HuBIRT

Michael A. Goodrich
Brigham Young University

P.B. Sujit University of Porto

Toward Human-Interaction with Bio-Inspired Robot Teams

ONR via CMU RCTA via USF

What types of problems

- Barnes & Fields:
 - Convoy protection

- Spears
 - Plume tracking

- Abstraction: Information Foraging
 - Resource depletion rate

$$S_j(t+1) = S_j(t) - N$$

Which Types of Bio-Inspired Teams?

- Simple agent behaviors
- Collective group intelligence
- Goal-driven group behavior

Model Class: Inter-Agent Influence + External Influence

- Sumpter
 - Positive feedback:
 "imitation or
 recruitment behaviour
 [yielding] collective
 patterns."
 - Negative feedback: inhibition that yields stable collective behavior
 - Individual: each agent has its own state

- Reynolds
 - Mutual attraction
 - Mutual repulsion
 - Mutual alignment
- Restrict to additive model (for now)

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t) + g(\mathbf{x}_t, u_t)$$

HuBIRT Model: Connectivity and Sparseness

- Egerstedt:
 - Stable decentralized control relies on connectedness

- Ballerini:
 - Natural models use structured sparseness

$$x_{t+1}^{i} = f^{i}(\mathbf{x}_{t}) + g^{i}(\mathbf{x}_{t}, u_{t})$$

$$= f^{i}(x_{t}^{i}, \mathbf{x}_{t}^{\neg i}) + g^{i}(x_{t}^{i}, u_{t})$$

Autonomy Assumption:

what else influences me?

Cohesiveness Adjacency Matrix: A_t who influences me?

Inter-agent Connectivity: Structured Topologies

- Power-limited Comms
 - Metric-based topologies

- Bandwidth-limited Comms
 - Nearest-neighbor topologies

Model: Human Influence

- Autonomy: an agent's response to an external signal
 - Depends only on the signal
 - And the agent's own state

- Two external influences
 - Operator input
 - Environment signals

Notional

$$g^{i}(x_{t}^{i}, u_{t}) = d^{i}(x_{t}^{i}, u_{t}^{\text{op}}) + e^{i}(x_{t}^{i}, u_{t}^{\text{env}})$$

Management
Adjacency Matrix:

$$B_t = [0 \ 0 \ 1 \dots 0 \ 1]$$

Which agents are affected by human?

Experiment Design: Human Influence

- State-of-the-Art
 - Centralized leader with decentralized formation
 - Centralized selection of model parameters
 - Decentralized w/o human
 - Ad hoc
- Leaders and Predators
 - Sumpter: what is a leader?
 - Decentralized leader influence

Experiment Design: One natural & one artificial structure

- Bio-mimetic
 - Imitate a biological system
 - Zoomorphic agents
 - Couzin et al., 2002
 - The state of the s

- Physico-mimetic
 - Imitate an artificial system
 - Point-mass agents
 - Spears et al., 2005

Building Intuition w/ Experiments: How relevant to real robots?

- Ecologically Valid
 - Topological connectivity
 - Limited inter-agent communication
 - Human influence over a small subset of agents
 - Additive inter-agent influence
 - Human operators

- Not Valid
 - Human can observe state of all agents
 - Holonomic, noise-free dynamics
 - Noise-free communication
 - Few operators

L. Parker

Sample Models: Physico-mimetic

- Physico-mimetic
 - Agents as point masses
 - Attract and repel

$$F_i = \sum_{j=1}^{N} F_{ij}$$

$$v_i(t+1) = v_i(t) + \frac{F_i}{m_i}$$

Sample Models: Bio-mimetic

- Bio-mimetic
 - Couzin's instantiation of
 - Reynold's "Boids" model
 - Conradt:
 - Split and Steer

Metrics: time histories

- Adjacency matrix time-histories =
 - evolution of collective structure
 - under human influence

$$\mathcal{A}_t = \sum_{\tau=0}^T A_{t-\tau}$$

$$\mathcal{B}_t = \sum_{\tau=0}^T B_{t-\tau}$$

What Types of Human Influence? Empirical Correlates w/ Performance

Experiments

- Leaders
 - Sustainable human influence
- Predators
 - Unsustainable human influence
 - Need team of predators

What Types of Human Influence? Empirical Correlates?

Experiments

- Leaders
 - Coherent?

- Predators
 - Coherent?

What Types of Topologies? Empirical Correlates w/ Performance

PSD of \mathcal{A}_t

Metric

Less coherent

Nearest Neighbor

Coherent

Leader

Ballerini's observation

Predator

Communication Requirements Empirical Results

- Robust to communication drop-outs
- Two Leader models
 - Virtual requires sustained remote communication
 - Physical requires intermittent remote and sustained local communication

Phase I: Partially Observable Collectives

- A common unrealistic centralization assumption
- Partially observable Active Sensing with time delays

$$\mathbf{z}_t = \sum C_{t-\tau} \mathbf{x}_{t-\tau}$$

- Leaders = Observers
- Centroid and fringe agents
- Zig-zag agents
- Consensus

Phase II: Multi-operator Management

Conradt et al. 2009

Phase III: Include Autonomy

Autonomy and Heterogeneity

$$g^{i}(x_t^i, u_t) = d^{i}(x_t^i, u_t^{\text{op}}) + \underbrace{e^{i}(x_t^i, u_t^{\text{env}})}$$

$$E_t^{\text{task j}} = [0 \ 1 \ 1 \dots 0 \ 0]$$

Information and HuBIRT: Phase III continued ...

Semi-random processes

```
env = [position, task type]

p(\text{env}) = p(\text{position})p(\text{task type})

H(\text{env}) = H(\text{position}) + H(\text{task type})
```


Filling out the Spectrum: Phase III continued ...

Complexity of Required Collective Behavior

Team Capacity: Phase III continued

- Hypothesis: BIRT structures (A_t, E_t) have invariant information-processing capacities

Operator Modulation: Phase III continued ...

- Hypothesis: HuBIRT structures (A_t, E_t, B_t, C_t) have invariant operator response curves
 - Responsiveness = amount of entropy removed by human

HuBIRT Organizational Tolerance: Phase III continued ...

- Match BIRT structure to environment
- Match HuBIRT structure to human factors constraints

- Organizational tolerance is worst case task rate
- Design to match organizational and task tolerances

Insights

- It's easier for a human to manage neighborhood-based teams
- Predator-based and Leader-based human interactions offer different advantages
 - Leader-based models guide a coherent team
 - Predator-based models decohere a team to allow multi-tasking
- Graph theory formulation and metrics offer design vocabulary for HuBIRT organizations

Phase IV: Necessity & Sufficiency

- Sufficiency
 - Observability Matrix

$$O(\mathcal{A}_{t,t-1,...t-T}, \mathcal{C}_{t,t-1,...t-T})$$

Controllability Matrix

$$R(\mathcal{A}_{t,t-1,\dots t-T},\mathcal{B}_{t,t-1,\dots t-T})$$

CharacteristicPolynomial and GraphValence

- Correlates w/ necessity
 - Signal propagation time
 - Probability of decoherence
 - Coherence strength
 - Robustness
 - Mutual Information

Sometimes 2<2x1: Environment Constraints

- Task Saturation
 - Adding more robots won't improve performance
 - Example: 4 small boxes carried by 4 robots versus
 4 small boxes carried by 5 robots
- Task Diffusion
 - Task gets harder as sub-tasks are accomplished
 - Example: Mine-sweeping

