Lecture notes on RSA and the totient function

Jason Holt
BYU Internet Security Research Lab

8 October 2002

RSA takes advantage of Euler’s generalization of Fermat’s Little Theorem, namely:

\[\phi(n) \equiv 1 \pmod{n} \]

1 Euler’s Totient Function

Euler’s totient function, \(\phi(n) \) is defined as follows, where \(p_0, p_k \) are the prime factors of \(n \). Given

\[n = p_0^{e_0} \cdot p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}, \]

\[\phi(n) = (p_0 - 1)p_0^{e_0 - 1} \cdot (p_1 - 1)p_1^{e_1 - 1} \cdot \ldots \cdot (p_k - 1)p_k^{e_k - 1}. \]

For example:

\[90720 = 2^5 \cdot 3^4 \cdot 5 \cdot 7 \]

\[\phi(90720) = (2 - 1)2^4 \cdot (3 - 1)3^3 \cdot (5 - 1)5^0 \cdot (7 - 1)7^0 = 20736. \]

The totient function describes the number of values less than \(n \) which are relatively prime to \(n \). For the purposes of RSA, we’re only concerned with values of \(n \) which are the product of 2 primes, \(p \) and \(q \), so \(\phi(n) \) is always just \((p - 1)(q - 1)\).

2 Encryption and decryption with RSA

Encryption and decryption in RSA take advantage of the fact that for a message \(m \) and exponents \(e \) and \(d \):

\[m^{ed} \equiv m \pmod{n} \]

*This document is in the public domain.
This works because e and d are chosen such that for some (unimportant) value k,

$$ed = k\phi(n) + 1$$

(That is to say, $ed \equiv 1 \pmod{\phi(n)}$.) Since any

$$m^{k\phi(n)} = m^{\phi(n)} \cdot m^{\phi(n)} \cdot \ldots \cdot m^{\phi(n)} = 1 \pmod{n},$$

$$m^{ed} = m^{k\phi(n)+1} = m \cdot m^{k\phi(n)} = 1 \cdot m \pmod{n}$$

Since ed is congruent to 1 mod $\phi(n)$, d happens to be the multiplicative inverse of e mod $\phi(n)$ (and vice versa). e is chosen somewhat arbitrarily, usually as something inexpensive when used as an exponent. Nowadays, it’s generally 65537. e is known as the public or encryption exponent, and d as the decryption or private exponent. To encrypt a message m to a ciphertext c, simply calculate

$$c = m^e \pmod{n}$$

Since only the recipient knows d, only he can recover the message:

$$m = c^d = (m^e)^d = m^{ed} \pmod{n}$$

Why is RSA secure? Well, because both discrete logarithms and factoring are hard for large numbers. Given

$$m^e \pmod{n}$$

it’s hard to determine what either the base or exponent were (although in the case of RSA, the public exponent is published). And given the public modulus n and public exponent e, it’s hard to compute d because you can’t calculate $\phi(n)$ without knowing n’s factors p and q.

3 Signing with RSA

RSA can be used to produce digital signatures on the hash h of a message m. The signer raises h to his secret exponent d:

$$s = h^d \pmod{n}.$$

Only she knows how to do this because only she knows d. Anyone else can verify the signature by raising it to the public exponent:

$$h = s^e = (h^d)^e \pmod{n}.$$