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Abstract
Exhaustive model checking search techniques are ineffective for
error discovery in large and complex multi-threaded software sys-
tems. Distance estimate heuristics guide the concrete execution of
the program toward a possible error location. The estimate is a
lower-bound computed on a statically generated abstract model of
the program that ignores all data values and only considers control
flow. In this paper we describe a new distance estimate heuristic that
efficiently computes a tighter lower-bound in programs with poly-
morphism when compared to the state of the art distance heuristic.
We statically generate conservative distance estimates and refine
the estimates when the targets of dynamic method invocations are
resolved. In our empirical analysis the state of the art approach is
computationally infeasible for large programs with polymorphism
while our new distance heuristic can quickly detect the errors.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking

General Terms Reliability, Verification

Keywords Software model checking, guided search, heuristics,
error discovery

1. Introduction
The ubiquity of multi-core processors is creating a paradigm shift
from inherently sequential to highly concurrent and parallel sys-
tems. The lack of scalable verification techniques to detect concur-
rency errors is proving to be a hindrance for programmers devel-
oping concurrent programs. The trend toward parallelism and con-
currency motivates a need to develop effective and scalable error
detection techniques for concurrent programs.

Model checking techniques exhaustively enumerate all possible
behaviors of the system to verify the presence as well as the ab-
sence of errors in programs (Ball and Rajamani 2001; Henzinger
et al. 2003; Holzmann 2003; Robby et al. 2003; Visser et al. 2003).
The systematic exploration of all possible behaviors enables model
checking to find subtle concurrency errors that are often missed by
ad-hoc testing techniques. The exhaustive nature of model check-
ing leads to a huge state space explosion making it intractable in
verifying practical applications.
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Guided model checking tries to overcome the state space explo-
sion problem by focusing the search in parts of the program that are
more likely to contain an error (Edelkamp et al. 2001b; Edelkamp
and Mehler 2003; Groce and Visser 2002; Rungta and Mercer 2005,
2006). Guided model checking techniques use heuristic functions
to rank states in order of interest in an attempt to quickly generate
a counterexample. States are ordered in a priority queue or a search
stack based on their heuristic rank and path cost such that the states
estimated to lead to an error state are explored before others.

Distance estimate heuristics try to compute a reasonable lower-
bound on the number of computation steps required to reach a tar-
get location from the current location (Edelkamp and Mehler 2003;
Rungta and Mercer 2005, 2006). The distance estimates are used to
guide the concrete program execution toward the target locations.
The target locations are either provided by the user or generated
using static analysis techniques. The estimates are computed on a
statically generated abstract model that ignores all data values and
only considers the control flow of the program. In the absence of
data values to compute an accurate distance estimate between two
arbitrary program locations is undecidable in general.

The FSM distance heuristic is the state of the art distance heuris-
tic for programs with polymorphism (Edelkamp and Mehler 2003).
The FSM distance heuristic ignores all calling context information
and is unable to compute a reasonable lower-bound. Furthermore,
the complexity of the FSM distance heuristic is cubic in the to-
tal number of instructions in the program. This complexity renders
the FSM distance heuristic intractable for computing distance es-
timates in medium to large sized programs. Note that this is after
we perform a rapid type analysis that uses the information about
instantiated classes to create a reduced set of executable methods
in programs with polymorphism (Bacon and Sweeney 1996).

In this work we present a distance heuristic estimate that com-
putes a tighter lower-bound on the distance estimates in polymor-
phic programs compared to the FSM distance heuristic. The poly-
morphic distance heuristic first performs an interprocedural static
analysis to compute an initial lower-bound on distance estimates;
second, during the model checking we refine the distance estimates
on demand when the targets of dynamic method invocations are re-
solved. The complexity of the new approach is cubic in the number
of instructions in the method with the largest number of instruc-
tions. Note that this is significantly less than the complexity of the
FSM distance heuristic.

We present an empirical analysis to demonstrate the effective-
ness of the polymorphic distance heuristic in error discovery in a
set of benchmarked multi-threaded programs where exhaustive and
randomized search techniques are unable to find an error. We com-
pare the polymorphic distance heuristic to the FSM distance heuris-
tic and a random heuristic that assigns a random value as the rank
of a state. Using the polymorphic distance heuristic we are able to
detect real errors in the JDK 1.4 concurrent library. We also demon-



strate that it significantly outperforms the FSM distance heuristic
and the random heuristic in the number of states, time taken, and
total memory used before error discovery.

2. Background
Distance estimate heuristics compute a heuristic value based on
the distance to a target state, t, from a current state, s. The state
s contains a set of unique thread identifiers, a program location and
stack for each thread, and a heap. A transition relation generates a
set of successor states for s, {s′0, s′1, . . . , s′n}, where the transition
to each successor s→ s′i represents a possible change in state from
s. Iteratively applying the transition relation to each state allows us
to build the entire reachable behavior space of the program. A path,
π, is a sequence of transitions, s → s′ → s′′ → s′′′ . . ., that
represents a feasible execution path in the behavior space.

Definition 2.1. The distance, d, between state, s, and target state,
t, is the number of computation steps in an execution path from s
to t: d(s, t) := |π| where π := s→ s′ → s′′ → . . .→ t.

Computing accurate distance estimates between two states re-
quires us to first build the reachable state space of a program that
essentially entails solving the original problem a priori. In order to
overcome this problem, distance estimate heuristics use a heuris-
tic function, h, that approximates the distance between s and t on
a statically generated abstract transition graph of the program. In
the abstract system a state simply contains a unique program loca-
tion identifier. In other words, an abstract state represents a single
program instruction. The control flow of the program is the tran-
sition relation used to generate the abstract transition system. The
abstract transition system ignores all data values and is an over-
approximation of the original system. The program location of the
recently executed thread in state s is used to map the concrete state
to an abstract state. The heuristic function, h, estimates the distance
between s and t by computing the distance between their respec-
tive abstract counterparts in the abstract transition system. Differ-
ent distance heuristics compute the heuristic values on the abstract
transition graph with varying degrees of calling context informa-
tion.

The FSM distance heuristic is the state of the art heuris-
tic for computing distance estimates in programs with polymor-
phism (Edelkamp and Mehler 2003). The FSM distance heuris-
tic performs an interprocedural control flow analysis to statically
compute the lower-bound on the distance between two arbitrary
instructions in the program. The FSM distance heuristic is unable
to compute a reasonable lower-bound because it ignores all call-
ing context information and simply minimizes across the different
methods. A detailed example is shown in (Rungta and Mercer
2005). This problem is further exacerbated in programs with poly-
morphism because it minimizes the distance estimates across all
implementing sub-type targets of a dynamic method invocation.

The e-FCA heuristic computes full calling context-aware dis-
tance estimates in non-recursive C programs with resolved func-
tion pointers using a combination of static and dynamic informa-
tion (Rungta and Mercer 2006). The e-FCA improves on previ-
ous distance estimates based on the FSM heuristic function and
the EFSM heuristic function (Edelkamp and Mehler 2003; Rungta
and Mercer 2005). The FSM distance heuristic does not consider
any calling context while the EFSM distance heuristic only con-
siders partial context information. A comparative empirical study
in (Rungta and Mercer 2006) demonstrates that computing a tighter
lower-bound by adding more calling context information enables us
to more efficiently find an error.

The e-FCA distance estimate is computed based on the statically
generated abstract model that only contains control flow informa-
tion with following rules: at a given program location, we can either

1: class AbstractList implements List{
2: . . .
3: public boolean equals(Object o){
4: if o == this then
5: return true;
6: if ¬(o instanceof List) then
7: return false;
8: ListIterator e1 := ListIterator();
9: ListIterator e2 := (List o).listIterator();

10: while e1.hasNext() and e2.hasNext() do
11: Object o1 := e1.next();
12: Object o2 := e2.next();
13: if¬(o1 == null ? o2 == null : o1.equals(o2))then
14: return false;
15: return ¬(e1.hasNext() || e2.hasNext())
16: }
17: . . .
18: }

Figure 1. The equals function in the AbstractList implemen-
tation of the JDK 1.4 library which uses polymorphism.

(a) reach the return statement of the current function and return to
its caller without encountering the target location; or (b) reach the
target location without executing the return statement of the current
function (the target location can be reached in the forward direc-
tion). In cases where the target location cannot be reached in the
forward direction, the e-FCA looks up the return point of the cur-
rent function on the dynamic runtime stack of the recently executed
thread in the concrete state. If the target location is reachable in the
forward direction from the return point then the final estimate is
the summation of the cost of moving to the return point and the
distance in the forward direction from the return point to the target
location. Otherwise, the algorithm keeps unrolling the stack until it
reaches the main function.

The e-FCA lower-bounds all distance estimates by computing
the shortest paths through various branching and looping constructs
of a program. This allows the heuristic to be admissible and con-
sistent.

Definition 2.2. An admissible heuristic h is a function that guar-
antees a lower bound on the distance from every state, s, to the
target state, t: h(s, t) ≤ d(s, t).

Definition 2.3. A consistent heuristic h is a function that guar-
antees for every state s and each successor of s′ of s the es-
timated distance from s to t is less than or equal to the dis-
tance between s and s′ plus the estimated distance from s′ to t:
h(s, t) ≤ d(s, s′) + h(s′, t)

In anA∗ search, (Russell et al. 1995), the e-FCA generates min-
imal length counter-examples. The e-FCA heuristic is, however, not
designed to compute distance estimates in the presence of dynamic
method invocations whose targets cannot be statically resolved us-
ing a type analysis.

3. Motivation
It is important to compute accurate distance estimates in the

presence of polymorphism because there is an increasing use of ob-
ject oriented languages like Java and C# which inherently encour-
age the use of polymorphism. More importantly, Java and C# are
being used to develop concurrent applications because they natively
support concurrency. The inability of the FSM distance heuristic to
compute estimates in the presence of polymorphism makes it inef-
fective for guiding program execution in Java and C# programs.

The example shown in Figure. 1 is the equals function of the
AbstractList class in the JDK 1.4 concurrent library. In order
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Figure 2. A partial call graph for the equals function in the
AbstractList implementation.

to compute the distance estimate from the start to the end of the
equals method we have to evaluate the cost of moving through
the method calls in Figure. 1. The list iterator operations (lines 8-
12 and 15) and the call to equals on the objects from both lists
(line 13) are dynamic method invocations whose targets cannot be
determined statically. A very small portion of the call graph with
the class hierarchy for the method in Figure. 1 is shown in Figure. 2.
The call graph shows that even for a single method call, there may
be a large number of possible functions that we need to evaluate for
computing heuristic estimates.

Simply minimizing the distance estimates across all the meth-
ods implemented by the sub-classes for a particular polymorphic
method call is not computationally feasible. Our tests show that
even for medium-sized programs such an analysis does not com-
plete within a time bound of one hour. The heuristic estimates
computed using such a brute force approach also tend to be in-
accurate because at every program location it simply computes a
lower-bound across all implementations. For programs with a large
number of types the inaccurate estimates degenerate essentially into
random estimates.

4. Polymorphic Distance Heuristic
In this section we present a new polymorphic distance estimate
(PFSM) that performs an interprocedural static analysis to conser-
vatively compute distance estimates with partial context informa-
tion for targets of dynamic method invocations that are not stati-
cally resolved with a type analysis (unresolved polymorphic meth-
ods). It then dynamically computes the distance estimates on de-
mand when the type of polymorphic methods are resolved during
model checking. In other words, without completely analyzing all
subtypes it lower-bounds distance estimates and computes the esti-
mate on demand as type information is discovered at runtime.

4.1 Static analysis phase
An abstract model of the program is created to compute initial dis-
tance estimates. The model ignores all data values of the program
and focuses only on control flow. The abstract model combines a
control flow graph for each procedure in the program and a call
graph that represents the call hierarchy of various procedures. The
control flow graphs and the call graph denote the control flow of the
program at an intra and inter procedural level respectively. The dis-

tance estimates between instructions in a procedure are computed
as a lower-bound in the presence of branching and iterative con-
structs.

We algorithmically construct the abstract model and compute
the distances between instructions in a method. The algorithm uses
a reverse invocation order to estimate the cost of moving through
method calls if the type of the callee can be statically determined.
The analysis, however, does not step into methods whose type
cannot be statically resolved after a rapid type analysis. In such
cases a conservative estimate of two (one to call the function and
another for the return edge) is assigned as the cost of moving
through the corresponding call site to its immediate successor in the
analysis. The conservative estimates are superseded by the distance
estimates dynamically computed on demand as the type of methods
is resolved during the model checking run.

The pseudo-code for the static analysis phase of computing
the distance estimate values is presented in Figure. 3. The tu-
ple, 〈N,E, nstart , nend〉, is a control flow graph (CFG) whereN is
a set of abstract nodes labeled with unique program location identi-
fiers, E ⊆ N ×N is the set of edges, nstart ∈ N is the start node,
and nend is the end node in the CFG. The variable, L, is a matrix
of values that holds the distance estimates between instructions in
each method. The Explored variable is a map used to memoize
the distance matrices for the different CFGs so that each method in
the program is evaluated only once. The Visited set is used to de-
tect cycles in the control flow of a particular method. The function
is call site takes as input a node in the CFG and returns true if the
node represents a call site in the program. The has resolved type
function takes as input a node that is a call site and returns true if
the type of the target method (callee) is statically resolved after the
rapid type analysis; the function get target CFG returns the CFG
of the target method given a call site. Finally, the succ function re-
turns a set of the immediate successors of a node n in the CFG,
succ(n) = {n′ ∈ N |(n, n′) ∈ E}.

The polymorphic distance heuristic function is invoked by the
main method to statically compute distance estimates as shown in
Figure. 3 (lines 1-4). The function invokes the compute estimates
function with the CFG of the main method (lines 2-3). The
compute estimates function initializes a distance matrix L :
|N | × |N | where the entries along the diagonal are set to zero
while all other entries are set to ∞ (line 6). Next, on line 7 of
Figure. 3, the analyze function is called with the start node of the
CFG, nstart , and the corresponding distance matrix, L, to initialize
the edge costs between the nodes in the CFG.

The analyze function uses a depth-first search traversal (lines
19-21) to update edge costs in L. For all nodes that are not call
sites, the distance between the node and its immediate successor,
dsucc , is set to one (line 18). When we encounter a call site during
the traversal whose target method cannot be statically resolved then
we conservatively set the cost of moving from the call site to its
immediate successor node as two (lines 15-16). In essence, we do
not evaluate any methods whose type cannot be statically resolved.
If the type of the method can be resolved statically we update
the cost between the call site and its successor by computing the
distance estimate of moving through the target method (lines 12-
14). After all the edge costs are updated in the distance matrix, L,
the matrix is returned (line 22). At this point the analysis resumes
on line 8 of the compute estimates function where an all-pairs
shortest path analysis is performed on the distance matrix. Finally
the matrix is added to the Explored map with its corresponding
CFG (lines 8-9).

To compute the cost of moving through the target method of
a call site, we invoke the get distance to end function with the
CFG of the target method and its corresponding call site (line 14).
A simple check of whether the call site is also part of the target



procedure polymorphic distance heuristic(main)
1: /∗ N is set of nodes, E is the set of edges, nstart is the start node, and nend is the end

node in the CFG ∗/
2: 〈N,E, nstart , nend〉 := get CFG(main)
3: compute estimates(〈N,E, nstart , nend〉)
4:

procedure compute estimates(〈N,E, nstart , nend〉)
5: /∗ Entries along the diagonal are 0 while others are∞ ∗/
6: L : |N | × |N | → N ∪ {∞}
7: L := analyze function(nstart , L, ∅)
8: L := compute all pairs shortest distance(L)
9: Explored .add(〈N,E, nstart , nend〉, L)

10:
procedure analyze function(n,L,Visited)
11: if is call site(n) then
12: if has resolved type(n) then
13: 〈N ′, E′, n′start , n′end〉 := get target CFG(n)
14: dsucc := get distance to end(〈N ′, E′, n′start , n′end〉, n)
15: else
16: dsucc := 2 /∗ Conservative estimate ∗/
17: else
18: dsucc := 1 /∗ Instructions other than call sites ∗/
19: for each n′ ∈ succ(n) and n′ 6∈ Visited do
20: L(n, n′) := dsucc ; Visited := Visited ∪ {n′}
21: L := analyze function(n′, L,Visited)
22: return L
23:
procedure get distance to end(〈N,E, nstart , nend〉, nc)
24: if nc ∈ N then
25: return 2 /∗ Recursive call ∗/
26: if ¬Explored .contains(〈N,E, nstart , nend〉) then
27: compute estimates(〈N,E, nstart , nend〉)
28: L := Explored .get element(〈N,E, nstart , nend〉)
29: return L(nstart , nend)

Figure 3. Pseudocode for computing distance estimates statically.

CFG reveals a recursive method call, in which case a conservative
estimate of two is returned. In non-recursive method calls, if the
target method is not found in the Explored set, then we step into
the target method by calling the compute estimates function with
the CFG of the target method (line 27). When the execution flow
returns on line 28 of Figure. 3, we get the corresponding distance
matrix, L, for the target method. The shortest distance from the
start node to the end node in the distance matrix is returned as the
cost of moving from the call site to its immediate successor on line
14 of the analyze function.

4.2 Guided Search
The heuristic computed on the abstract model is used to intelli-
gently rank the concrete states generated at points of thread non-
determinism during model checking. A concrete state, s, contains
a set of unique thread identifiers, a program location and stack for
each thread and a heap. For each successor, s′, of s the PFSM dis-
tance estimate from the current program location of the recently
executed thread in s′ to the specified target location is assigned as
the heuristic rank of the s′. Intuitively, the PFSM heuristic drives
certain threads toward the target locations specified by the user or
generated using static analysis techniques.

4.3 Dynamic heuristic computation
The abstract model consisting of control flow graphs and the call
graph of the program is refined when type information is discovered
during model checking. As the refinement step we compute the
distance estimates between the instructions in the control flow
graph of a procedure whose alias information is discovered during
the model checking run. The final heuristic value is computed on

the abstract model along a sequence of call sites across the different
control flow graphs from the current location to the target location.

We algorithmically show the heuristic computation in the dy-
namic analysis phase of the PFSM heuristic. The algorithm tra-
verses the call graph in a depth-first manner to implicitly construct
call traces between the current location and the target location in
the forward direction. It uses the type information in the state gen-
erated during model checking to compute the distance estimates on
demand along a particular call trace by using correct alias infor-
mation to resolve types. The algorithm uses a branch and bound
technique to restrict the number of call traces that need to be evalu-
ated. The algorithm minimizes the distance estimate among all the
call traces that lead from the current location to the target location.
If the target location is not reachable in the forward direction then
we look up the return point of the current function in the runtime
stack extracted from the state generated during model checking as
described in (Rungta and Mercer 2005). Next, if the target location
is reachable from the return point we return the sum of the cost of
moving to the end of the current function plus the distance estimate
from the return point to the target location as the heuristic estimate;
otherwise we keep unrolling the stack and repeat the above process.

The pseudocode for the dynamic phase of the algorithm is
shown in Figure. 4. The get forward distance estimate function
in Figure. 4 takes as input the current program location of the most
recently executed thread in the concrete state (curLoc) and the tar-
get location (targetLoc) to compute the distance estimate between
them in the forward direction. The get function containing returns
the CFG which contains the current program location (line 1). If the
CFG containing the current location has not been previously ana-
lyzed (line 2) then we know that the type of a polymorphic method



procedure get forward distance estimate(curLoc, targetLoc)
1: 〈N,E, nstart , nend〉 := get function containing(curLoc)
2: if ¬Explored .contains(〈N,E, nstart , nend〉) then
3: compute estimates(〈N,E, nstart , nend〉)
4: if targetLoc ∈ N then
5: return get distance(curLoc, targetLoc)
6: return get estimate(get CFG node(curLoc), get CFG node(targetLoc))
7:

procedure get estimate(n, nt)
8: hVal :=∞
9: for each n′ ∈ call sites(get function containing(n)) do

10: if not related(n′, nt) then
11: continue
12: d := get distance(n, n′)
13: if d < hVal then
14: hVal := min(compute dynamic estimate(n′, nt, d, hVal), hVal)
15: return hVal
16:
procedure compute dynamic estimate(nc, nt, d, hVal)
17: if nt ∈ target CFG nodes(nc) then
18: hVal ′ := d+ get distance from start to node(nt) + 1
19: return hVal ′

20: else
21: /∗ CGR ⊆ Xc ×Xc where Xc is the set of all call sites in the program. ∗/
22: for each n′c ∈ CGR(nc) do
23: if not related(n′c, nt) then
24: continue
25: d′ := d+ get distance from start to node(n′c) + 1
26: if d′ < hVal then
27: hVal := min(compute dynamic estimate(n′c, nt, d

′, hVal), hVal)
28: return hVal
29:

Figure 4. Pseudocode for computing the distance heuristic during runtime

is now resolved. At this point we can compute the distance esti-
mates between the instructions in the method (line 3) by calling
the compute estimates function in Figure. 3. Next, if the target
node is contained within the same CFG as the current node (line 4)
then the algorithm returns the value obtained from the get distance
function. The get distance function returns the shortest distance
between the two nodes in the same CFG. Note that the distance be-
tween the two nodes in the CFG is computed using partial context
information because the algorithm conservatively assigns the dis-
tance between a call site for an unresolved polymorphic type to its
immediate successor as two in the CFG.

The get estimate and compute dynamic estimate functions
traverse the nodes in the call graph implicitly constructing the call
traces from the current location to the target location in the forward
direction to compute the heuristic value, hVal . The function uses
a branch and bound algorithm in an attempt to restrict the number
of call traces that need to be evaluated for computing hVal . The
function call sites (line 9) generates the set of nodes that represent
call sites in the input CFG while the not related (lines 10 and
23) function returns true if there does not exist a path between
the input nodes, n′ and nt (line 10), in the forward direction on
the call graph. The get estimate and compute dynamic estimate
functions compute the distances along call traces using a depth-
first traversal of the call graph (lines 9-14 and 22-27 respectively)
such that the target node is reachable in the forward direction
along the call trace. Note that we detect loops in the call trace in
our implementation and backtrack appropriately. The get estimate
function constructs the first part of the call trace. It gets the distance
from the current location to a call site within its own method that
leads to the target node (lines 10-12). The get estimate function
then calls compute dynamic estimate (line 14) to compute the
distance estimate on the rest of the call trace.

The compute dynamic estimate function computes the dis-
tances through the different call sites in a call trace. It uses a call
graph relation, CGR ⊆ Xc × Xc, where Xc is the set of the
call sites in the entire program, to build a path through the dif-
ferent call sites in the program (lines 22-27) to a target location.
Intuitively, a call graph relation describes the edges between differ-
ent nodes in a call graph. The algorithm maintains a running sum-
mary of the distance estimates between the call sites (line 25). The
get distance from start to node function takes as input a node
(which in this case is a call site) and gets the CFG that contains
the input node. If the Explored set contains the CFG then the
get distance from start to node function returns the shortest dis-
tance from the start node of the CFG, nstart , to the call site; oth-
erwise it returns a conservative estimate of two. This essentially
computes the distance estimates between different call sites in the
call trace. When the algorithm reaches a call site whose callee CFG
contains the target node, the function returns the summation of the
distances along the path in the call trace up to the target node as
the heuristic value (lines 17-19). The heuristic value is computed
as a lower-bound and is propagated along the different call paths to
prune other call traces when the value along a path becomes greater
than the current heuristic value.

Theorem 4.1. The PFSM heuristic computes a lower-bound on
the distance estimate, if there exists one or more sequences of call
points, 〈c0, c1, . . . , ck〉, in the call graph through k methods, in
the presence of unresolved polymorphic methods, that represent
a path between the current location, l, and the target location,
t, dmin(l , t) := dmin(l , c0) +

P
i=1to k−1 dmin(start(i), ci) +

dmin(start(k), t), between l and t and minimizes across all call
sequences.



Proof. Assume that the algorithm does not lower-bound the dis-
tance estimate along a particular sequence of call points. There
are two possible cases when computing the distance along a se-
quence of call points. (1) The type of the method containing a call
point is resolved—either statically or dynamically. Here the algo-
rithm performs an all-pairs shortest path analysis on the CFG of
the method. The analysis returns values between the nodes that are
a lower-bound on the actual distance in the presence of branching
and looping constructs. (2) The type of the method containing the
call point is not resolved. The algorithm assigns a lower-bound of
two to account for moving from the start of the method to a call site
and then moving to next call site. The summation of all the values
as the algorithm moves along a particular call sequence is a lower-
bound on the distance estimate between l and t which contradicts
our assumption.

Corollary 4.2. The PFSM heuristic estimate is consistent.

Proof. The proof follows the one described for the FSM distance
heuristic in (Edelkamp and Mehler 2003). There are two possible
cases: (1) The shortest path from s to t contains s′. Suppose the
length of the shortest path from s to t is l then, by definition,
h(s, t) = h(s′, t) − d(s, s′) which satisfies h(s, t) ≤ h(s′, t) +
d(s, s′). (2) The shortest path from s to t does not contain s′.
Consider the path, π = s → s′ → . . . → t, where |π| ≥
l+ d(s, s′) and l is the shortest path between s and t. Furthermore,
π′ = s → . . . → t, which implies |π′| ≥ l and h(s′) ≥ l. Hence
we have h(s, t) ≤ h(s′, t) + d(s, s′).

Corollary 4.3. The PFSM heuristic is admissible.

Proof. By definition, a consistent heuristic is also admissible (Rus-
sell et al. 1995). From Corollary 1 we know that the PFSM heuristic
is admissible.

Theorem 4.4. The complexity of computing the PFSM distance
heuristic in the forward direction is O(

Prm
i=0 |Ni|3 + |Nc + Ec|)

where rm is the number of methods with resolved types,Ni is set of
nodes representing instructions in method i, Nc is the set of nodes
in the call graph, and Ec is the set of edges in the call graph.

Proof. The complexity of computing the PFSM distance heuristic
in the forward direction is O(

Prm
i=0 |Ni|3) for performing an all-

pairs shortest path analysis on every method whose type has ei-
ther been statically (line 8 in Figure. 3) or dynamically resolved.
Note that when the type of a method is dynamically resolved, line
3 in Figure. 4 calls the function compute estimates in Figure. 3
and then performs the all-pairs shortest path analysis on line 8 in
Figure. 3. The complexity of the PFSM distance heuristic is also
linear in the number of nodes and edges in the call graph as it com-
putes a lower-bound on the distance estimates across the different
call sequences between the current and target location (lines 9-14
and 22-27 in Figure. 4). In the worst case, the algorithm explores
the entire call-graph in a depth-first manner; in general, however,
propagating the lower-bound across the different call sequences is
successful in pruning a large number of call sequences that do not
need to be explored.

In contrast, the FSM distance heuristic, minimizes over all pos-
sible implementing sub-types of a particular method and has a com-
plexity of O(X3), where X is the number of total instructions in
the program X =

P
1≤i≤m |Ni|, and m is the total number of

methods in the program; however, X is very large for most pro-
grams of interest. The PFSM heuristic is more computationally ef-
fective even though both heuristics belong to the same complexity
class.

As the model checking run progresses, PFSM distance heuristic
estimate, hp, is a tighter lower-bound compared to the FSM dis-
tance heuristic estimate, hf , such that hf ≤ hp. The FSM distance
heuristic is a context-insensitive algorithm and under-approximates
distance values by ignoring all calling context. As the type of one
or more methods are resolved during the model checking run the
PFSM distance heuristic computes distances along different meth-
ods based on correct alias information. The PFSM distance heuris-
tic uses the context information on the runtime stack of the state
in a manner similar to the e-FCA (Rungta and Mercer 2006). A
more detailed example demonstrating the effects of calling context
is shown in (Rungta and Mercer 2006).

4.4 Example of heuristic computation
We use the example in Figure. 5 to demonstrate how the heuris-

tic values are computed. The class X in Figure. 5(a) is an abstract
class with three methods: aa, test, and bb. The classes Y (Fig-
ure. 5(b)) and Z (Figure. 5(c)) inherit from the X class. In Fig-
ure. 5(a), the input to the test method is an object, x , of type X.
On lines 7 and 8, methods bb and aa are invoked, respectively, on
the current instance of X and the input parameter x . Statically we
can determine that the call on line 7 of the test method invokes
the bb method on lines 11 − 15 in Figure. 5(a); however, aa is a
dynamically invoked method and the target of the call on line 8 of
Figure. 5(a) depends on the type of x . The overall calling structure
of the program is shown in Figure. 5(d). The test method in X can
call the aa method in either the Y or Z class. The aa method then
calls the cc method in its respective class. In the example shown
in Figure. 5, the goal is to drive the program execution to line 9 in
the cc method of the Y class in Figure. 5(b). Recall that in medium
to large programs evaluating all possible implementing subtypes is
intractable.

Suppose for the program shown in Figure. 5, a main method
calls test with different instances of X objects. During the static
analysis phase, when we reach the test function in Figure. 5(a),
the analysis accounts for the cost of moving through the this.bb
method call on line 7 in Figure. 5(a); however, the analysis cannot
statically resolve the type of x ; thus, the static analysis does not
evaluate either implementation of aa in the Y or Z class and assigns
a conservative estimate of two to account for the cost of moving
from line 8 to the end of the test method. At the end of the static
analysis, the Explored set only contains the test and bb methods.

Let us consider two cases in the dynamic computation of the
heuristic. In the first case, suppose the current location of the
program is at line 6 in Figure. 5(a) and we want to compute a
distance estimate to line 9 in Figure. 5(b). We first get all the call
sites that are reachable from the current location such that there
exists a path from the call site to the target location on the call
graph and the call sites are in the same CFG as the current location.
The only call site that satisfies the condition in Figure. 5 is x.aa().
We then call the get estimate() function in Figure. 4 with the
corresponding call site. The x.aa() call site can call the aa function
in either the X class or the Y class. This maps to two entries in
the call graph relation: Y.aa() → Y.cc() and Z.aa() → Z.cc();
however, the target location can only be reached from Y.cc() based
on the calling hierarchy shown in Figure. 5(d). Since the distance
estimates in the aa method of the Y class have not been computed
on the CFG (as the method does not currently exist in the Explored
set), a conservative cost of two is added along the call trace when
moving from x.aa() to Y.cc(). Similarly, a conservative estimate
of two is added for the cost of moving to the cc method in the Y
class and reaching the target at line 9 because the cc method does
not exist in the Explored set. A final heuristic estimate of four is
returned for the example.



1: public abstract class X {
2:
3: public abstract void aa();
4:
5: public void test(X x ){
6: i := 0;
7: this.bb();
8: x .aa();
9: }

10:
11: public void bb(){
12: this.val := 10;
13: this.otherVal := 11
14: }
15: }

1: class Y extends X {
2:
3: public void aa(){
4: this.cc();
5: }
6:
7: public void cc(){
8: if(. . .) then
9: throw RuntimeException()

10: }
11: }

(a) (b)

1: class Z extends X {
2:
3: public void aa(){
4: this.cc();
5: }
6:
7: public void cc(){
8: /∗ Local Instruction ∗/
9: }

10: }

Z

aabb
X

aa

test
X

cc cc

Y

Y

Z

(c) (d)

Figure 5. An example program and its corresponding call graph to demonstrate the heuristic computation.(a) An abstract class, X, with an
abstract method and implementations for two functions. (b) The Y class that inherits from the X class. (c) The Z class that inherits from the X
class. (d) The call graph for the functions in X, Y, and Z.

In another example that demonstrates the dynamic computa-
tion of the heuristic, suppose the current location of the program
is at line 4 in Figure. 5(b). The location implicitly resolves the
type of the aa method in the Y class because the model checking
search is at the method. At this point we run the static analysis
algorithm (shown in Figure. 3) on the aa method in Figure. 5(b).
Note that since the target of this.cc() is dynamically resolved the
static analysis technique computes the cost of moving through the
cc method at line 4 in Figure. 5(b). After refining the distance es-
timates, we return to the dynamic heuristic computation in Fig-
ure. 4. The analysis computes the distance estimates on the call
trace Y.aa()→ Y.cc() based on the shortest distances in the CFGs
of the methods aa and cc in the Y class. The distance estimates
in a CFG lower-bounds all values across the iterative and looping
constructs.

5. Results
The experiments are conducted on machines with 8 GB of RAM
and two Dual-core Intel Xeon EM64T processors (2.6 GHz). We
run 100 trials of guided search with various heuristics. Note that
we break all heuristic ties randomly that enables us to overcome
the benefits and limitations of a default search order in guided
search (Rungta and Mercer 2007b). All the trials are time bounded
at one hour. This is consistent with other empirical studies (Rungta
and Mercer 2007b,a; Dwyer et al. 2006). Since each trial is com-
pletely independent of the other trials we use a super computing
cluster of 618 nodes to distribute the trials on different nodes.1 Even
though the algorithm does not require parallel computation, using
the super computing cluster allows us to quickly generate results.

1 We thank Mary and Ira Lou Fulton for their generous donations to the
BYU Supercomputing laboratory.

We use the Java Pathfinder (JPF) v4.1 model checker with partial
order reduction turned on to conduct the experiments described in
the paper. JPF model checks Java byte-code using a modified vir-
tual machine.

The input to the guided search is the model and possible er-
ror locations. The possible error locations are be derived by user-
specified reachability properties, can be generated by static anal-
ysis tools, or generated from dynamic analysis tools (Artho and
Biere 2001; Hovemeyer and Pugh 2004; Havelund 2000). For ex-
ample, static analysis tools report program locations where lock
acquisitions by unique threads may lead to a deadlock. These tools,
however, cannot state the feasibility of the deadlock. We use the
technique described in (Rungta and Mercer 2008) to generate a
small sequence of program locations that are relevant to checking
the reachability of the possible error locations.

We use five unique multi-threaded Java programs in this study
to evaluate the effectiveness of the PFSM heuristic. Three pro-
grams are from the benchmark suite of multi-threaded Java pro-
grams gathered from academia, IBM, and classical concurrency er-
rors described in literature (Dwyer et al. 2006). We pick these three
artifacts from the benchmark suite because the threads in these
programs can be systematically manipulated to create configura-
tions of the model where randomized depth-first search is unable to
find errors in the models (Rungta and Mercer 2007a). These mod-
els also exhibit different concurrency error patterns described by
Farchi et. al in (Farchi et al. 2003). The AbsList and the AryList
are programs that use the JDK 1.4 library in accordance with the
documentation. We use Jlint on the AbsList and AryList mod-
els to automatically generate warnings on possible concurrency er-
rors and then manually generate the input sequences as described
in (Rungta and Mercer 2008). The name, type of model, number of
locations in the input sequence, and source lines of code (SLOC)
for the models are as follows:



EXPLORED STATES
Subject Random Heuristic FSM Heuristic PFSM Heuristic

Min Avg Max Min Avg Max Min Avg Max
Twostage(7,1) 15249 109259 409156 3279 30193 178653 209 213 217
Twostage(8,1) 23025 204790 603629 5956 46259 281132 246 251 255
Twostage(10,1) 36056 364859 1216340 14232 156697 1302040 329 335 340
Wronglock(1,10) 58 7064 49100 75 196 2362 367 3781 15923
Reorder(5,1) 1803 6006 12529 912 2562 5765 106 109 112
Reorder(8,1) 10155 34193 98683 5422 24022 96681 193 197 202
Reorder(10,1) 24890 80160 343429 6785 65506 149916 266 272 277
AryList(1,10) 3652 15972 63206 - - - 846 5216 50904
AbsList(1,10) 10497302 10497302 10497302 - - - 982 982 982

TIME IN SECONDS
Subject Random Heuristic FSM Heuristic PFSM Heuristic

Min Avg Max Min Avg Max Min Avg Max
Twostage(7,1) 4.52 40.14 124.17 33.49 39.11 65.93 0.37 0.42 2.57
Twostage(8,1) 6.70 76.24 184.82 34.65 41.87 83.45 0.39 0.41 0.49
Twostage(10,1) 10.89 132.08 318.93 36.35 59.90 242.78 0.43 0.46 0.52
Wronglock(1,10) 0.22 2.85 12.46 10.25 10.70 12.49 0.48 1.66 4.24
Reorder(5,1) 1.19 2.34 4.08 12.78 13.37 14.41 0.28 0.31 0.67
Reorder(8,1) 3.59 9.70 34.72 13.90 17.84 34.02 0.34 0.39 0.54
Reorder(10,1) 6.81 25.62 97.33 14.31 26.30 41.99 0.37 0.41 0.45
AryList(1,10) 2.12 7.95 26.11 - - - 12.21 13.60 22.56
AbsList(1,10) 2585.79 2585.79 2585.79 - - - 4.85 4.92 5.92

MEMORY IN MB
Subject Random Heuristic FSM Heuristic PFSM Heuristic

Min Avg Max Min Avg Max Min Avg Max
Twostage(7,1) 219 972 2090 922 1325 2219 160 182 203
Twostage(8,1) 352 1415 2541 961 1462 2411 163 178 203
Twostage(10,1) 508 2038 3902 1033 1886 3227 163 181 203
Wronglock(1,10) 18 117 374 204 434 693 77 114 187
Reorder(5,1) 50 89 166 185 348 590 160 179 203
Reorder(8,1) 159 387 848 214 571 1168 160 173 203
Reorder(10,1) 279 851 1856 362 1032 1453 163 179 203
AryList(1,10) 136 275 572 - - - 280 318 391
AbsList(1,10) 6154 6154 6154 - - - 165 193 256

Table 1. Comparing the performance of various heuristics.

• TwoStage: Benchmark, Num of locs: 2, Null Pointer Excep-
tion, SLOC: 52

• Reorder: Benchmark, Num of locs: 2, Null Pointer Exception,
SLOC: 44

• Wronglock: Benchmark, Num of locs: 3, Deadlock due to
inconsistent locking. SLOC: 38

• AbsList: Real, Num of locs: 6, Race-condition in the Ab-
stractList class using the synchronized Vector sub-class. SLOC:
7267

• AryList: Real, Num of locs: 6, Race-condition in the ArrayList
class using the synchronized List implementation. SLOC: 7169

Exhaustive search techniques like randomized depth-first search
either struggle or fail to find an error in the models used in the
empirical study. A more detailed comparison with a randomized
depth-first search is shown in (Rungta and Mercer 2008).

We use a greedy depth-first search to guide the search. The
greedy depth-first search picks the best-ranked immediate succes-
sor of the current state and does not consider unexplored successors
until it reaches the end of a path and needs to backtrack. We observe
comparable results with a traditional greedy best-first search with
a bounded queue. We use the distance heuristic to guide the search

through each of the input locations generated using the technique
in (Rungta and Mercer 2008) to mimic a test-like paradigm. The
effects of varying the length of the sequence on the performance of
the heuristic are also reported in (Rungta and Mercer 2008).

Only a portion of the frontier states are saved as backtrack points
which turns the complete search into a partial search; however,
our aim is to find a counter-example efficiently rather than to
do an exhaustive proof or find an optimal counter-example. It is
important to note that in medium to large programs, it is intractable
to generate optimal counter-examples using an A∗ search because
it exhausts the memory resources very quickly.

In Table 1 we specifically compare the performance of the
PFSM heuristic with the FSM and random heuristic while guiding
the program execution through a small sequence of locations. The
entries in Table 1 with “-” in the FSM heuristic columns indicate
that the static analysis did not finish within the time bound of one
hour.

The performance of the PFSM heuristic is dramatically bet-
ter than the random and FSM heuristic. In the Twostage(7,1)
model the PFSM heuristic generates a mere 213 states, on aver-
age, before error discovery while the random and FSM heuristic
generate 109, 259 and 30, 193 states respectively, on average, in



the error discovering trials. A similar improvement for the PFSM
heuristic is noticed in the total time taken and memory used. In
the TwoStage(7,1) model the PFSM only takes 0.42 seconds
on average for error discovery, in contrast, the random heuristic
takes 40.14 seconds while the FSM heuristic takes 39.11 seconds.
In some models such as Reorder(5,1) and Wronglock(1,10)
where the magnitude of states generated is small, the memory usage
of the random heuristic is lower than the PFSM heuristic because it
does not incur the additional heuristic computation cost. Note that
the variance in the results using the FSM and PFSM heuristics is
caused because we break all ties in heuristic values randomly.

6. Discussion
Recent work and our experience in testing and verifying multi-
threaded programs show that only a small number of perturbations
to certain global or shared variables are required to find a particular
error in the multi-threaded system. The key, however, lies in dis-
covering and driving the program execution through these pertur-
bations to elicit the error. Recent work uses the output of static anal-
ysis warnings to generate a sequence of interesting programs rele-
vant for verifying the feasibility a particular static analysis warning.
The sequence is small with large gaps between each location. We
rely on the distance estimate heuristic presented in this paper to
guide the program execution toward the locations in the sequence.
In essence, the distance heuristic drives certain threads toward spe-
cific program locations without manual intervention that is required
in the other heuristics such as the prefer-thread heuristic (Groce and
Visser 2002). This allows us to scale to realistic benchmarks and
discover errors after exploring only a few hundred states.

The heuristic lower-bounds the values across loops and recur-
sive function calls. If the loops and recursive function calls operate
solely on local variables the dynamic partial order reduction allows
us to process a series of instructions as a single transaction; how-
ever, if they operate on global variables then the distance heuristic
is sufficient to drive a particular thread through a loop until it exits
the loop and moves toward the location of interest.

7. Related Work
Heuristics have extensively been used for error detection in pro-
gram and system verification. Hamming distance heuristics pre-
sented by Yang and Dill use the explicit state representation to esti-
mate a bit-wise distance between the current state and an error state
(Yang and Dill 1998). Edelkamp, Lafuente, and Leue implemented
a property based heuristic search which considers the minimum
number of changes required to the variables in the property in order
for the property to be violated. This information is used to estimate
the distance to the error (Edelkamp et al. 2001b). This heuristic
was refined using a Bayesian meta-heuristic by Seppi, Jones and
Lamborn (Seppi et al. 2006). The heuristics in the FLAVERS tool
uses the structure of the property to guide the search (Tan et al.
2004). The property based heuristics are not very effective for find-
ing errors in object-oriented multi-threaded Java and C# programs
because a large number of operations in the program do not directly
affect the property being verified.

The heuristics in (Groce and Visser 2002) exploit the properties
of Java programs to find concurrency errors. A variety of domain
specific heuristics are proposed to find different concurrency errors;
for example, the most-blocked heuristic prefers states with a
greater number of blocked threads in order to find deadlocks, while
the prefer-thread heuristic allows the user to specify a set of
threads whose execution will be preferred over the other threads.
The prefer-thread heuristic is effective for error discovery in
certain programs where exhaustive model checking techniques fail
to find an error as shown in (Rungta and Mercer 2007b); however,

a considerable manual effort is expended while configuring the
correct parameters required for error discovery in the models.

Distance heuristics are structural heuristics that have been ex-
tensively evaluated in this work, (Edelkamp and Mehler 2003;
Cobleigh et al. 2001; Rungta and Mercer 2005, 2006). In essence,
the success of these heuristics lie in the fact that they exploit the
structure of the program to drive the program execution toward a
set of interesting locations either specified by the user or gener-
ated using static/dynamic analysis techniques. The combination of
distance estimate heuristics with the meta heuristic that guides the
search along a sequence of program locations is considerably suc-
cessful in detecting errors in multi-threaded programs (Rungta and
Mercer 2008). The sequence of program locations generated man-
ually essentially represents an abstract trace through the program
while the distance heuristic enables us to find a corresponding fea-
sible concrete execution path.

There are other related guided techniques that use different
abstract traces and guidance strategies for either error discovery
or optimal counter-example generation. The trail directed model
checking generates a concrete counter-example to the error state
using a depth-first search and uses the counter-example produced
to guide the search toward an optimal counter-example (Edelkamp
et al. 2001a). The goal of the distance heuristic presented in this
paper with the meta heuristic, (Rungta and Mercer 2008), is to
discover errors in programs where exhaustive search techniques
such as depth-first search fail.

The deterministic execution technique uses a sequence of rele-
vant data input to execute branch conditions, thread schedules, and
method sequences generated manually by a tester to check whether
an error exists in concurrent Java programs (Harvey and Strooper
2001). This, however, requires a significant amount of manual ef-
fort. The distance heuristic can intelligently rank thread schedules
to drive certain threads along a small sequence of interesting loca-
tions.

Using an abstraction to guide a concrete execution of the sys-
tem has also been explored in hardware verification. One approach
generates a trace on an abstract model created using a set of ini-
tial boolean variables to represent the transition relation (Nanshi
and Somenzi 2006). Next, a guided simulation using pseudo ran-
dom number vectors guides the simulation of the concrete model to
find a concrete counter-example. It refines the abstraction by adding
more boolean variables. This work, however, is limited to verifying
circuit designs and boolean programs. Other approaches use differ-
ent abstraction and guidance techniques but, again, are limited to
boolean programs (Paula and Hu 2007).

Concolic testing executes the program with random concrete
values in conjunction with symbolic execution to collect the path
constraints over input data values (Sen et al. 2005; Sen and Agha
2007) in order to systematically test programs. A new approach
guides the concolic test along different branches to obtain better
branch coverage (Burnim and Sen 2008). The guidance strategy is
able to be achieve better branch coverage compared to traditional
systematic techniques. This shows guidance strategies can also be
combined with concolic test. An interesting avenue of future work
would be to use guidance strategies in concolic testing to find
specific errors.

8. Conclusions and Future Work
In this work we present a distance heuristic function that com-
putes estimates in programs with unresolved polymorphic meth-
ods. The PFSM heuristic performs an interprocedural static anal-
ysis to conservatively compute distances estimates and, then, dy-
namically computes the distance estimates on demand after the
types of polymorphic methods are resolved at transaction bound-
aries during model checking. The empirical analysis shows that



the PFSM heuristic outperforms the FSM distance heuristic that
ignores the calling context information and the baseline random
heuristic. In future work we want to study and evaluate the trade-off
between the accuracy in the heuristic estimate and the performance
in the heuristic computation in how it affects the effectiveness of
the guided search. For example, to further improve the accuracy of
the distance estimate we can propagate the types—extracted from
the state—along the program, as far as possible. A def-use analysis
could be used to detect how far we can propagate the values in the
program.
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