Multiagent Learning During On-Going Human-Machine Interactions:
The Role of Reputation

Jacob W. Crandall and Michael A. Goodrich
Computer Science Department
Brigham Young University
Provo, UT 84602
crandall, mike @cs.byu.edu

Abstract

Multiagent learning is an important tool for long-lasting
human-machine systems (HMS). Most multiagent learning
algorithms to date have focused on learning a best response to
the strategies of other agents in the system. While such an ap-
proach is acceptable in some domains, it is not successful in
others, such as when humans and machines interact in social
dilemma-like situations, such as those arising when human
attention is a scarce resource shared by multiple agents. In
this paper, we discuss and show (through a user study) how
multiagent learning algorithms must be aware of reputational
equilibrium in order to establish neglect tolerant interactions.

Introduction

When humans interact with automated systems for extended
periods of time, multiagent learning can be important to the
success of the system. This is because learning allows agents
to adapt, which is necessary for complex and ongoing HMS
since a) automated systems (and humans) encounter unex-
pected situations that the system is unequipped to handle
without adaptation, b) automated systems must be tuned to
the user’s needs, and c) preferences and roles of the agents
(human and automated) will change. However, learning in
the presence of other learning agents is difficult.

When agents learn in the presence of other learning
agents, strategies should come into equilibrium. This is a
minimum requirement, since high performance in unstable
environments is difficult. Traditional multiagent learning al-
gorithms have sought to learn equilibrium strategies based
directly on expected payoffs (such as the Nash equilibrium.
Such learning algorithms, however, often converge to solu-
tions that yield undesireable payoffs. In this paper, we dis-
cuss finding an equilibrium based on the concept of reputa-
tion. Informally, an agent’s reputation is its expected pattern
of behavior.

Integral to social communities are reputational equilibria.
A reputational equilibrium is when no agent has an incentive
to unilaterally change its reputation. The success of a soci-
ety and the individuals within the society is dependent on
the reputational equilibrium maintained in the society. This
relates closely to the concept of a repeated play Nash equi-
librium (Littman & Stone 2003) since repeated interactions

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

mean that current actions can have an effect on payoffs that
might be received far into the future.

“Good” reputational equilibria lower the cost of interac-
tions within the group and, thus, increases the benefits of
interactions. Thus, reputations affect relationship mainte-
nance. Relationship maintenance is the time that is required
to maintain and establish relationships. Simply put, if a hu-
man and a machine know what to expect from each other,
interactions will be more productive.

Relationship maintenance is an important part of the ne-
glect tolerance (Crandall & Goodrich 2003) of an automated
agent. To better illustrate the relationship between repu-
tational equilibrium, relationship maintenance, and neglect
tolerance, consider Figure 1. In the figure, three different
interaction schedules are represented. In the top schedule,
a “good” reputational equilibrium has been established be-
tween an automated agent and a human. First, the human
and automated agent interact for a short time (task 1), af-
ter which the human turns his/her attention to another task
while the automated agent carries on the task. After a time,
the human returns his/her attention back to task 1, and the
process continues. Consider, however, the case in which
reptutations are not in equilibrium (middle schedule). Since
the human does not understand what the automated agent is
going to do, he/she spends more time interacting with the
automated agent to establish a “good” reputation and rela-
tionship. Thus, the human has less time to perform other
tasks (i.e., neglect tolerance is decreased). Consider, also,
the case in which reputations are in equilibrium, but the rep-
utations between the agents are not “good” reputations. In
such cases, it is likely that a human must interact with the
automated agent more often to maintain high performance
levels (bottom schedule). Thus, neglect tolerance is also de-
creased in this case.

In this paper, we discuss and develop the concepts of rep-
utational equilibrium and relationship maintenance in mul-
tiagent systems. First, we review best-response learning
algorithms followed by a discussion on perspectives from
psychology. Second, we develop the concepts of reputa-
tional equilibrium and relationship maintenance by exam-
ples. Third, we discuss several multiagent algorithms that
take into consideration reputations when selecting actions.
Finally, we use one of these algorithms to show, through a
user study, that considering reputations when selecting ac-

{Task 1 X Task 1<

Top: “Good” Reputational Equilibrium

skl X X Taskl ><:

Middle: Reputations not in Equilibrium

{Task DX X Task 13X X(Task 1>C

Bottom: “Bad” Reputional Equilibrium

Figure 1: The neglect tolerance of an automated agent is de-
pendent on the reputations established between human and
machine. Different interaction schedules are required (be-
cause of relationship maintenance), depending on the repu-
tations established by the agents in the system.

tions reduces relationship maintenance (and, thus, neglect
tolerance).

Best Response Learning Algorithms and
Perspectives from Psychology

Most of the multiagent learning algorithms to date have
tried to learn best-response strategies (e.g. (Fudenberg &
Levine 1998; Bowling & Veloso 2001)). A best-response
strategy is a strategy that maximizes an agent’s payoff given
the strategies of the other agents in the system. Generally,
the approach taken is to try to learn to play Nash equilib-
rium, which means that no agent has incentive to unilaterally
change its strategy. This approach leads to good results at
times, but at other times results in low payoffs for all agents
involved. Social dilemmas, such as the iterated prisoner’s
dilemma (Axelrod 1984) and public goods games (Camerer
2003), are examples of games in which best-response strate-
gies tend to converge to undesireable solutions since the
Nash equilibrium is not pareto optimal.

The Nash equilibrium concept is important because a) it
allows mutually adapting agents to establish equilibrium and
b) it allows agents to protect themselves from receiving very
low payoffs (in general). A downside to using such strate-
gies, however, is that an agent, in the very processes of play-
ing them, eliminates other possibilities that could be more
beneficial. This concept ties in deeply to the trade-off be-
tween exploration verses exploitation (Kaelbling, Littman,
& Moore 1996). An agent can exploit its knowledge (i.e.,
play its part of a Nash equilibrium) at the cost of perhaps
lower future payoffs, or it can explore at the expense of per-
haps lower current payoffs.

Psychology provides some important insights into multia-
gent learning, especially when dealing with interactions be-
tween humans and machines. Psychologist have repeatedly
pointed out that traditional game theory (and, thus, many of
the important concepts that can be obtained from it), do not
model human behavior (e.g. (Colman 2003)!). This sug-
gests that artificial agents that use such techniques may not
interact with humans in efficient ways.

!Colman suggests the use of spychological game theory, which
relies on biases related very much to reputational equilibrium.

Frank, while not throwing out traditional concepts of ra-
tionality completely, points out that there is something more
(Frank 1988). Frank shows that there are many times that
people perform seemingly irrational actions (as far as pay-
offs are concerned) end up thriving because of the reputa-
tions that such irrational actions establish. Frank argues that
what is most important is not what an agent will actually do,
but rather what other agents in the society think that it will
do. Hence, an agent’s reputation is of utmost importance.

Reputational equilibrium and Relationship
Maintenance

Consider the prisoners’ dilemma payoff matrix shown in Ta-
ble 1. At each iteration of the game, each agent can either
cooperate (C) or defect (D). If both agents cooperate, then
they both receive a payoff of 3. If they both defect, then they
both receive a payoff of 2. If one agent cooperates and the
other defects, then the cooperating agent receives a reward
of 1 and the defecting agent receives a payoff of 4. Defecting
always yields a higher payoff than cooperating, and mutual
defection is the Nash equilibrium strategy. However, if both
agents cooperate, they both receive a higher payoff than if
they both defect.

C D
C|@3,3|d,4
D@1 22

Table 1: Payoff matrix for the prisoners’ dilemma.

We now discuss the repeated play of this game in terms of
reputation. Suppose agent 1 defects on the first iteration of
the game. From this action, agent 2 could label agent 1 as
an aggressor, which will affect the way that he/she plays in
the next iteration. On the other hand, if agent 1 cooperates,
agent 2 could label agent 1 as someone that is willing to
cooperate (i.e., share the wealth), or, perhaps, as someone
who can be manipulated. Thus, with an action comes not
only a material payoff, but also a social consequence in the
form of a reputation.

Now suppose that two agents have been playing the game
with each other for some time, and both agents believe that
the other agent will always defect. This is a reputational
equilibrium, since both agents believe that changing their
reputation (which would require at least one cooperative ac-
tion) would lower their payoffs.

Consider, on the other hand, two agents playing (and be-
lieving that the other agent is playing) tit-for-tat (TFT) (Ax-
elrod 1984).2 Two agents, both playing TFT, will always co-
operate. In this situation, reputations are also in equilibrium
since if one of the agents unilaterally changes its reputation
(which would require at least one defection) it would receive
lower average payoffs in the future.

2TFT begins an iterated prisoners’ dilemma by cooperating, and
thereafter plays the action that the other agent played on the previ-
ous iteration. This strategy builds the reputation: “I will cooperate
if you will.”

Notice that we have described two reputational equilibria
for the same game. The first yielded an average payoff per
iteration of 2 for both agents and the second yielded an av-
erage of 3. Thus, we would say that the second reputational
equilibrium is better than the first (the reputational equilib-
rium corresponding to the Nash equilibrium) since it yields
a higher payoff. Also, we would say that the second reputa-
tional equilibrium has lower relationship maintenance since
it requires only two iterations to receive a cumulative pay-
off of 6, whereas it takes three iterations to receive the same
cumulative payoff.

Playing until reputations get sorted out can be expensive,
since both agents may try to change their reputation mul-
tiple times in multiple ways before reputations come into
equilibrium. This may mean low payoffs on some iterations
so relationship maintenance could be high (i.e., low average
payoffs because of poor expectations) until reputations come
into equilibrium.

In this paper, we seek to identify ways in which learn-
ing agents can establish “good” reputational equilibrium.
In general, we classify “good” reputational equilibrium as
combinations of reputations that a) yield e-PO payoffs (that
is, payoffs that are with € of the pareto frontier) and b) avoid
begin exploited by agents that are not willing to cooperate.

Examples of Neglect Tolerant Learning

Neglect tolerant learning refers to learning that reduces rela-
tionship maintenance. In this section, we discuss several dif-
ferent algorithms that establish reputations which frequently
reduce relationship maintenance.

Leader Algorithms

Littman and Stone (Littman & Stone 2001) presented
an algorithm designed to lead best-response strategies in
repeated-play games. The algorithm (called Godfather),
which is based on the tit-for-tat strategy, is designed for
two-agent games and assumes knowledge of the payoff ma-
trix. Godfather calculates the security level of each agent,
which is the expected payoff an agent can guarantee itself
if it played the minimax strategy. It then searches for a tar-
getable pair which is a solution to the game for which each
player receives more than its security level. If such a solu-
tion exists, Godfather plays its half of the strategy, hoping
the other agent will do so as well. If the other agent does,
then Godfather continues to play its part of the targetable
pair on the next iteration. If the other agent does not, how-
ever, then Godfather, in the spirit of tit-for-tat, plays a strat-
egy that forces the other agent to receive no more than its
security level. This behavior leads a class of best-response
learning agents (those that calculate their payoffs over sev-
eral iterations) to learn to play cooperatively. However, God-
father is not guaranteed to perform well in self-play. Littman
and Stone extended this work (Littman & Stone 2003) to
compute a repeated-play Nash equilibrium strategy. While
the algorithms they propose are not learning algorithms, they
demonstrate the need to consider reputational equilibrium
(which they do through threats) and not just best-response
strategies in multiagent algorithms.

1. Let A € (0, 1] be a learning rate, let oo be high, and initialize sat to false.
2. Repeat,

(a) Select an action a; according to the following criteria:

ar_1 if (sat)
at — .
rand(|A|) otherwise

where |.A| is the number of actions available to the agent.
(b) Receive reward r; and update:

true if (ry > ay)

i. Update: sat «— _
false otherwise

ii. Update: g1 «— Aoy + (1 — A)ry

Table 2: The S-Algorithm.

Satisficing Algorithm

Littman and Stone’s algorithms play cooperatively until the
other agent does not, at which point the algorithms retaliate
until the other agents does play cooperatively. Such a strat-
egy can be effective, but it can also lead to repeated cycles of
retatiliation. The next algorithm (we call it the S-Algorithm)
we discuss is based on the principle of satisficing. The S-
Algorithm (Stimpson & Goodrich 2003) is applicable to n-
agent, m-action games and is requires no knowledge of the
game structure, nor the actions of the other agents. Despite
these knowledge restrictions, Stimpson showed that, in the
multiagent social dilemma (MASD),? if aspirations are set
sufficiently high and similar for all » agents and learning
rates are sufficiently slow,* then the agents will likely con-
verge to the Nash bargaining solution.

The general algorithm is shown in Table 2. In step 1 of
the algorithm, the agent’s aspirations are initialized and the
agent is designated to be unsatisfied (sat = false) with its
current rewards. Initial aspirations should be at least as high
as the highest payoff an agent can receive playing the game.
In step 2, the agent plays the game repeatedly. First, the
agent selects its next action according to the criteria of step
2(a), which says that the agent will repeat its action of the
previous iteration (a;_1) if it is satisfied, but act completely
randomly otherwise. In step 2(b), the agent updates it inter-
nal state. It does so by a) determining if it is satisfied with
the reward 7 that it received as a consequences of its action
(ay), which is done by determining if 7, met or exceeding its
aspirations (a;), and, then, b) updating its aspirations.

The S-Algorithm never explicitly seeks to maximize re-
wards, yet it learns (with high probability) to play pareto
optimal solutions in self play and learns to avoid being ex-
ploited by selfish agents. As does tit-for-tat and leader algo-
rithms, the S-Algorithm resorts to a fallback strategy if its
aspirations are not met. Its fallback strategy, however, dif-
fers from the other two in that instead of completely defect-
ing (to punish other agents) when it is not satisfied, it resorts
to random behavior, which, in effect, leaves cooperation as

3The MASD is equivalent to public goods games in (Camerer
2003).

“Small changes in the algorithm eliminate these restrictions, but
we omit these changes in the interest of space.

a possibility while still punishing other agents (although not
as severely). Such a fallback encodes a reputation which
implicitly says: “I am willing to cooperate, if you are too.”

Social and Payoff Maximizing Agent (SaPMA)

The last algorithm (SaPMA) we discuss is a new algorithm
that performs by learning two different utility functions.
To illustrate the algorithm and how it relates to HMS, we
present a game which typifies many human-machine interac-
tions. When then show how SaPMA plays the game against
various agents in the next section.

Extensive-Form Prisoners’ Dilemma An extensive-form
prisoners’ dilemma (EFPD) is shown in Figure 2. In the
game, two agents (shown in the figure as a circle and a
square) begin on opposites sides (corners) of the world. The
world is divided by a wall containing four different gates
which are initially open to begin each round. The goal of
each agent is to move across the world to the other agent’s
starting position as quickly as possible, as the payoff each
agent receives at the end of its turn is a function of the num-
ber of moves it must take to reach its goal. The physics of
the world are as follows:

1. Agents may move up, down, left, and right. (To make
the game easier for the automated agents to learn, we re-
stricted movements to those that could possibly move an
agent closer to its goal, and omitted the use of other ac-
tions.)

2. Moves into walls or closed gates result in the agent re-
maining where it was before the action was taken.

3. If both agents arrive and attempt to move through gate 1
at the same time, gates 1 and 2 close (without allowing
either of the agents passage).

4. If one agent moves through gate 1 and the other agent
does not, then gates 1, 2, and 3 close (after the defecting
agent moves through the gate).

5. If one agent moves through any gate, then gate 1 closes.
6. Agents may move into the same square at the same time.

7. When an agent reaches its goal state, it receives reward
r = 40 — n, where n is the number of steps taken to reach
the goal.

When an agent attempts to move through gate 1, it is said
to have defected (D). Otherwise, it is said to have cooperated
(C). Viewed in this way, the game turns into the game shown
in matrix form in Table 3, where S, P, R, and T are all
expected payoffs. If the actions (C' or D) of the agents are
played optimally, then S = 8, P = 15, R = 24, and T' =
30. This is, by definition a prisoners dilemma since SJFTT <
Rand S < P < R < T (Axelrod 1984).

C D
C| [RR) | ST
D | (T,S) | (PP

Table 3: Generalized payoff matrix for the EFPD.

Figure 2: Prisoners’ dilemma game in extensive form.

The EFPD game is an abstraction of some HMS. Con-
sider, for example, a human-robot system where a single
human operator interacts with multiple robots that can ad-
just their autonomy. In such a game, the attention of the
human can be viewed as a resource that must be shared by
the robots. A robot that adjusts its own autonomy mode in
a way that requires high human attention/workload is essen-
tially defecting against the other robots in the system (i.e., it
attempts to move through gate 1). This means that the other
robots may not get enough human attention, so they they
must also change their autonomy modes to demand more of
it. In such a case, no robot receives enough attention from
the human. If all (or most) robots, however, select more ap-
propriate autonomy modes (i.e., they cooperate) then all can
receive sufficient attention from the human operator, and the
whole system benefits. Clearly, this game demonstrates that
social dilemmas can arise in HMS that affect long-term suc-
cess.

Another important element of this game is that it also al-
lows implicit communication. A move toward or away from
Gate 1 communicates to the other agents in the game what it
plans to do (assuming that agents can observer each others
state). This helps the agents to coordinate their actions, and,
if leader-like algorithms are employed, to enforce coopera-
tion.

Since the EFPD has the above properties, it shows the
relationship maintenance requirements of two agent interac-
tions in two ways. First, it shows the outcome (reputational
equilibrium) of agents building their individual reputations.
If agents converge to mutual cooperation, then relationship
maintenance is lower than if agents converge to mutual de-
fection. Second, it shows how long it takes for different
combinations of algorithms to converge. Longer times un-
til convergence generally mean higher relationship mainte-
nance because lower average payoffs are generally received
while agents are learning (and have not converged).

The Algorithm The gist of the algorithm is to compute
for each action from each state both a payoff maximizing
utility (selfish) and a social utility. The payoff maximizing
component (M) is concerned only with computing the ex-
pected payoff (UM (7)) of taking action i from each state

Repeat steps 1. and 2. while game lasts
1. Repeat while state s is not an end state:
(a) Compute UZ° (i) and UM (4) for all actions i available from state s.
(b) Form Sy = {i: US°(3) > 0}
(c) Select action 7
. { argmax; e g UM (i) with probability 1 — 1
rand(|As]) otherwise
where | A | is the number of actions in state s.
(d) Take action ¢ and observe next state s
2. Receive reward pair (R1, R2) and
(a) Update internal state.

(b) Transition to start state.

Table 4: The SaPMA algorithm.

s. The social component (So) is concerned about comput-
ing the social value (U2°(i)) of taking action i from state
s. The decision of which action to take is made by comput-
ing the two components and then selecting the action with
the highest expected utility in the payoff maximizing com-
ponent from a set of actions which the social component can
endorse. The general algorithm is shown in Table 4.

Step 1 of SaPMA repeats until an agent reaches its goal
state. It first calculates the utilities UM (i) and U ‘])\52) for
all actions ¢ that agent 1 can take from state s. U, (i) is
calculated according to standard ficticious play (FP) (Fuden-
berg & Levine 1998) and U2 (4) is calculated using a leader
algorithm-like technique.After it has computed U (i) and
UZ°(i), the SaPMA agent computes (in Step 1b) its satis-
ficing set S as the set of actions ¢ that have positive social
utilities (i.e., US°(i) > 0). In Step Ic, the action with the
highest payoff maximizing utility (U}) in S, is the action
chosen by the SaPMA agent with probability 1. Otherwise,
the agent selects an action randomly (i.e., it explores). Af-
ter choosing its action, the agent moves and waits for the
state of the world to be updated. Thus, SaPMA’s action se-
lection algorithm consists of selecting the action that returns
the highest reward that is good for the group.

In Step 2, when the agents reach their goal states (they
may reach at different times, but the rewards are not issued
until both agents have reached their respective goals), the
rewards (R;, Ry) are assigned. The agents take this reward
pair to update their internal state (Step la). The agents are
then returned to their initial starting positions, and a new
round begins.

Results

In this section, we present two sets of results. First, we
present results on what happens when two automated agents,
FP and SaPMA, interact with each other in the EFPD. Sec-
ond, we present results on what happens when humans in-
teract with these automated agents in the EFPD.

3If two or more actions in the set S yield the same expected
payoff then the algorithm randomly selects between these actions.

Machine-Machine Interactions

Table 5 shows results from interactions between serveral au-
tomated agents in the EFPD. The results represent an av-
erage of ten experiments each.® The table tells how long
it took for the agents to converge’ (# Iters) to their final
strategies. The table also tells the average payoff that each
agent received during the learning period (Learning Ave.)
and the equilibrium strategy (Strategy). The results illus-
trate the need to take into account reputational equilibrium.

Agents #Iters | Learning Ave. | Strategy
SaPMA-SaPMA 224 (19.4, 18.0) (C, 0O
SaPMA-FP 529 (19.3, 18.0) (N ®)]
FP-FP 299 (17.5,15.7) (D, D)

Table 5: Results from interactions between automated
agents. Results are the averages of ten experiments.

SaPMA agents in self play establish reputations that lead
to mutual cooperation. It took 224 iterations, on average,
for the agents to converge. During those 224 iterations, the
agent with the highest payoff received an average payoff of
19.4, while the other agent average 18.0. These payoffs are
significantly less than the payoff that each agent received
after convergence (about 24.0), however, it is the highest av-
erage of any of the other automated agents. Since they also
took the least amount of time to converge (of the three differ-
ent pairings), SaPMA in self play has the lowest relationship
maintenance.

FP agents in self play establish reputations that lead to
mutual defection. The average convergence time was 299
iterations, during which the average payoff was 17.5 for one
agent and 15.7 for the other. These payoffs are actually
higher than those received by the agents after they converged
(about 15.0). Thus, the relationship maintenance actually in-
creases after convergence in this case.

When SaPMA and FP associate in EFPD, reputations
lead to mutual cooperation. This is because SaPMA uses
a leader-like algorithm to make cooperation more desireable
for FP than defection. To do this, SaPMA learned that it
must approach gate 1 until FP moved away from it (towards
gate 2), after which SaPMA also moved towards gate 2. Be-
cause of this, convergence was slower; nevertheless, the rep-
utational equilibrium is good since relationship maintenance
becomes low in the end. However, relationship maintenance
is higher than in the case of SaPMA self play since it took
longer to converge.

Human-Machine Interactions - A User Study

We next explain results of what happens when humans in-
teract with machines in the EFPD. To do so, we performed a
user study using six subjects, each having various exposure

®High variance, especially in the number of plays needed for
convergence, was seen for all combinations of agents.

"If agents played the same solution 17 out of 20 iterations, then
they were considered to have converged.

to game theory. Each subject played with SaPMA and FP,
three playing against SaPMA first and three playing against
FP first. These results (along with the averages) are shown
in Table 6.

Subject SaPMA FP
iters payoff # iters payoff
A 85 (21.1, 18.8) 254 (19.9, 17.5)
B** 62 (23.7, 18.7) 181 (21.5, 18.8)
C 119 (19.3,19.7) | 300* | (16.9,16.4)
D** 72 (21.5, 19.6) 65 (20.1, 19.3)
E 91 (19.2,21.0) | 229*% | (15.4,19.7)
F* 72 (20.3,19.1) 207 (19.9,17.2)
Ave. 84 (20.9, 19.5) 206 (19.0, 18.2)

* indicates that after the stated iterations, defection was still the
primary action taken by the agents.
** indicates that the subject associated with FP first, then SaPMA.

Table 6: Results from humans interaction with SaPMA and
FP in the EFPD.

When a human associated with SaPMA, the result was
always mutual cooperation in the end. This was the case
even though humans played against SaPMA differently. For
example, those subjects that played with FP before playing
with SaPMA tended to try to teach/force SaPMA to coop-
erate, just as they learned to do with FP. The subjects that
played with SaPMA first, however, tended to trust SaPMA
more and tended to cooperate without forcing cooperation.
SaPMA learned to cooperate in both cases by adapting to the
humans repututation and portraying it own reputation.

Results were varied, however, when humans interacted
with FP. Two of the subjects decided that FP would never co-
operate with them, so mutual defection was the result. The
other four subjects eventually learned how to force FP to
cooperate, but this generally took a long time and caused
a good deal of frustration. Typical comments during the
learning process with FP were: “I’d cooperate with him if he
would just cooperate with me” and ‘“He has no incentive to
cooperate.” In the end, it took much longer for humans and
FP to converge than for humans and SaPMA, and the aver-
age payoffs during learning were not as high. Taking this
into account and the fact that a third of the subjects never
learned to cooperate with FP shows that relationship main-
tenance is much higher when a human associates with FP
then when a human associates with SaPMA.

It should be noted that both subjects that could not fig-
ure out how to teach FP to cooperate played with SaPMA
before playing with FP. This could have influenced their in-
ability to teach FP to cooperate. However, this demonstrates
how FP is inflexible to different strategies. This differs from
SaPMA, as it was able to adapt to the different teaching
methods of the subjects.

These results show that reputation is an important fact
to consider in the design of multiagent systems. Humans
should not be required to think like machines in order to in-
teraction with them effectively. Thus, purely best response
strategies are not sufficient, especially when machines inter-
act with humans.

Conclusions

Multiagent learning can be very important in HMS. In social
dilemma contexts such as those arising when the human is
a scarce resource shared by multiple agents, learning algo-
rithms that employ only best-response strategies are not ac-
ceptable. Learning algorithms used in such systems should
take into account the reputations that they portray to other
agents. Successful learning algorithms establish success-
ful reputational equilibrium, which lowers the relationship
maintenance of human-machine interactions. fiddle In this
paper, we presented examples of such learning algorithms
and presented an abbrieviated case study in which the rela-
tionship maintenance of a human-machine interactions.

References

Axelrod, R. 1984. The Evolution of Cooperation. Basic
Books.

Bowling, M., and Veloso, M. 2001. Multiagent learning
using a variable learning rate. In Preprint submitted to Ar-
tificial Intelligence.

Camerer, C. F. 2003. Behavioral Game Theory. Princeton
University Press.

Colman, A. M. 2003. Cooperation, psychological game
theory, and limitations of rationality in social interaction.
In Behavioral and Brain Sciences, volume 26, 139-198.
Crandall, J. W., and Goodrich, M. A. 2003. Measuring
the intelligence of a robot and its interface. In Performance
Metrics for Intelligent Systems (PerMIS’03).

Frank, R. H. 1988. Passions Within Reason: The Strategic
Role of the Emotions. W. W. Norton and Company.
Fudenberg, D., and Levine, D. K. 1998. The Theory of
Learning in Games. The MIT Press.

Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 4:237-285.

Littman, M. L., and Stone, P. 2001. Leading best-response
strategies in repeated games. In IJCAI Workshop on Eco-
nomic Agents, Models, and Mechanisms.

Littman, M. L., and Stone, P. 2003. A polnomial-time
nash equilibrium algorithm for repeated games. In 2003
ACM Conference on Electronic Commerce (EC "03).
Stimpson, J. R., and Goodrich, M. A. 2003. Learning to
cooperate in a social dilemma: A satisficing approach to

bargaining. In The Twentieth International Conference on
Machine Learning (ICML-2003).

