Concept #1 Elements of a decision

A. Problem

1. Our task is to encode the problem so that a computer can solve it.

2. Components
 Action
 Goal
 State
 Cost

B. Formalization

Goal test
\[s_f \in G = \{ s : \text{goal condition met} \} \]

Do this for checkers example
\[s_{tr1} = a(s_6) \]

\[a \in A : S \rightarrow C \]
\[c = \{ s_{tr1}, \text{costs} \} \]
C. Do for robot navigation on a grid world.
D. Groups choose & formulate a decision.

Concept #2: Search Strategy

A. State space & search trees
 \(S = \text{states in world} \)
 \(\text{Tree = states in world that have been visited} \)

B. Example: Navigation (Route Finding)

\[
G = \{ (1,3) \}
A = \{ N, S, E, W \}
\]

Initial state, root of tree

\[
\text{Fringe = nodes waiting to be expanded}
\]

- encoded as a queue or priority queue:
 - front of queue is next node expanded

search strategy

C. Objective: Find efficient way to find a sequence of actions from start to goal \(\Rightarrow\) cool way to set-up queue.
Concept #3 Measuring/Evaluating Search Strategy

- Completeness: guaranteed to find a solution
- Time Complexity
- Space Complexity
- Optimality: found solution a high quality one?

Concept #4 Breadth-First Search

A. Use concept #2 example

B. Efficiency
 Complete? Yes, if path cost is non-decreasing
 Optimal? Yes, if path cost is non-decreasing
 Function of node depth:
 Time complexity: \(b^d \) (\(b \) nodes expanded, \(1, b, b^2, \ldots \))
 Space complexity: size of frontier = \(b^d \) (\(b \) nodes in frontier)

In BFS, use FIFO expansion (expand all nodes at level \(k \))
than level \(k+1 \), \ldots

Key concept, Depth of node.
Concept #5 Uniform Cost Search

A. Always expand lowest-cost node on the fringe

B. Edge Costs

\[w(u,v) \]

\[g(n) = \text{Edge costs} \]

\[\text{BFS = UCS when } g(n) = \text{Depth}(n) \]

C. Efficiency

- Optimal if \(g(\text{successor}(n)) \geq g(n) \)
 - "Non-decreasing path cost"

- Complete?
- Time complexity?
- Space complexity?
Concept #6 Depth First Search

A. Always expand the newest unexpanded node on the Fringe

B. Infinite loop

C. Optimal - no
 - Time complexity
 - Space complexity

\(b^m \) \(m = \text{maximum depth} \)
Concept #7 Avoiding Repeated States

A. Priming the state space
 - saves space
 - makes route finding finite

B. Techniques
 - do not return to parent state
 - do not cycle (don't go to state generate successor node that is a parent ancestor node
 - don't regenerate visited states

\[O(s) \quad s = \text{size of state space} \]

\[\uparrow \]

Space complexity
A. Back from goal + forward from start
B. Optimal: yes
 Complete: yes
 Time: $O(d^2)$
 Space: $O(d^2)$
C. Requirements — See text
 - generating predecessors
 - reversible operators
 $$\delta(n) = \delta_2 \quad \delta_1 = \rho(n)$$
 - know goal explicitly (not recognize when we get there)
 - check to see if new node is already in other half of search
 (e.g., associative memory)
 - what search done in each half.
 - $O(d^2)$ assumes testing intersection
done in constant time (e.g., associative mem, not search).
Concept #10 Informed Search
See last year's notes. Talk about tab.

Concept #10 Best-First Search
- This is a generalization of UCS (priority queue)
- UCS uses g(n) (“cost-so-far”)
- BFS can use g(n), h(n), or both.
- Informed search.

Concept #11 Heuristics
= “cost to go”

h(n) = estimated cost of the cheapest path from state at node n to goal
- admissible: a heuristic that never
Concept #11 continued...

- Why admissible heuristics are important.

All paths go around to avoid unrealistic heuristic costs, but if $h(n) \leq h^*(n) = f^*(n) - d$, you will test shortest paths first.
Concept #12: Greedy Search
Ignore $g(n)$, use only $h(n)$.

Example, $h(n) =$ Euclidean distance

A^*

$f(n) =$ estimated total cost of cheapest solution that passes through n
$= g(n) + h(n)$.
Concept #14. **A**⁺ **part 2**

Given a graph and a heuristic function, we can apply **A**⁺ algorithm to find the optimal path. The heuristic function must be admissible and consistent for **A**⁺ to be guaranteed to find the optimal path.

- **Path**: \(f(n') = \max_n (f(n), g(n') + h(n')) \)

 - Example:
 - Given: \(g(n') = 4, h(n') = 2 \)
 - Using \(h(n) = 4 \): \(f(n) = 7 \)
 - Using \(h(n) = 2 \): \(f(n) = 6 \)

- **Optimality**: **Efficient** for **A**⁺ when \(h(n) \) is admissible.
 - No other optimal algorithm exists that will always expand fewer nodes than **A**⁺.
Learn that when it is incomplete,
out of (comparing) partially effective.

1. Justified exploration is partially effective.
2. Evaluation: costs & benefits.
3. Nature's (assumptions) can solve shutdown.
4. Complexity of the branching & the function.
5. High (cost) & low (cost).
6. Expressed less of the language.
7. Tractability of the language.

Appendix A: Properties of and relations between various search strategies.
Concept #15. Proof of A^* optimality

Suppose G_1 is optimal

\Rightarrow In, $g(n) = g(n)$

\rightarrow optimal path

\[1 \] Suppose that A^* returns a goal node (including linked list of parents \rightarrow path) G_2 instead of G_1. WLOG, G_2 could be the same state as G_1, but reached by suboptimal path.

\[2 \] By suboptimality of G_2

$g(b_2) > g(b_1) = f^*$.

\[3 \] Consider some n along true optimal path from A to G_1, s.t. n is on Frontier of expansion

- Such a node must exist.
 otherwise, all nodes would have been expanded and G_1 would have been found.

- For some such n, G_2 is expanded over n. Meaning

 $f(n) > f(b_2)$. \[\Box \]
Concept #15 continued...

4. Since $h(n)$ is admissible, $f(n) \geq f^{*}$

5. Putting 3 b & 4 together

 $f^{*} = f(g_{3})$

6. But $f(g_{3}) = h(g_{3}) + g(g_{3})$

 $= g(g_{3})$ since g_{3} isgoal

 whence $h(g_{3}) = 0$.

 and $f^{*} = g(g_{3})$.

7. Putting 6 into 5 gives

 $g(g_{3}) \geq g(g_{3})$, a contradiction.

8. Therefore, g_{3} cannot be expanded.