Lecture notes on RSA and the totient function

Jason Holt
BYU Internet Security Research Lab*

8 October 2002

RSA takes advantage of Euler's generalization of Fermat's Little Theorem, namely:

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

1 Euler's Totient Function

Euler's totient function, $\phi(n)$ is defined as follows, where $p_{0} . . p_{k}$ are the prime factors of n. Given

$$
\begin{aligned}
& n=p_{0}^{e_{0}} \cdot p_{1}^{e_{1}} \cdot \ldots \cdot p_{k}^{e_{k}} \\
& \phi(n)=\left(p_{0}-1\right) p_{0}^{e_{0}-1} \cdot\left(p_{1}-1\right) p_{1}^{e_{1}-1} \cdot \ldots \cdot\left(p_{k}-1\right) p_{k}^{e_{k}-1}
\end{aligned}
$$

For example:

$$
\begin{aligned}
& 90720=2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \\
& \phi(90720)=(2-1) 2^{4} \cdot(3-1) 3^{3} \cdot(5-1) 5^{0} \cdot(7-1) 7^{0}=20736 .
\end{aligned}
$$

The totient function describes the number of values less than n which are relatively prime to n. For the purposes of RSA, we're only concerned with values of n which are the product of 2 primes, p and q, so $\phi(n)$ is always just $(p-1)(q-1)$.

2 Encryption and decryption with RSA

Encryption and decryption in RSA take advantage of the fact that for a message m and exponents e and d :

$$
m^{e d} \equiv m \quad(\bmod n)
$$

[^0]This works because e and d are chosen such that for some (unimportant) value k,

$$
e d=k \phi(n)+1
$$

(That is to say, $e d \equiv 1(\bmod \phi(n))$. . Since any

$$
\begin{aligned}
& m^{k \phi(n)}=m^{\phi(n)} \cdot m^{\phi(n)} \cdot \ldots \cdot m^{\phi(n)}=1 \quad(\bmod n), \\
& m^{e d}=m^{k \phi(n)+1}=m \cdot m^{k \phi(n)}=1 \cdot m \quad(\bmod n)
\end{aligned}
$$

Since $e d$ is congruent to $1 \bmod \phi(n), d$ happens to be the multiplicative inverse of $e \bmod \phi(n)$ (and vice versa). e is chosen somewhat arbitrarily, usually as something inexpensive when used as an exponent. Nowadays, it's generally 65537. e is known as the public or encryption exponent, and d as the decryption or private exponent. To encrypt a message m to a ciphertext c, simply calculate

$$
c=m^{e} \bmod n
$$

Since only the recipient knows d, only he can recover the message:

$$
m=c^{d}=\left(m^{e}\right)^{d}=m^{e d} \quad(\bmod n)
$$

Why is RSA secure? Well, because both discrete logarithms and factoring are hard for large numbers. Given

$$
m^{e} \quad(\bmod n)
$$

it's hard to determine what either the base or exponent were (although in the case of RSA, the public exponent is published). And given the public modulus n and public exponent e, it's hard to compute d because you can't calculate $\phi(n)$ without knowing n 's factors p and q.

3 Signing with RSA

RSA can be used to produce digital signatures on the hash h of a message m. The signer raises h to his secret exponent d :

$$
s=h^{d} \quad(\bmod n) .
$$

Only she knows how to do this because only she knows d. Anyone else can verify the signature by raising it to the public exponent:

$$
h=s^{e}=\left(h^{d}\right)^{e} \quad(\bmod n) .
$$

[^0]: *This document is in the public domain.

