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Abstract. Autonomous systems, although capable of performing complicated
tasks much faster than humans, are brittle due to uncertainties encountered inmost
real-time applications. People supervising these systems often rely on information
relayed by the system to make any decisions, which places a burden on the system
to self-assess its proficiency and communicate the relevant information.

Proficiency self-assessment benefits from an understanding of how well the
models and decisionmechanisms used by robot alignwith theworld and a problem
holder’s goals. This paper makes three contributions: (1) Identifying the impor-
tance of goal, system, and environment for proficiency assessment; (2) Completing
the phrase “proficient ‹preposition›” using an understanding of proficiency span;
and (3) Proposing the proficiency dependency graph to represent causal relation-
ships that contribute to failures, which highlights how one can reason about their
own proficiency given alterations in goal, system, and environment.
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1 What is Proficiency Assessment?

Proficiency assessment can be operationally defined as the ability to detect or predict
success (or failure) towards a goal in a particular environment given an agent’s sen-
sors, computational reasoning resources, and effectors. Ideally, proficiency assessment
approaches need to work a priori, in situ, and a posteriori. Different levels of self-
assessment include (a) detecting proficiency (success or failure), (b) assigning a profi-
ciency score (quantification of likelihood of success or degree of failure), (c) providing
explanations (reasoning behind the outcome i.e., success or failure), and (d) predict-
ing proficiency, which will allow intelligent systems to make informed decisions about
their ability to accomplish tasks based on previous outcomes and their explanations.
Communities in both computer science and robotics have addressed questions related to
proficiency self-assessment. These include introspection [1–3], monitoring system per-
formance [4, 5], robustness to uncertainties [6, 7], to name a few. However, much work
is needed to address more in-depth levels of proficiency self-assessment adequately.

This paper presents initial ideas and frameworks for reasoning about proficiency
self-assessment. Proficiency must be defined relative to the following: (i) Goals: desired

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
M. Zallio (Ed.): AHFE 2020, AISC 1210, pp. 108–113, 2021.
https://doi.org/10.1007/978-3-030-51758-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51758-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-51758-8_15


Self-assessment of Proficiency of Intelligent Systems 109

outcomes of the task that the intelligent agent should reach in a finite amount of time or
during long-duration missions; (ii) Environments: world settings in which the intelligent
agent operates; and (iii) System Configurations: sensors, actuators, and computational
resources that are available to the agent. This paper identifies a causal relationship
between these three categories and the mechanisms and models used by AI algorithms
to make decisions. The paper is limited to in situ aspects (during runtime) of simple
detection of proficiency, i.e., whether an agent’s actions and the resulting states take it
closer towards the desired outcome of the task.

2 Span of Proficiency Self-assessment

Because proficiency depends on the environment, system, and goal, we propose that
proficiency assessments should explicitly assert the span for which proficiency applies.
We propose that a way to think about span is to consider the following statement:

An agent is proficient ‹preposition›, where the ‹preposition›, is used to indicate the
span or scope of the assessment.

Table 1 proposes a relationship between proficiency span and a representative prepo-
sition. The entries of the table represent the instances of variation of these properties
(Goal, System, and Environment) over an enumerated set. A “1” in the table indicates
that proficiency is defined with respect to a specific goal, specific system, or specific
environment, whereas “>1” indicates multiple goals, systems, or environments.

Table 1. Span of proficiency self-assessment

Goal System Environment

At 1 1 1

Within 1 >1 >1

Across >1 1 1

Over >1 >1 >1

We recognize that the selection of the prepositions is somewhat arbitrary, but we
believe the prepositions provide a common vocabulary for proficiency researchers – we
have been part of too many conversations where people were talking past each other
because of confusion about the way they were using the term proficient.

Proficient At: An agent is said to be “proficient at” a goal if it competently satisfies
the goal for a given system configuration and environment condition. Proficiency “at”
this level is the minimum requirement for an agent. The “1”s in each cell of this row
in Table 1 highlights that being proficient “at” something appertains only to a single
environment, system, and environment.

Proficient Within: Most systems are subject to uncertain and dynamic environmental
conditions or disturbances during the task. This is aggravated by uncertainties associated
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with the system itself, e.g., noisy sensors, failing effectors, time bounds on computation
processes. For a given goal, an agent is said to be “proficient within” a range of system
configurations and environment conditions. This is represented by the “>1” entries in
the “Within” row of the table.

For example, consider a physical robot system that can knowingly fail in three
different ways. Hence, for the agent to adequately assess its proficiency towards a goal in
the presence of system anomalies, 3! system configurations should be tested. Similarly,
an enumerated set of expected variations or changes to the environment is represented
by the “>1” entries in the Environment column.

Proficient Across: A system might be comprised of several subsystems working in tan-
dem, but each for their own individual goals. Or a single system might be capable of
pursuing multiple goals. “Proficient across” indicates that proficiency needs to be con-
sidered with respect to multiple goals, which is represented by the “>1” entry in the
“Across” row of the table.

Proficient Over: The “Over” row of Table 1 summarizes the span across which assess-
ment of proficiency should ideally hold. That is, an intelligent agent should be able to
assess its ability to competently satisfymultiple goals over a range systemconfigurations,
worlds and environment settings.

3 Proficiency Dependency Graph

In our approach towards self-assessment of proficiency, we adopt a proficiency depen-
dency graph (PDG). The graph has six vertices: V = (Outcome, Mechanism, Model,
World/Environment, System/Physical robot, Goal) as shown in Fig. 1. A directed edge
connects vertex A with vertex B if “ B depends on A.”

Fig. 1. Proficiency dependency graph for self-assessment

Outcome: The outcome vertex represents the evaluation of proficiency, including (a) a
binary assertion about whether the agent is proficient or not, (b) an indicator score about
the probability that agent can competently solve a problem, or (c) a degree or quality
level at which the task can be performed.
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Goals, Systems, Environments: The three vertices in the bottom layer represent condi-
tions about the world, system/physical robot, and goal(s) to be solved.

Mechanisms and Models: These two vertices refer to aspects of the algorithms used by
the agent to try to achieve its goals given its system and environment. For an intelligent
agent, we identify two aspects of algorithms critical to proficiency assessment: Mecha-
nisms and Models. These are represented as the two vertices in the second level of the
graph.

Both models and mechanisms represent assertions about how the agent solves a
particular problem. We operationally define a mechanism as a goal specification or set
of incentives that explicitly or implicitly encode a goal. Based on our definition, several
problem-solving techniques from literature can be thought of as “mechanisms”. For
example, classifiers often use classification accuracy or precision/recall, MDPs (Markov
Decision Process) use rewards, optimal control systems often use objective functions,
while planners often use temporal logics to specify a goal.

Models are assumptions made by the agent about (i) how the environment works,
(ii) the effect of agent’s actions on the environment, and (iii) the relationship between
sensors and the environment. It should be noted that the model assumptions are not
always explicit, as in reflex agents, and may implicitly be a part of the corresponding
mechanism. Examples of explicit mechanisms include: (1) a classifier’s use of trees or
networks to represent a process by which a decision is made for a given set of training
inputs and outputs; (2) an MDP’s use of state transition matrices that map present-state-
action to next states in a way that represents environment and system; (3) an optimal
control system’s use of physics-basedmodels for a physical plant, actuators, and sensors;
and (4) a planner’s use of state transition systems to represent how agent actions affect
the world.

Alignment: The mechanism for solving a problem should align with the goal, and
assumptions about the correspondingmodel should alignwith the realities of the environ-
ment and the system. The connections between the bottom vertices (world, system, goal)
and the middle vertices (model and mechanism) represent the two alignment problems,
which we refer to as “goal alignment” and “model alignment,” respectively.

Consider an MDP problem that can be solved using value iteration, given a set of
rewards and a transition probability matrix. Assuming that model alignment holds, an
optimal policy may not accomplish a problem holder’s goal if the rewards used by the
solver do not align with the goal; there is goal-mechanism misalignment. On the other
hand, assuming goal alignment, the given transition probability matrix may not correctly
model the uncertainties in the system and/or environment, leading to amismatch between
observed distribution of (state, action) pairs and model assumptions. Referring back to
Table 1, an agent may not be proficient at a goal (given a system and environment) if
either goal or model misalignment exists.

Using Proficiency Alignment: An agent’s proficiency at a goal or goals within a number
of system configurations and environment is contingent on the conditions of goal and
model alignment being met. Misalignments can be useful in generating explanations for
proficiency failures because they provide cause and effect reasoning.
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For example, suppose that an agent is using an optimal policy derived from an MDP
in a long-duration mission. The agent is tracking the empirical history of present-state,
action, next state triples. The agent compares the empirical distribution to the transition
probability and finds a significant discrepancy. The agent concludes that there is a model
misalignment, and reports that its models of the world are likely not sufficiently accurate
to perform the mission.

Continuing the example, suppose that the empirical distribution matches the transi-
tion probability. Suppose further that the agent has a logic-based recognizer that it uses
to determine when tasks are completed. If the recognizer persistently reports failures,
the agent can conclude that there is a misalignment between its goals and the rewards
used to create the optimal policy. The agent reports that it needs to observe a human
performing the task for a while, and then uses inverse reinforcement learning to derive
a new set of rewards.

4 Summary and Future Work

This paper presents preliminary ideas for self-assessment of proficiency for an intelligent
system. We identified mechanisms and models as the mid-level representative entities,
to self-evaluate (i) an intelligent agent’s ability of competently satisfying a goal(s) with
variations in system configuration and environment settings, and (ii) evaluate cause and
effect on (i).

As a part of the future work, we are working on an exhaustive literature review
organized according to the definitions of span and the characterization of alignment.
This review should provide insight and a narrative into where the state-of-the-art fits
within the proficiency dependency graph, what the intended span of the assessment
is, and whether the assessments are intended for use a priori, in situ, or a posteriori.
Leveraging the findings of the literature review, we plan to formalize our ideas further to
develop a generalized framework for proficiency self-assessment of intelligent systems.
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