Lecture notes on RSA and the totient function

Jason Holt
BYU Internet Security Research Lab*

8 October 2002

RSA takes advantage of Euler’s generalization of Fermat’s Little Theorem,
namely:

a®™ =1 (mod n)

1 Euler’s Totient Function

Euler’s totient function, ¢(n) is defined as follows, where pg..pi are the prime
factors of n. Given

n=py - -pi' ... D,

o(n) = (po— Dp " - (p1 — D)p$* - (pr — DpE
For example:

90720 =2°-3%*.5.7

#(90720) = (2 —1)2* - (3 - 1)3%- (5 — 1)5° - (7 — 1)7° = 20736.

The totient function describes the number of values less than n which are
relatively prime to n. For the purposes of RSA, we’re only concerned with
values of n which are the product of 2 primes, p and ¢, so ¢(n) is always just

(p—1(g—1).
2 Encryption and decryption with RSA

Encryption and decryption in RSA take advantage of the fact that for a message
m and exponents e and d:

m® =m (mod n)

*This document is in the public domain.

This works because e and d are chosen such that for some (unimportant) value
k,

ed =ko(n) +1
(That is to say, ed = 1 (mod ¢(n)).) Since any

mFem) = @) o) o) =1 (mod n),

ed — mk¢(n)+1

m =m-m*™ =1.m (mod n)

Since ed is congruent to 1 mod ¢(n), d happens to be the multiplicative
inverse of e mod ¢(n) (and vice versa). e is chosen somewhat arbitrarily, usually
as something inexpensive when used as an exponent. Nowadays, it’s generally
65537. e is known as the public or encryption exponent, and d as the decryption
or private exponent. To encrypt a message m to a ciphertext ¢, simply calculate

c=m°modn
Since only the recipient knows d, only he can recover the message:
d

m=c?=(m*)?=m (mod n)

Why is RSA secure? Well, because both discrete logarithms and factoring
are hard for large numbers. Given

m® (mod n)

it’s hard to determine what either the base or exponent were (although in the
case of RSA, the public exponent is published). And given the public modulus
n and public exponent e, it’s hard to compute d because you can’t calculate
¢(n) without knowing n’s factors p and g.

3 Signing with RSA

RSA can be used to produce digital signatures on the hash h of a message m.
The signer raises h to his secret exponent d:

s=h% (mod n).

Only she knows how to do this because only she knows d. Anyone else can
verify the signature by raising it to the public exponent:

h=s5°=(h%)° (mod n).

