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Abstract. Computational resources are increasing rapidly with the ex-
plosion of multi-core processors readily available from major vendors.
Model checking needs to harness these resources to help make it more
effective in practical verification. Directed model checking uses heuristics
in a guided search to rank states in order of interest. Randomizing guided
search makes it possible to harness computation nodes by running inde-
pendent searches in parallel in a effort to discover counter-examples to
correctness. Initial attempts at adding randomization to guided search
have achieved very limited success. In this work, we present a new low-
cost randomized guided search technique that shuffles states in the pri-
ority queue with equivalent heuristic ties. We show in an empirical study
that randomized guided search, overall, decreases the number of states
generated before error discovery when compared to a guided search using
the same heuristic. To further evaluate the performance gains of random-
ized guided search using a particular heuristic, we compare it with ran-
domized depth-first search. Randomized depth-first search shuffles tran-
sitions and generally improves error discovery over the default transition
order implemented by the model checker. In the context of evaluating
randomized guided search, a randomized depth-first search provides a
lower bound for establishing performance gains in directed model check-
ing. In the empirical study, we show that with the correct heuristic, ran-
domized guided search outperforms randomized depth-first search both
in effectively finding counter-examples and generating shorter counter-
examples.

1 Introduction

The current trend in micro-processor design is to group multiple processors into
a single silicon die and package. For example, dual-core processors are quickly
becoming mainstream, and quad-core packages are readily available from most
vendors. CEO Paul Otellini, at a recent Intel development forum, displayed an 80
core prototype chip capable of terabyte per second data exchange and pledged
production runs in the next five years [25]. The trend is clearly to put more
processors on a single die rather than to increase clock speed and computation
in a single processor. This is leading to an explosion in computational resources.



The question for the model checking community given the growth in multi-
core processors, as well as parallel and distributed systems, is how can we harness
this computation power? At the heart of explicit state model checking is an
exhaustive proof to show the absence of a specific behavior. The proof literally
enumerates, in a largely brute-force manner, the entire behavior space of the
system being verified [4]. The complexity of the systems, however, limits practical
application of model checking in both time and space. Aggregating the available
computation resources to solve the model checking problem can help to improve
the situation.

Parallel and distributed model checking has shown some limited promise
in utilizing large amounts of computation resources [35, 21, 1, 20, 3, 19]. The fo-
cus of the community is to find ways to harness several computation nodes to
cooperatively construct the exhaustive proof. These approaches generally look
appealing in low node counts but are less efficient as more computation nodes
are added [22]. Seminal work goes so far as to prove that depth-first search itself
is inherently sequential and does not lend itself to parallel computation [29].
This may explain the lack of scaling in current approaches and possibly suggest
that we need a fundamentally different algorithm for model checking that is less
sequential and more amenable to parallelization.

As a counterpoint, it is possible to parallelize model checking by moving away
from an exhaustive proof and instead focus on counter-example generation. In
other words, run several independent experiments with some degree of random-
ization on individual computation nodes to find a counter-example to the proof.
This is in contrast to several computation nodes cooperatively constructing an
exhaustive proof. The shift in focus from exhaustive proof to counter-example
generation began in the directed model checking community, and it opens new
avenues for distributed model checking.

Early researchers of parallel and distributed model checking explored the
concept of random walk for counter-example generation with modest success [17,
34, 24]. Random walk has inherently low memory requirements, and the work
distributes these random walk based searches over many computation nodes
in hopes of discovering a counter-example. The effectiveness of random walk in
terms of coverage is critically dependent on the structure of the model [28, 2, 18].
Empirical studies show that random walk is not very useful for error discovery
in the models where it achieves poor coverage. This creates a need for effective
randomized searches which better harness the computation resources.

Recent work studying default search order in model checker performance
contributes a key insight to randomization of a regular depth-first search [7].
Controlling for default search order in depth-first search by randomly choos-
ing transitions to explore (randomized DFS) dramatically improves counter-
example generation [6]. Independent randomized DFS searches easily distribute
to any number of computation nodes, however, like any search method, random-
ized DFS breaks down in certain models [32]. The issue in randomized DFS is
that it blindly moves through the behavior space even when there is informa-



tion readily available about the structure of the model and the property being
invalidated that can improve the search.

Directed model checking uses heuristics to rank interest in states and guide
the search of the behavior space to efficiently generate counter-examples [37, 9,
10, 16, 27, 33, 8, 31]. The heuristics generally consider either the model structure
or the property being validated to rank the states. A guided search then orders
the states in a priority queue based on the path cost and heuristic ranking
where states estimated to lead more quickly to a counter-example are explored
before other states. Guided search is effective in counter-example generation
and often succeeds where depth-first search fails. More importantly, the length
of the counter-examples generated by guided search algorithms are often shorter
than those generated by depth-first search. This simplifies the developer’s task
of understanding the counter-example.

Guided search also benefits from randomization, and like depth-first search,
once randomized, it can be run independently in parallel (randomized GDS1).
Preliminary work in randomized GDS chooses randomly from the first n-best
entries of the priority queue when selecting the next state to explore [23]. The
effectiveness of the randomization is not clear from the empirical study. In some
instances, the randomization helps; while in other instances, the randomization
hurts. The control, n, in [23] only ranges over a limited set of values between two
and five, and the algorithm also does not distinguish between states in the pri-
ority queue with different heuristic values. In Java PathFinder v4.0 (JPF), it is
also possible to execute a randomized GDS by randomizing the transition order
in generating successors before adding them to the priority queue. This random-
ization, however, has very limited impact on the actual default search order in
the guided search. Clearly, there are several open questions in randomized GDS
left to be explored.

This paper presents a new randomized GDS algorithm that completely shuf-
fles states in the priority queue with equal heuristic rankings. We show that
full randomization of the guided search improves the effectiveness of the search
over default search order in an empirical study. The empirical study uses char-
acterized benchmarks from [7, 32] and published heuristics for the JPF, [36], and
Estes, [26], model checkers. This paper also presents a second empirical study
on the new randomized GDS algorithm in context of randomized DFS using the
previously mentioned models and heuristics. The second study highlights the
role of the heuristic in performance. When the heuristic is correctly matched to
the models and properties, the new randomized GDS algorithm outperforms ran-
domized DFS in both the effectiveness of the search in finding counter-examples
and the length of the counter-examples. When the heuristic is not correctly
matched to the models or properties, randomized DFS is more effective in er-
ror discovery which demonstrates a need to develop better heuristics for those
classes of models and properties.

1 We use randomized GDS to refer generally to any algorithm that adds randomization
into guided search, and we will clearly indicate how the search is randomized in the
context in which it appears.



The algorithm and empirical studies in this paper underscore a need to de-
velop methods that match heuristics to models and the properties being dis-
proved. This work and other work such as [23] and [6] also revisit a new way
to view randomization, model checking, and search techniques. It motivates a
need to study and understand how to best use randomization in model check-
ing and parallelization for counter-example generation. Research in this area is
especially timely given the rapid increase in computational resources, and more
importantly, the ever increasing need for practical model checking in system
design.

2 Background

It is important to control for default search order when evaluating model check-
ing algorithms because implementation details in the model checker itself affect
performance to a larger degree than previously supposed [7]. For example, in
a simple depth-first search, the state at the top of a search stack may have
several enabled transitions that move the current state to the next state of
computation. The choices arise from non-determinism in the model, where the
non-determinism is usually a result of scheduling decisions or input locations.
The principle observation in [7] is that controlling for the default order in which
a model checker selects transitions during depth-first search dramatically affects
the outcome of counter-example generation. The work in [7] proposes a ran-
domized DFS that controls for default transition order by shuffling transitions
enabled at each state. Follow-on work in [6] shows that randomized DFS is effec-
tive in counter-example generation across their benchmark set2. In the words of
[7], “[T]hese findings tell a strong cautionary tale”, because default search order
significantly affects performance of the techniques being evaluated in compari-
son studies. This is especially critical for directed model checking which relies
on comparison studies to establish performance gains.

Directed model checking uses a guided search rather than depth-first or
breadth-first search to find counter-examples for the property being verified.
The fundamental assumption is that an error does exist in the model, and the
goal is to find the error before exhausting computation resources. The work in
this paper focuses on a greedy best-first search; although, the ideas are equally
applicable to other best-first search techniques that make no guarantee on the
optimality of the counter-example. In other words, the results of an A∗ search
are not significantly affected by our approach. A greedy best-first search is illus-
trated in Fig. 1. The top state in Fig. 1 is the initial state. At each iteration of
the search, a state is removed from a priority queue, its successors are generated,
ranked by a heuristic function, and inserted into the priority queue. For exam-
ple, the initial state in Fig. 1 has three successors which are ranked 12, 9, and 2.
These states are inserted into the priority queue. The next iteration of the search
2 There are other default orders in model checkers that are yet to be controlled as

evidenced in [32], where different versions of JPF yield different results in random-
ized DFS.
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Fig. 1. An illustration of greedy best-first search that chooses the state nearest to the
goal state to expand in the search based on a heuristic function.

removes the state with rank 2 from the priority queue and repeats the process.
The heuristic function estimates the nearness of a state to an actual goal state.
The goal state in our example is marked with the ‘e’ character. The goal state in
directed model checking is an error state from which we build a counter-example
to the specified property. A good heuristic for a greedy best-first search often
converges quickly to an error state, and the length of the counter-example is
near minimal.

Directed model checking critically relies on empirical studies to show per-
formance gains over depth-first search, and like depth-first search, must control
for default search order. For example, consider a priority search queue that con-
tains over 100,000 states and a heuristic function that assigns an integer value
between one and six to each state. Invariably, there are many thousand states
with equivalent heuristic values. The order in which they are explored is largely
controlled by the order in which they are generated by the model checker and
ordered in the priority queue. During a guided search, some function compares
the heuristic value of a newly generated state to the heuristic values of exist-
ing states in the queue before inserting the new state in the queue based on its
ranking. Most often, this function uses a pre-determined ordering to sort states
that have the same heuristic value. For example, when comparing a newly gen-
erated state, s1, with a heuristic value, x, to an existing state in the priority
queue, s2, with a heuristic value, x, the state ordering function always inserts
state s1 after s2 in the priority queue. The order in which states s1 and s2 are
explored can potentially affect the total number of states generated before error
discovery—a fact disregarded by the ordering function. The lesson from [7] is
that these default choices in the model checker need to be controlled. This gives
rise to randomized GDS which in the context of this paper refers to a greedy
best-first search with some randomization to control for default order.

There are several ways to implement randomized GDS, and each controls for
default order in the priority queue to a certain extent. For example, [23] randomly
chooses between the n-best entries in the priority queue, and JPF v4.0 allows



the transition order to be shuffled during state generation. The former method
shows some potential while the later method is not effective in randomization.
This paper presents a new algorithm for randomized GDS that controls for all
heuristic ties in the priority queue. We show that with the correct heuristic func-
tion, our new algorithm for randomized GDS outperforms not only the greedy
best-first search using default ordering but randomized DFS as well. This is es-
pecially true in models that are hard—that is, models where randomized DFS
is not successful.

3 Randomized GDS

Current techniques for randomization of guided search are not effective in ex-
ploiting the full potential of the randomization. For example, as mentioned
previously, the approach presented in [23] limits the randomization to the n-
best entries in the priority queue, where n is specified by the user. As another
example, JPF allows for randomization in its searches. To understand its ap-
proach, we need to first look at its priority queue implementation; specifically,
the DefaultComparator class. The class uses state identifiers and hash values to
resolve heuristic ties between states in the priority queue. The state identifiers
and hash values map to the same states in every single run of a guided search and
deterministically resolve the heuristic ties. Turning on the randomize choices
option in JPF successfully modifies the order in which successors, for a particular
state, are added to the priority queue because the successors are now assigned
different state identifiers every time we execute a guided search trial. This ran-
domized GDS approach causes only a small amount of variance in the number
of states generated before error discovery when compared to the guided search
since the randomization is limited to the successors of a given state. Our studies
show that the limited amount of randomization is not effective in significantly
changing the default search order.

To fully exploit the potential of randomization in directed model checking we
define a randomized GDS algorithm that randomly shuffles states with equivalent
heuristic ranking in the priority queue. The pseudo-code for this algorithm is
presented in Fig. 2. The algorithm is embarrassingly parallel [15]. Several trials
of the new randomized GDS algorithm can be launched in parallel on different
computation nodes since each randomized GDS trial is completely independent
of the other trials. There is no communication overhead between the trials which
allows the algorithm to scale up to an arbitrary number of computation nodes.

In the randomized GDS algorithm, we associate a random value with each
state generated during model checking in addition to its heuristic value. The
tuple 〈si, hi, ri〉 in Fig. 2 is an element stored in the priority queue where si is
the state, hi is the heuristic ranking of si, and ri is the random value associated
with si. The randomized GDS algorithm employs a new comparator function,
compare vals, that is also shown in Fig. 2 and uses the random values as a
secondary key to sort states with the same heuristic rankings. The approach
enables us to effectively randomize the order of states with same heuristic values



/∗ N is the set of computation nodes ∗/
procedure randomized guided search init(N)

for each i ∈ N do
execute(randomized guided search(), i)

wait for all nodes to terminate execution()
gather results(1...N)
return

/∗ Add initial element 〈s0, h0, r0〉 to PriorityQueue PQ ∗/
/∗ Add s0 to the Visited set ∗/

procedure randomized guided search()
while PQ 6= ∅ do
〈si, hi, ri〉 := PQ .dequeue()
for each s′ ∈ successors(si) do

if error(s′) then
return Error Statistics

if s′ 6∈ Visited then
V isited := V isited ∪ {s′}
PQ .enqueue(〈s′, heuristic(s′), rand val()〉)

return No Errors Found

/∗ PriorityQueue PQ uses compare vals to order states ∗/
procedure compare vals(〈s1, h1, r1〉, 〈s2, h2, r2〉)

if h1 > h2 then
return true

else if h1 < h2 then
return false

else
if r1 > r2 then

return true
else

return false

Fig. 2. Pseudo-code for randomized GDS that shuffles states with the same heuristic
values using a secondary key from a random number generator.

across different states and search levels. The new randomized GDS algorithm
has a low cost of randomization because maintaining the random value is the
only additional cost it incurs when compared to a regular guided search.

We present two empirical studies that compare randomized GDS to default
order guided search. The first study is in JPF v4.0 uses Java benchmarks and the
second study is in Estes uses C benchmarks. JPF contains a suite of structural
heuristics, [16], that exploit thread properties in Java programs and also has a
heuristic for finding feasible abstract counter-examples [27, 16]. The Java models
used in this study are small to medium sized programs that contain concurrency
errors. These models have been collected from different sources: original papers
presenting the heuristics [16], concurrency literature [12], research describing
Java specific errors [14], and the IBM benchmark suite [13]. Additionally, these



models are characterized to a certain degree having been used recently in two
extensive benchmarking studies [7, 32].

Our empirical study is conducted on a super-computing cluster with 618
nodes. We conduct a single experiment of executing 100 trials of our random-
ized GDS algorithm in parallel for each subject in the study. The choice of 100
trials is arbitrary, but we believe its size is sufficient to indicate general trends
in performance. The randomized GDS trials and the guided search are allocated
7GB RAM, and the execution time is bounded at 1 hour. The 1 hour is again
arbitrary but together with 100 trials constitutes an upper bound of 100 hours
of computation for each model—a significant amount of resources.

Table 1 is a comparison between the default order guided search and our new
randomized GDS algorithm in JPF. We present results for four different heuris-
tics in JPF: choose-free heuristic, most-blocked heuristic, interleaving heuristic,
and the prefer-thread heuristic. Based on the description of the heuristics in [16]
and our knowledge of the models, we pick heuristics that are most likely to work
well for a given model. We present, in Table 1, the number of states generated for
a default order guided search (GDS). The values in Table 1 with the form, x∗, in-
dicate that the search generated x number of states before running out of either
time or memory. For the new randomized GDS algorithm (Randomized-GDS), in
Table 1, we present the following statistics: path error density (PED), minimum
(Minimum) and maximum (Maximum) number of states generated in a single error
discovering randomized GDS trial among all the trials, mean (Mean) number
of states generated in all the error discovering randomized GDS trials, and the
95% confidence interval (95% CI) for the mean number of states. The path error
density is the ratio of the number of error discovering randomized GDS trials to
the total number of trials executed.

The results in Table 1 show that the new randomized GDS algorithm, overall,
improves the error discovery for a given heuristic over default search order. In the
AccountSubtype(2,2) model, the default order guided search does not find an
error even after exploring over 2.22 million states. In contrast, all 100 trials of the
new randomized GDS algorithm find an error and explore only 193, 313 states—
on average—before error discovery. Furthermore, the maximum number of states
generated—642,193—by a single randomized GDS run of the new algorithm
is also dramatically lower than the number of states generated by the default
order guided search. Similar behavior is observed in all the ProducerConsumer
models, and some TwoStage, Piper, and Wronglock models. In certain models,
the mean number of states generated by the new randomized GDS algorithm is
more than the states generated by the default order guided search, as seen in the
Deos(abstracted) and Reorder(1,5) models; however, even in these models,
the minimum number of states generated by the new randomized GDS algorithm
is less than the number of states generated by the default order guided search.

Table 2 presents the results of running our new randomized GDS algorithm
on different distance heuristic functions implemented in the Estes model checker
[26]. We evaluate three specific distance heuristic functions in Table 2: FSM [11],
EFSM [30], and e-FCA [31]. The only change in the setup for evaluating heuris-



Table 1. Comparing the performance of default order guided search (GDS) and ran-
domized guided search (Randomized-GDS) using the heuristics in JPF and published
benchmarks.

Model GDS Randomized-GDS
PED Minimum Mean Maximum 95% CI

ChooseFree Heuristic

Deos(abstracted) 16 1.00 11 40 423 14

RwNoExcpChk(2,100,1) 372,826 1.00 769 6,419 20,865 739

MostBlocked Heuristic

Clean(1,1,12) 188 1.00 33 377 993 59

Piper(2,2,2) 16,437 1.00 240 1,338 3,909 171

Piper(2,4,4) 2, 478, 360∗ 0.87 138,916 1,229,530 2,274,249 116,015

Interleaving Heuristic

Raxextended(4,3) 1, 225, 743∗ 1.00 404 20,774 670,813 14,480

PreferThreads Heuristic

Accountsubtype(2,2) 2, 225, 914∗ 1.00 30,726 193,313 642,193 94

Producerconsumer(1,10,4) 1, 783, 620∗ 0.93 2,774 145,466 742,693 36,519

Producerconsumer(1,12,4) 1, 781, 899∗ 0.90 13,830 238,092 960,610 52,981

Producerconsumer(1,16,4) 1, 781, 530∗ 0.49 7,280 257,131 889,248 67,850

Producerconsumer(1,8,4) 1, 835, 216∗ 1.00 1,148 156,428 925,537 38,689

Producerconsumer(2,2,4) 2, 591, 457∗ 1.00 10,902 109,394 313,929 13,602

Producerconsumer(2,4,4) 2, 016, 936∗ 1.00 2,592 213,491 1,122,008 45,523

Producerconsumer(2,8,4) 1, 721, 824∗ 0.68 21,055 434,401 1,098,461 77,976

Reorder(1,1) 144 1.00 40 98 163 6

Reorder(1,5) 545 1.00 36 14,864 64,447 4,312

Reorder(10,1) 1,727,521 0.00 - - - -

Reorder(5,1) 15,207 1.00 393 10,850 30,790 1,473

Reorder(8,1) 274,125 0.80 10,789 714,454 2,624,613 120,013

Reorder(9,1) 691,264 0.32 324,035 861,445 1,412,937 110,618

Twostage(1,1) 218 1.00 53 134 246 9

Twostage(2,5) 24,187 0.96 218 361,571 1,681,177 97,480

Twostage(5,2) 322,593 0.96 5,419 417,841 2,170,752 95,440

Twostage(6,1) 716,413 0.94 31,346 486,830 1,626,718 76,994

Twostage(7,1) 2, 354, 460∗ 0.36 81,218 867,382 1,411,624 120,191

Twostage(8,1) 2, 119, 657∗ 0.05 178,476 755,151 1,259,085 514,492

Wronglock(1,1) 156 1.00 37 67 122 4

Wronglock(1,10) 7,391 1.00 94 98,616 1,805,704 58,614

Wronglock(1,20) 7,391 0.78 97 562 2328 99

Wronglock(10,1) 2, 330, 993∗ 1.00 795 4,848 26,070 834

Wronglock(20,1) 2, 056, 532∗ 1.00 3,176 32,484 163,642 6,282



Table 2. Comparing the performance of default order guided search (GDS) and ran-
domized guided search (Randomized-GDS) using the Estes model checker.

Model GDS Randomized-GDS
PED Minimum Mean Maximum 95% CI

FSM Heuristic

Barbershop(5) 132,376 1.00 13,917 59,496 154,473 5,948

Barbershop(9) 492,166 0.59 61,732 785,698 2,003,928 118,996

Barbershop(11) 1, 292, 835∗ 0.15 381,808 813,644 1,247,461 157,172

e-fca Heuristic

Barbershop(5) 814 1.00 921 1,012 1,308 13

Barbershop(9) 1,070 1.00 1,543 1,692 1,918 18

Barbershop(11) 1,196 1.00 1,939 2,243 2,671 27

Barbershop(20) 1,767 1.00 5,099 6,319 8,439 131

Barbershop(25) 2,086 1.00 7,654 9,873 12,657 233

EFSM Heuristic

Barbershop(5) 21,706 1.00 4,950 19,849 67,875 1,853

Barbershop(9) 17,537 0.65 94,357 816,848 1,999,595 129,344

Barbershop(11) 30,256 0.06 293,893 701,278 1,181,985 412,829

tics in Estes from the study in JPF is that the randomized GDS trials and guided
search using default search order are allocated 2 GB of RAM. The performance
of the FSM distance heuristic function improves with the new randomized GDS
algorithm as seen in Table 2. In the Barbershop(11) model, the default order
guided search does not find an error in over 1.2 million states while the new ran-
domized GDS algorithm explores only 813, 644 states—on average—in 15 error
discovering trials.

It is interesting to note that for some models, the default order guided search
outperforms the new randomized GDS algorithm using the EFSM and e-FCA
distance heuristics. For example, in the Barbershop(20) model, 1767 states are
generated with guided search while the minimum number of states generated
by the randomized GDS algorithm is 5099. The examples where default order
guided search outperforms the new randomized GDS algorithm support the hy-
pothesis presented in [7] that certain reported performance gains of directed
model checking techniques can potentially be an artifact of the default order
implemented by the model checker rather than the technique itself.

This empirical study shows—on average—that the new randomized GDS al-
gorithm is a better search technique than a default order guided search with
no randomization. As a side note, we omit the results on the n-best algorithm
in [23] and JPF’s random choice generator because they are not competitive
with the new randomized GDS algorithm. For the remainder of this paper, we
use randomized GDS to refer to our new randomized GDS algorithm. The next
section shows in another empirical study that with the correct heuristic, ran-



domized GDS performs well in the models where randomized DFS is unable to
find an error. We refer to these models as hard [32].

4 Evaluation

Randomized DFS serves as a good standard for comparison when we evaluate
the performance gains of randomized GDS [32]. Randomized GDS and random-
ized DFS both effectively control for the default search of the model checker
implementation which makes them well-suited for comparison. Also, when eval-
uating the performance of a new heuristic, it is sometimes hard to find another
heuristic that is designed to work on the same class of programs or properties.
Randomized DFS serves as an ideal comparison technique to evaluate the perfor-
mance of such heuristics. It also provides a tighter lower bound on performance
than say a metric based on stateless random walk, [32], and is a significant
bar to overcome when showing performance gains in stateful techniques such as
randomized GDS.

We design an empirical study to compare the performance of existing heuris-
tics, using randomized GDS, to randomized DFS implemented by JPF. Like
the previous study, we run 100 trials of randomized GDS for each model and
an equal number of randomized DFS trials. We bound the execution time at 1
hour for each trial. In our initial experiments, the size of the frontier, states in
the priority queue, increases rapidly in randomized GDS trials which causes the
searches to run out of memory in JPF before reaching the specified time bound.
To overcome this issue, we bound the size of the queue in JPF at 100,000 states.
This allows randomized GDS trials to successfully run for an hour in JPF with-
out exhausting the available memory. Bounding the size of the queue turns the
complete search into a partial search; however, guided search aims to find a
counter-example efficiently rather than to do an exhaustive proof. An earlier
study, [16], and our experiments show that bounding the size of the queue does
not affect, in general, the number of randomized GDS trials that discover an er-
ror. The system configuration used to conduct this empirical study is the same
as described in the previous section.

We record and normalize values of five different metrics in the random-
ized GDS and randomized DFS trials to study the performance gains of ran-
domized GDS over randomized DFS. We measure the path error density, num-
ber of states generated, time taken before error discovery, length of the counter-
example, and total memory utilized for each of the search trials. Recall that
the path error density is the ratio of the error discovering trials over the to-
tal number of trials executed. We measure the minimum, mean, and maximum
values for all metrics, except path error density, generated during the error dis-
covering trials since the randomization generates different results in each trial.
The minimum, mean, and maximum values generated by the search trials are
normalized between 0.00 and 1.00 for each metric. Here is an explanation of the
normalization process for states generated: the smallest number of states gener-
ated among the trials of both search techniques, for a given model, is mapped



Table 3. Comparing the average values generated in error discovering trials of ran-
domized guided search (RGDS), using the Prefer-Thread heuristic, and randomized
DFS (DFS).

PED States Time Trace Memory

DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Accountsubtype(1,1) 1.00 1.00 0.98 0.58 0.58 0.68 0.37 0.45 0.62 0.60

Accountsubtype(2,2) 1.00 1.00 1.00 0.59 0.99 0.60 0.42 0.36 0.99 0.37

Wronglock(10,1) 1.00 1.00 1.00 0.79 0.89 0.70 0.34 0.65 0.98 0.78

Wronglock(1,1) 1.00 1.00 0.89 0.52 0.55 0.94 0.70 0.49 0.58 0.56

Wronglock(1,10) 1.00 0.97 0.47 0.98 0.45 0.98 0.57 0.53 0.90 0.93

Twostage(1,1) 1.00 1.00 0.83 0.48 0.66 0.83 0.39 0.54 0.40 0.67

Twostage(2,5) 1.00 0.96 0.52 0.91 0.54 0.94 0.44 0.59 0.39 0.78

Twostage(6,1) 1.00 0.98 0.60 0.87 0.62 0.92 0.31 0.64 0.87 0.63

Reorder(5,1) 1.00 1.00 0.34 0.72 0.34 0.83 0.45 0.75 0.44 0.79

Reorder(8,1) 1.00 0.89 0.36 0.84 0.40 0.92 0.41 0.72 0.89 0.61

ProdCons(1,16,4) 0.67 0.87 1.00 0.88 0.99 0.85 0.55 0.72 1.00 0.67

Twostage(7,1) 0.41 0.73 0.42 0.76 0.42 0.89 0.17 0.58 0.97 0.53

Wronglock(1,20) 0.28 0.81 1.00 0.99 1.00 0.99 0.50 0.62 1.00 0.99

Reorder(9,1) 0.06 0.57 0.31 0.75 0.16 0.87 0.10 0.74 0.99 0.48

Twostage(8,1) 0.04 0.57 0.70 0.70 0.40 0.74 0.01 0.50 0.99 0.43

Reorder(10,1) 0.00 0.34 0.00 0.63 0.00 0.70 0.00 0.51 0.00 0.38

to the value of 1.00; similarly, the largest number of states generated among the
trials is mapped to the value of 0.00. All other values for states generated, in
the given model, are normalized between these two values. The values are nor-
malized to the maximum or minimum values since these represent the extremes
in the observed performance across several trials. The normalization process is
conducted separately for each metric in a model. Intuitively, values close to 1.00
indicate good performance for a given metric while values close to 0.00 indicate
the opposite. The normalization technique helps us in better understanding and
visualizing the performance of the heuristic in different models because it puts
all metrics on the same scale and graph across both search techniques.

The prefer-thread heuristic, using randomized GDS, performs well in the
models shown in Table 3. Please note that this table omits the data for the
minimum and maximum values across our several metrics. Table 3 only presents
the average values that have been normalized. The values given in Table 3 are as
follows: path error density (PED), number of states (States), time taken (Time),
length of counter-example (Trace), and memory utilized (Memory) measured in
error discovering trials of randomized GDS and randomized DFS. In a large
number of models, the path error density is the same, 1.00, for both random-
ized DFS and randomized GDS. In models where randomized DFS has a path
error density of 1.00, finding an error is not difficult, and the results on these
models do not convey much information on the effectiveness of the heuristic.



To overcome some of the weakness in the benchmarks, our study uses hard
models generated in [32] to evaluate the true effectiveness of the heuristic, which
are the last six entries in Table 3. For example, in the Wronglock(1,20) model,
the measured path error density of randomized DFS is 0.28 while the path
error density of the randomized GDS is dramatically higher at 0.81. The av-
erage values for states, time, and memory are close to 1.00 for both search
techniques in the Wronglock(1,20) model; however, the average length of the
counter-example for randomized GDS is smaller than the average length of the
counter-example recorded from the randomized DFS trials. In understanding
the length of a counter-example, values closer to 1.00 depict a shorter counter-
example while values close to 0.00 indicate a longer counter-example. There are
other models like Reorder(9,1), Twostage(8,1), and Reorder(10,1) where
randomized GDS improves over randomized DFS.

The high path error density of randomized GDS in models where random-
ized DFS struggles to find an error makes a compelling argument for the use
of the heuristic in the given models. The results in Table 3 show that random-
ized GDS, using the prefer-thread heuristic, successfully overcomes the lower
bound on the performance set by randomized DFS in the given models.

In Fig. 3 we visualize the comparative performance of randomized DFS and
randomized GDS using the prefer-thread heuristic for the models shown in Ta-
ble 3. The minimum, mean, and maximum values for all the different metrics
and models are aggregated in Fig. 3(a). The different edges along the graph
show which search technique generates the best and worst boundary values. The
points in the graph along the axis where x = 0 show all the worst values that
are contributed by randomized DFS for the measured metrics while the points
along the axis where y = 0 show all the worst values generated by random-
ized GDS. Similarly, points along x = 1 represent the best values contributed by
randomized DFS while points along y = 1 represent the best values contributed
by randomized GDS. The points above the dashed diagonal line in Fig. 3(a)
show the values of the metrics where randomized GDS improves over random-
ized DFS. In general, there is a high density of points above the diagonal that
show for the given set of models, it is more effective to use randomized GDS,
with the prefer-thread heuristic, over randomized DFS. There is also a high den-
sity of points in the upper right corner of the graph. These points represent the
values where both randomized GDS and randomized DFS perform well and do
not help us in evaluating the true effectiveness of the search and heuristic over
randomized DFS. We now look at each of the metrics separately to understand
the areas in which randomized GDS scores over randomized DFS.

There are three metrics where randomized GDS clearly outperforms random-
ized DFS in the benchmark suite using the prefer-thread heuristic. These three
metrics are the path error density, length of the counter-example, and time taken
before error discovery as shown in Fig. 3(b), (c), and (d) respectively. The points
in the upper right corner of the graph in Fig. 3(b) show that in all trials, both
search techniques are equally successful in finding the error; however, points
that are above the dashed diagonal line show that a larger number of random-
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Fig. 3. Visualizing the normalized minimum, mean, and maximum values of different
metrics comparing randomized GDS, using the Prefer-Threads heuristic, to randomized
DFS. (a) An aggregation of all values for the different metrics. (b) Values comparing
path error density. (c) Values comparing length of counter-example. (d) Values compar-
ing time taken before error discovery. (e) Values comparing number of states generated.
(f) Values comparing memory usage.



Table 4. Comparison of results using the Most-Blocked Heuristic with a randomized
guided search (RGDS) to results from randomized DFS (DFS).

PED States Time Trace Memory

DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Clean(1,1,12) 1.00 1.00 0.09 0.59 0.52 0.87 0.34 0.25 0.42 0.65

Piper(2,4,4) 1.00 1.00 0.96 0.65 0.96 0.63 0.60 0.85 0.94 0.25

Piper(2,8,4) 0.96 0.00 0.92 0.00 0.92 0.00 0.52 0.00 0.47 0.00

Clean(10,10,1) 0.96 0.00 0.95 0.00 0.96 0.00 0.37 0.00 0.85 0.00

Piper(2,16,8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5. Comparison of results using the Interleaving Heuristic with a randomized
guided search (RGDS) to results from randomized DFS (DFS).

PED States Time Trace Memory

DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Airline(6,1) 1.00 1.00 0.75 0.99 0.74 0.99 0.22 0.62 0.53 0.90

Airline(6,2) 1.00 1.00 0.96 1.00 0.95 1.00 0.25 0.60 0.89 0.97

Raxextended(4,3) 1.00 1.00 0.96 0.99 0.96 1.00 0.67 0.99 0.87 0.96

Airline(20,4) 0.03 0.00 0.55 0.00 0.59 0.00 0.47 0.00 0.39 0.00

Airline(20,3) 0.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Airline(20,2) 0.01 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

ized GDS trials find an error in models where only a small number of random-
ized DFS trials find an error. The high path error density of randomized GDS
is a very compelling measure that depicts the improvement of randomized GDS
over randomized DFS. Randomized GDS also performs extremely well in gener-
ating shorter counter-examples. The high density of points above the diagonal
in Fig. 3(c) indicates that randomized GDS has dramatically shorter counter-
examples compared to randomized DFS across all the models in test. Similarly,
the distribution of points in Fig. 3(d) indicates that randomized GDS takes less
time to find an error when compared to randomized DFS.

In Fig. 3(e), it is hard to discern which search technique performs better
in generating fewer number of states before error discovery; however, the ran-
domized DFS clearly outperforms randomized GDS in the amount of memory
utilized as shown in Fig. 3(f). Randomized GDS maintains the frontier of states
that need to be explored. The increasing frontier size, however, has a dramatic
impact on the memory usage. The unbounded priority queue in JPF causes a
serious explosion in memory usage while executing the randomized GDS. In fact,
as mentioned earlier, we restrict the size of the priority queue to only 100,000
states so that 7 GB of RAM is not exhausted before reaching the specified time
bound. Overall, across the different metrics, randomized GDS using the prefer-
thread heuristic improves performance over randomized DFS by effectively find-
ing counter-examples and generating shorter counter-examples.



Table 6. Comparison of results using the Choose-Free Heuristic with a randomized
guided search (GDS) to results from randomized DFS (DFS).

PED States Time Trace Memory

DFS RGDS DFS RGDS DFS RGDS DFS RGDS DFS RGDS

Deos(true) 1.00 1.00 0.72 0.97 0.56 0.96 0.36 0.95 0.60 0.92

Replicated(5,2) 0.97 0.00 0.81 0.00 0.87 0.00 0.57 0.00 0.88 0.00

RWNoExpChk 0.77 1.00 0.97 0.72 0.72 0.55 0.75 0.99 0.94 0.69

We present results for the most-blocked, interleaving, and choose-free heuris-
tics in Table 4, Table 5, and Table 6 respectively. These heuristics do not per-
form well on the class of models for which they are designed, and the comparison
with randomized DFS makes these heuristics even less appealing in our bench-
marks. For example, the randomized DFS path error density for Piper(2,8,4)
model is 0.96 while the path error density of randomized GDS using the most-
blocked heuristic as seen in Table 4 is 0.00. Similar behavior is seen for the model
Clean(10,10,1). The choose-free, most-blocked, and interleaving heuristics do
not overcome the randomized DFS lower bound and are not effective in generat-
ing counter-examples for models in the tables. The sub-par performance of these
heuristics argues a greater need to identify models where they are effective.

The results in this section indicate that given the correct heuristic for a set
of models, randomized GDS is effective in finding errors where randomized DFS
struggles. It is also important to note that better error discovery, shorter counter-
examples, and reduced error discovery time in randomized GDS comes at the
cost of increased memory usage due to the large search frontier.

5 Conclusions and Future Work

This paper presents a new randomized GDS algorithm that completely shuffles
states in the priority queue with equal heuristic rankings. The algorithm is easily
implemented, efficient, and has low overhead in terms of memory and time. We
show that full randomization of the guided search improves the effectiveness of
the search over the regular guided search. To evaluate the performance of ran-
domized GDS using a particular heuristic, we compare it with randomized DFS
because randomized DFS creates a lower bound for establishing performance
gains in directed model checking. Also, when the heuristic is correctly matched to
the models and properties, the new randomized GDS algorithm outperforms ran-
domized DFS in both the effectiveness of the search in finding counter-examples
and the length of the counter-examples. The approach is timely given the recent
explosion in computation resources and is easily distributed to several compu-
tation nodes to improve the likelihood of error discovery.

There is a need to explore other avenues for combining randomization and
directed model checking. For example, can we use randomization to balance
exploring new parts of the behavior space and use heuristics to exploit the infor-



mation available about the model? Also, as we develop heuristics appropriate for
use in a randomized GDS algorithm, there is a need to understand the intended
problem domain for the heuristic. In other words, we need to characterize heuris-
tics in terms of the models for which they are expected to be effective. Without
this characterization, it is not obvious which heuristic best fits a given property
and model. There also a need to define language and metrics to characterize
heuristics for their intended problem domains. An interesting avenue of research
is to use something similar to the “Patterns” categorization for specifications
[5].
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