
rejectivity as a function of the driver’s disposition or judg-
ment. If there are drivers for whom a nominalvalue is inap-
propriate (which may be the case when, for example, typical
environmental conditions are substantially different from those
which determined the false-alarm rate and, therefore, the nom-

11These percentages appear high, but should be interpreted against the base
rate of times when TLC drops below critical thresholds for a real driver rather
than for the driver model.

inal value of ) , then the experimentally determined nominal
value can be (slightly) adjusted to conform to their individual

preferences. At one extreme, drivers who do not want the CAAS
system to be a factor can be accommodated by letting .
For these drivers, the strongly satisficing set is empty unless

. At the other extreme, drivers who, for the sake of
safety, do not mind frequent interventions or continuous warn-
ings can be accommodated by letting . These drivers
receive a constant warning (since ), but no interven-
tion unless (since ). A similar reasoning
can be employed to adjust the system to changing driving con-
ditions (such as sensor noise, weather, traffic density, narrow
road shoulder width, etc.), or to adjust the system to important
operator-specific tolerances.

Two observations are worth noting: a) because the decision
rule is set-valued, it is possible that both warning and interven-
tion can occur simultaneously and b) there is a graded sequence
of CAAS actions which increase in severity as the observed TLC
decreases (a warning is less severe than an intervention). These
observations are consistent with the design principles advocated
in [23] which call for a gradual increase in the severity of warn-
ings (which is a form of the coordination of multiple warnings).
Potentially, these observations are compatible with the desire to
develop a system which adapts to changing environments, in-
cluding situation-adaptive autonomy. The problems of how and
when to adapt the CAAS system and which measurements are
most effective in guiding adaptation are important areas of fu-
ture research.

V. CONCLUSIONS

In this paper, we described a plausible design process to pro-
duce human-centered collision and accident avoidance systems
(CAASs). Within this design process, both safety-enhancing at-
tributes as well as autonomy-inhibiting attributes must be identi-
fied (either explicitly, as we have done, or implicitly using sound
“engineering judgment”). These attributes should be compared
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Fig. 7. Predicting TLC. (a) Predected position (�"̂(t) is measured counterclockwise from vertical), and (b) lane departure position. In the figure, the relative
widths of the vehicle and the road have been distorted to facilitate the definition of parameters; the dashed line denotes the center of the lane and should not be
confused with the dashed line which separates lanes on real two-lane roads.

to tradeoff between these two competing design requirements
and thereby produce a CAAS that comfortably promotes safety.

It appears that in systems designed to comfortably increase
operator safety, tradeoffs are frequently handled by setting intu-
itively obtained thresholds. Fortunately, this intuitive design ap-
proach can be formalized and, consequently, systematized using
strongly satisficing decision theory. Rather than arbitrarily ag-
gregating safety-enhancing and autonomy-inhibiting design cri-
teria into a single performance valuation and then extremizing
this valuation, these two criteria should instead be translated
into two independent numerical attributes which are compared
to determine when CAAS actions are appropriate. This com-
parison places the “burden of proof” on the automation system,
and requires that evidence be compelling enough to justify the
cost to operator autonomy. This comparison and the selection
of dominating actions determine which set of CAAS actions
are appropriate for the observed environment. The flexibility of
the resulting design methodology motivates future research ef-
forts to a) apply the principles of situation-adaptive autonomy
to such systems, b) coordinate multiple automated actions; i.e.,
determine conditions which describe when an action can be
safely combined with other actions, and c) continue exploring
theory-based models of human driving behavior that include
how humans react to the introduction of automated systems
[15].

APPENDIX I

A. Model of Vehicle Dynamics

Assuming that the driver does not change steering angle, a
simple TLC estimation scheme can be performed in the three
following steps.

a) The current state of the vehicle can be estimated using an
observer operating on the vehicle system described by a
dynamics equation with state (see Fig. 7)

and the elements of this vector are defined as follows:
is the lateral distance between the vehicle center of gravity
and the center of the lane, , is the yaw angle
of the vehicle body, is the desired yaw angle set by the
road, , is the front wheel steering angle,is the
road curvature, and denotes time differentiation. A de-
scription of a useful dynamics model and corresponding
optimal observer is subsequently provided.

b) The predicted lateral position of the vehicle at time
can be obtained by assuming that the driver maintains
current steering angle and by using the current estimates

and as follows12 [Fig. 7(a)]:

(16)

c) The smallest such that exceeds a fixed value
(the lane boundary) is the TLC estimate. In Fig. 7(b)
the vehicle and road are diagrammed. The dashed line
respresents the lane center, and the distance from this lane
center to the center of the car is the lateral lane position

. The dotted line is plotted at a distance of one-half of a
vehicle width from the lane boundary. If the center of the
car crosses the dotted line, then the edge of the car leaves
the lane. Thus for a road width of 3.65 m, a portion
of a 1.45 m wide vehicle has departed the lane if its

12This estimate holds for sufficiently small�t. For the simulations presented
in [13], V �t = 0.25 m which is much smaller than the average curve length of
25 m.
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lateral deviation exceeds 1.1 m. Formally,
the time to lane crossing is defined as

(17)

The dynamics of steering can be estimated by a linear system
given by

(18)

where , and the elements of this
vector are defined as follows: is the lateral distance between
the vehicle center of gravity and the center of the lane,

, is the yaw angle of the vehicle body, is the desired
yaw angle set by the road, , is the front wheel steering
angle, is the road curvature, anddenotes time differentiation.
The vehicle parameters are given by

where is the vehicle speed and where the’s and ’s are
defined as follows:

and are the distance from center of gravity to the front and
rear axles, respectively, and are the cornering stiffness
of the front and rear tires, respectively, and where the output
is observed from the state vectorvia the mapping

The numerical values used int he simulation were obtained from
[52], and velocity was set to 25 m/s.

B. Mathematical Structure of the Decision Problem

In this appendix, we develop the necessary decision theo-
retic foundation to justify our derivation of accuracy and li-
ability evaluations. In designing CAAS systems, we are con-
cerned with how actions will affect safety and driver autonomy.
Thus we restrict our attention to a two-attribute consequence set

where represents the consequence to driver
autonomy and represents the consequence to safety. The au-
tomated safety-enhancing system attempts to minimize the cost
to operator autonomy while simultaneously maximizing safety.
We associated with the consequences wherein we

value a CAAS action because it promotes safety. However, con-
siderations of driver autonomy induce us to consider the cost of
invoking a CAAS action (or, equivalently, the benefit of not in-
voking a CAAS action). Thus we associate with the
consequences wherein we value CAAS inaction because it
interferes with driver autonomy (the payoff for correct inaction).

1) Accuracy: From a strictly safety-enhancement perspec-
tive, whenever inaction leads to a lane departure then invoking
a CAAS action is correct, and whever action causes a lane depar-
ture then the action is incorrect. The designer must determine the
consequences and probability of incorrect actions. If the impact
and the probability is high then no CAAS action will ever be jus-
tified. Clearly, the impact of invoking a CAAS action that will
cause a lane departure (taking incorrect action where inaction
would have been safe) is significant. However, a reliable CAAS
action will never cause a lane departure (e.g., a warning will
never cause the vehicle to swerve off the road, and an interven-
tion will never cause a lane departure) except through the mit-
igating consequence of interfering with driver autonomy. Thus
any cost for falsely invoking a CAAS action is appropriately as-
signed to the cost for interfering with driver autonomy. Thus the
payoff for taking action can be entirely determined by the safety
benefit that will result; i.e., any CAAS action has nonnegative
safety payoff.

The precise utility of the action depends on a) the probability
that the action will produce nominal consequences (no lane de-
parture) given the current driving state and b) the safety payoff
that accrues assuming that the action produces nominal conse-
quences. Recall that a consequence is a function of action and
driving state . The probability that action produces safe
(nominal) consequences given the current state is
given by where is the random
variable

if
otherwise.

The payoff of an action is the increase in safety that results from
taking action, and this is denoted by . Combining these
factors gives

(19)

Taking the expected value of (19) with respect to the probability
of state given observation and assuming, for simplicity, dis-
crete states, yields

(20)

Within the scope of this paper, we assume that
where is a delta function; this is equivalent to assuming that
our observation precisely determines. Given this assump-
tion, (20) becomes

(21)

where the observation equals the time to lane crossingand
is the likelihood that CAAS action will produce

accurate (i.e., nominal or safe) consequences given.
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2) Liability: From a strictly driver-autonomy perspective,
whenever action interferes with driver autonomy then invoking
a CAAS action is incorrect, and whenever action does not inter-
fere with driver autonomy then invoking a CAAS action is cor-
rect. The liability function encodes the cost of incorrect CAAS
action. Since all CAAS actions impact driver autonomy, any
CAAS action has nonnegative driver cost.

The precise cost of the action depends on a) the probability
that the action will produce fault consequences (effectual inter-
ference with driver autonomy) and b) the interference cost that
accrues assuming that the action produces fault consequences.
The probability that the action will interfere with driver au-
tonomy is tantamount to the probability that the driver perceives
a CAAS action as irrelevant to the current circumstances. Re-
call that a consequence is a function of action and driving state

. The probability that action produces interference (fault)
consequences given the current state is given by

where is the random variable

if
otherwise.

The cost of an action is the increase in interference that results
from taking action, and this is denoted by . Combining
these factors gives

(22)

Taking the expected value of (22) with respect to gives

(23)

Within the scope of this paper, we assume that
where is a delta function; this is equivalent to assuming that
our observation precisely determines. Given this assump-
tion, (23) becomes

(24)

where the observation equals the time to lane crossingand
is the likelihood that CAAS action will produce

liable (i.e., fault or interfering) consequences given.
3) Summary:Equations (21) and (24) have the form identi-

fied in (25)

expected valuation valuation likelihood

(25)

wherevaluationmeans either driver cost or safety payoff, re-
spectively, andlikelihoodmeans the likely consequences given
the measured time to lane crossing.
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