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Current Trend 

Dual and Quad Core Processors are 
becoming increasingly common 

Intel’s 80 core prototype 

More processors on a single die * 

* Image courtesy Intel white paper  



Distributed/Parallel Model 
Checking 

  Exhaustive proof is the heart of model checking 
  Enumerate entire behavior space  
  Complexity of system limits practical application 
  Parallel model checking shows limited promise 
  Shift focus to bug-finding (counter-examples) 
  Parallel search for bugs using randomization 



Contributions 

  Low-overhead randomized greedy best-first search 
  Empirical study over a very large characterized 

Java benchmark suite using JPF 4.0 
  Empirical study in Estes 



Default Search Order in DFS 
Dwyer et al. (FSE ‘06) 

•  Search follows a deterministic order 



Default Search Order in DFS 
Dwyer et al. (FSE ‘06) 

•  Order depends on model checker implementation 



Default Search Order in DFS 
Dwyer et al. (FSE ‘06) 

•  Spend all the time in one portion of state graph  



Default Search Order in DFS 
Dwyer et al. (FSE ‘06) 

•  The error may lie along a different path 
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Parallel Randomized DFS 
Dwyer et al. (ICSE ‘07) 

•  Randomly picks a successor to explore 
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Parallel Randomized DFS 
Dwyer et al. (ICSE ‘07) 

•  Embarrassingly parallel 
•  Aim is to find a counterexample 

E 



Guided Search Basics 

  Order state by priority using heuristic 
  Replace stack with priority queue in search 
  Heuristic type determines type of search: 

  greedy best-first: ignores path cost 
  best-first: includes current path cost 
  A*: includes current path and heuristic is admissible 

  We focus on greedy best-first search 
  GDS stands for GuiDed Search (greedy best-first)  



Default Search order in GDS 
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•  Greedy best-first search 
•  Uses the heuristic estimate to guide the search 
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Default Search order in GDS 

12 10 11 

•  Orders states in a PQ based on the rank 
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Default Search order in GDS 
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•  Priority queue determines ordering 



Randomized GDS in JPF 
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Randomized GDS in JPF 
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•  JPF has an option to randomize successors 
•  The priority queue resolves ties 



Randomized GDS in JPF 
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•  Controls for default order in siblings 
•  Does not control for common heuristic values 
•  Not effective in randomizing default order 



Randomized GDS in JPF 
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•  The error may be along a different path  



Randomly pick from n-best 

12 10 11 7 8 11 11 

Jones and Mercer (SPIN ‘04) 

n = 4 

•  Picks one of n candidates  
•  Does not consider ranking 
•  Moderately effective in error discovery 



Randomly pick from n-best 

12 10 11 7 8 11 11 

Jones and Mercer (SPIN ‘04) 

N = 4 

•  Disregards the heuristic ranking 
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11 11 11 11 11 11 11 

Randomly pick from n-best 
Jones and Mercer (SPIN ‘04) 

n = 4 

•  Does not randomize all heuristic ties 
•  Not effective in Java benchmarks in JPF 



Unable to counter default order 

 Both techniques are insufficient 
 Comparison to GDS with default order 
 Empirical analysis of the RGDS techniques 
 No statistical difference for most examples 
 Results for existing RGDS omitted  



Scope of this work 

 Focuses on a greedy best-first search 
 Best-first search with inadmissible heuristics 
 Results of A* not significantly affected 



Our Randomized GDS 
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•  Add a random value as a secondary key 
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Our Randomized GDS 
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•  Secondary key used to break heuristic ties 
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Our Randomized GDS 
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85 44 
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44 85 2 
•  Embarrassingly Parallel 
•  Scales to Arbitrary Number of Nodes 



Research Question 

  Does the randomized GDS perform better than 
guided search with default search order? 

  Compare default order to randomized GDS 
  Published Java heuristics and models in JPF v4.0 
  Distance heuristics in Estes on Barbershop model 
  100 trials of randomized GDS on each model 
  One hour time bound 
  7 GB RAM for JPF and 2 GB for Estes 



Empirical study 

 Marylou4: Cluster of 618 nodes 
 Two dual core processors per node (2.6 GHz) 
  Intel EM64T processors 
  JPF v4.0 for Java Benchmarks 
 Estes model checker for C models 



Empirical Study 

 100 trails of randomized GDS in parallel 
 Time bounded for 1 hour 
 7 GB of RAM for the trials in JPF 
 2 GB of RAM for the trials in Estes  



Independent Variables 

 Heuristics in JPF 
 Distance heuristics in Estes 
 Subjects with concurrency errors 
 Used in extensive benchmarking studies 

(Dwyer et al. FSE ‘06) 
(Rungta and Mercer SEFM ‘07) 



Dependent Variables 

 Path Error Density, the ratio of error finding 
RGDS trials over total number of trials  

 Number of states generated 



JPF Results 

Model PED 
RGDS 

Avg. States 
GDS 
States 

RaxExtended(4,3) 1.00 20,774 1,225,743* 

Twostage(6,1) 0.94 486,830 716,413 

Piper(2,4,4) 0.87 1,229,530 2,478,360* 

Reorder(10,1) 0.00 - 1,727,521 
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Estes Results for Barbershop(9) 

Heuristic PED 
RGDS 

Avg. States 
GDS 
States 

FSM (Edelkamp and 
Mehler MoChart ‘04) 0.59 785,698 492,166 

EFSM (Rungta and 
Mercer ASE ‘05) 0.65 816,848 17,537 

E-FCA (Rungta and 
Mercer FMCAD ‘06) 1.00 1,692 814 



Evaluation 

 RDFS and RGDS overcome default order 
 RDFS provides a good lower bound on 

hardness (Rungta and Mercer, SEFM ‘07) 
 Heuristics are restricted to a class of subjects 
 RDFS ideal comparison for RGDS 



Research Question 

  How does randomized GDS compare with 
randomized DFS? 

  Published Java heuristics and models in JPF v4.0 
  Distance heuristics in Estes and C versions of select models 
  100 trials of randomized GDS and Randomized DFS 
  One hour time bound 
  7 GB RAM for JPF and 2 GB for Estes 
  Bounded queue of 100,000 states (arbitrary choice) 



Empirical Study   

 Similar set up as previous study 
 100 trials of RDFS and RGDS 
 1 hour time bounded 
 Size of the frontier in RGDS prohibitive 
 Bounded the Queue at 100,000 states 

(arbitrary choice) 



Possibly Prune the Bug? 

 Yes! But… 
 Otherwise run out of memory (10 to 30 mins)  



Independent Variables 

 Pick subjects characterized as “hard” 
(Rungta and Mercer SEFM ‘07) 

 Models where RDFS struggles 



Dependent Variables 

 Path Error Density 
 Number of states generated 
 Time Taken before Error Discovery 
 Length of the Counterexample 
 Total Memory usage 
 Minimum, Average, and Maximum values 



Normalization 

 Min, Avg, and Max normalized to 0 and 1 
 Minimum is normalized to 1.00 
 Maximum is normalized to 0.00 
 All other values are in between 
 Process conducted for each metric separately 
 Allows better understanding on same scale 



PED for Prefer-thread 

Model RDFS RGDS 

ProdCons(1,16,4) 0.67 0.87 

TwoStage(7,1) 0.41 0.73 

WrongLock(1,20) 0.28 0.81 

Reorder(10,1) 0.00 0.34 
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Scatter Plot on All Dependents 



Path Error Density Scatter Plot 



Length of Counter Example 



Time Taken for error discovery 



Number of States Generated 



Memory Usage 

Priority Queue 
uses memory! 



PED for Most-Blocked 

Model RDFS RGDS 

Piper(2,4,,4) 1.00 1.00 

Piper(2,8,4) 0.96 0.00 

Clean(10,10,1) 0.96 0.00 

Piper(2,16,8) 0.00 0.00 
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Estes results 

Model RDFS RGDS 
Airline(10,1) 0.18 1.00 
Piper(2,8,4) 0.07 1.00 

 E-FCA distance heuristic 
(Rungta and Mercer FMCAD ‘06) 



Conclusions 

 Randomization is a good thing 
 Embarrassingly parallel 
 Helps models well matched to heuristics 
 Generally better than RDFS 
 Uses the computation resources effectively 



Future Work 

 Better characterization of benchmarks: 
syntactic measures with low cost computation 

 Static analysis to match heuristics to models 
 Better use of randomness to improve error 

discovery 
 BEEM (DiViNE models) characterization and 

Java/C implemenations 



Future Work 

 Converting Java benchmarks in C models 
 Creating hard C models for RDFS in Estes 
 Comparing FSM with JPF heuristics 
 Models where JPF heuristics perform poorly 
 Coverage obtained by RGDS 
 Heuristics that work well with randomization 
 Characterize heuristics for specific domains 



Questions 

Verification and Validation Lab  
Computer Science Department 

Brigham Young University 
Provo, Utah  

Neha Rungta: neha@cs.byu.edu 
Eric G. Mercer: eric.mercer@byu.edu 

http://vv.cs.byu.edu 


