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ABSTRACT
Online communities have become popular for publishing and search-
ing content, as well as for finding and connecting to other users.
User-generated content includes, for example, personal blogs, book-
marks, and digital photos. These items can be annotated and rated
by different users, and these social tags and derived user-specific
scores can be leveraged for searching relevant content and discov-
ering subjectively interesting items. Moreover, the relationships
among users can also be taken into consideration for ranking search
results, the intuition being that you trust the recommendations of
your close friends more than those of your casual acquaintances.

Queries for tag or keyword combinations that compute and rank
the top-k results thus face a large variety of options that complicate
the query processing and pose efficiency challenges. This paper ad-
dresses these issues by developing an incremental top-k algorithm
with two-dimensional expansions: social expansion considers the
strength of relations among users, and semantic expansion consid-
ers the relatedness of different tags. It presents a new algorithm,
based on principles of threshold algorithms, by folding friends and
related tags into the search space in an incremental on-demand
manner. The excellent performance of the method is demonstrated
by an experimental evaluation on three real-world datasets, crawled
from deli.cio.us, Flickr, and LibraryThing.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; H.3.3
[Information Search and Retrieval]: Search Process

General Terms
Performance, Experimentation

Keywords
social networks, scoring and ranking, top-k query processing

1. INTRODUCTION
The advent of Web 2.0 has changed the way users interact with

the Internet. Publishing content has never been easier, and new on-
line services offer not only the possibility to store personal content,
but also to share it with other people and to explore other users’
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contents. Examples of social-community platforms are del.icio.us,
Flickr, LibraryThing, LinkedIn, MySpace, Facebook, and YouTube.

While differing in the type of content that they focus on (e.g.,
blog entries, photos, videos, books, bookmarks), most community
platforms follow a common pattern. Users must register in order
to join the community. Then they produce information, ideally by
publishing their own documents1 and by adding tags or ratings or
comments to other content already available in the community. The
platforms also offer a way to maintain a list of friends and means
to keep friends informed about your latest content items. The size
of your friend network is often considered as an indication of high
reputation in the network. Many users initially populate their lists
of friends with people they already know from the offline world
or other online communities, but over time they typically identify
previously unknown users that they share common interests with
and also add those users to their friends lists.

A key feature of social communities is the widely used opportu-
nity to attach manually generated annotations, so-called tags, to
content items. Tags can provide precise descriptions of content
items, flavored with the respective personal interest of the user who
generates the tag.

Social tagging offers an opportunity to exploit the “wisdom of
the crowds” by identifying valuable content that is recommended
by friends - either directly or indirectly (i.e., via friends of friends)
and explicitly (e.g., ratings) or implicitly (e.g., by intensive tag-
ging). To this end, the relationships among users should be taken
into account for ranking, the intuition being that you trust the rec-
ommendations of your close friends more than those of your casual
acquaintances. This situation resembles the paradigm of collab-
orative recommendation [19, 25], which applies data mining on
customer-product and similar usage data to predict items that users
are likely interested in. However, the fast growth of communities
and the very high rate of content production and tagging efforts
calls for highly efficient and scalable methods. Existing algorithms
for fast Web search do not consider user relationships and the as-
sets from social tagging, and prior methods for collaborative rec-
ommendation do not provide the throughput scalability that one
needs for running millions of daily ad-hoc queries in social com-
munities such as Flickr - with more than 2 billion content items,
many million users, and high dynamics.

This paper presents a solution to the above problem by develop-
ing an efficient top-k algorithm for social search and ranking. The
method is based on principles of top-k threshold algorithms over
inverted lists of different types, with various novel techniques for
the specific setting of large online communities. For leveraging
the “social wisdom”, the algorithm employs a new form of two-

1For the remainder of this paper, we will use the familiar IR-jargon
term “document”, while actually referring to a more general notion
of content items.
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dimensional expansions: social expansion considers the strength of
relations among users, and semantic expansion considers the relat-
edness of different tags. For efficiency, these expansions are per-
formed incrementally on demand, by dynamically folding friends
and related tags into the search space. The excellent performance
of the method is demonstrated by an experimental evaluation on
three real-world datasets, crawled from deli.cio.us, Flickr, and Li-
braryThing.

The rest of the paper is organized as follows. Section 2 reviews
related work and puts it into context. Section 3 introduces a graph
model to represent the entities in a social community and their re-
lationships. Section 4 presents ways of quantifying the strengths of
different relationships, which in turn feeds into a model for com-
puting scores of user-specific search results and recommendations.
Section 5 explains the algorithm for efficiently processing queries
in social networks. Section 6 presents experiments with three real-
world datasets to study retrieval/recommendation effectiveness and,
most notably, demonstrate the efficiency gains by the new query
processing algorithm.

2. RELATED WORK
Social networks of the Web 2.0 style have received major at-

tention in the recent literature, with focus on applying data min-
ing methods on social relations and, most prominently, relations
among tags. [16] provides an empirical study of the tagging behav-
ior and tag usage in online communities. [21, 31] discuss methods
for generating taxonomy-like relations among tags, so-called “folk-
sonomies”, based on statistical measures. Similar approaches have
been applied to query-and-click logs, e.g., in [5], but none of this
work considers social relations between different users. Identify-
ing important and emergent tags and visualizing them in so-called
“tag clouds” (and corresponding time series) has been extensively
explored; recent work along these lines includes [14, 17, 32]. The
dynamics of social relations among users (e.g., the rate of making
friends) has been studied, for example, in [2, 24, 33].

As for the exploitation of social tags for information retrieval, [3]
discusses the challenges of searching and ranking in social com-
munities. Various forms of community-aware ranking methods
have been developed, mostly inspired by the well-known PageR-
ank method [10] for web link analysis. [22] proposes FolkRank for
identifying important users, data items, and tags. [36] compares
different methods for identifying authoritative users with high ex-
pertise. [6] introduces SocialPageRank, to measure page author-
ity based on its annotations, and SocialSimRank for the similarity
of tags. [35] further extends this work by augmenting language
models with tag similarities. [13] shows that explicit user tagging
can help to improve precision of queries for Intranet search. The
very recent work of [20] provides an empirical analysis of how so-
cial bookmarking can influence Web search, with both positive and
negative insights. None of this prior work considers the impact of
user-friendship strengths on the scoring of search results, and the
problem of efficient query processing in the presence of such “so-
cial wisdom”.

Aspects of user communities have also been considered for peer-
to-peer search, most notably, for establishing “social ties” between
peers and routing queries based on corresponding similarity mea-
sures (e.g., similarities of queries issued by different peers). [8] has
studied “social” query routing strategies based on explicit friend-
ship relationships and behavioral affinity. [27] has developed an ar-
chitecture and methods for “social” overlay networks that connect
“taste buddies” with each other. [26] has proposed a community-
enhanced Web search engine that takes into account prior clicks
by community members. [11] has proposed the notion of Peer-
Sensitive ObjectRank, where peers receive resources from their
friends and rank them using peer-specific trust values.

There is ample literature on collaborative filtering for recom-
mender systems (e.g., [1, 18, 29, 30]), for example, to predict
movies or e-commerce items that customers are likely to buy or
to identify news that news-feed subscribers are likely interested in.
In a nutshell, these methods aim to learn user preferences from the
collective behavior - like purchases or tagging - of an entire com-
munity. Typically, statistical analysis and machine learning tech-
niques are used offline for precomputations, and the actual run-
time recommendations have limited flexibility and cannot easily
cope with high dynamics and ad-hoc interests of individual users
(as expressed by an ad-hoc query). One of the notable exceptions
is the recent work by [12] which addresses scalability issues when
the number of users and items in a recommender system grows to
many millions and both undergo fast changes. However, in con-
trast to our “social search” theme, this prior work considers only
the space of user-item pairs and there is no notion of user-specific
tags or annotations on items. Thus, our setting requires search over
a three-dimensional user-tag-item space, as opposed to the two-
dimensional user-item space of the previous work on collaborative
filtering.

3. SOCIAL NETWORK MODEL
The entities that occur in social networks can be cast into a com-

mon graph model, representing the different elements of a social
network and their mutual relationships. Figure 1 illustrates the
graph, which forms the basis of our scoring model and query pro-
cessing algorithm.

Figure 1: Social Network Model

A node in the graph can be of one of the following types: it can
either represent a user, a tag, or a document (data item). Addition-
ally, social networks exhibit various relationships, both among the
nodes of the same type and between nodes of different types; these
are represented by edges in the graph and described below. Edges
can be weighted in different ways, according to the applications
built on top of the model.

3.1 Relations Among Nodes of the Same Type
The following relations exist between nodes of the same type:

Friendship(User1, User2, FriendshipStrength): Social networks
allow users to maintain an explicit list of friends. The trust of
one user in another user (as far as potential recommendations are
concerned) is reflected in the FriendshipStrength. (The quantita-
tive measures to this end are discussed in Section 4.) Additional
means of establishing implicit friendships include, for example, a
user subscribing to another user’s content (e.g., adding the other
user’s books to your set of InterestingLibraries in LibraryThing)
or subscribing to the same user group as another user expressing
high overlap in thematic interests. Regardless of how direct friends
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are defined, we may consider the transitive closure of the Friend-
ship relation or a bounded set of transitive connections (up to some
distance).

TagSimilarity(Tag1, Tag2, TagSim): As tags are freely selected
annotations and there is often a natural diversity in the tag wordings
used by different users in a social network, different tag words may
express (near-)synonyms (e.g., “feline” and “cat”, “Web_2.0” and
“Social_Web”, etc.) or other kinds of semantically related con-
cepts (e.g., hyponyms such as “dogs” and “German_shepherd”,
“search_engine” and “Google”, etc.). The tag-usage statistics in
the social network can be harnessed to derive TagSim similarities
between tags (see Section 4 for quantitative measures).

Linkage(Document1, Document2, Weight): In some applications,
documents (data items) also exhibit relations among themselves.
In the case of web pages, this linkage is obvious and given by the
hyperlink graph, with weights often chosen proportionally to the
outdegree of the pages. For other types of documents, different no-
tions of links and weights need to be defined; conceivable options
could include, for example, the geographic proximity of different
photos when GPS information is available.

3.2 Relations Among Nodes of Different Types
The following relations exist between different nodes types:

DocContent(Document, Tag, ContentScore): By annotating a
document with a tag, users associate the two entities so that the
tag should be viewed as an indicator of the document’s content.
We consider a ContentScore associated with a document-tag pair
to reflect how well that tag describes the document.

Tagging(User, Tag, TagScore): Each tag is associated with each
user who used it on at least one document; this captures the topics
that the user is interested in. The TagScore reflects how intensively
a tag has been used by one user.

Rating(User, Document, RatingScore): in many social commu-
nities, users can explicitly rate documents, which is captured by a
rating score. Another naive instantiation of Rating is authorship of
a content item, which (e.g., in the case of bookmarks) can be seen
as an endorsement for the document.

Additional aspects can be considered as attributes associated with
edges. Our model aims to capture all relationships that occur in
social networks, but some of the above relationships may be unde-
fined for specific networks. In del.icio.us, for instance, user inter-
actions are mainly through bookmarking and tagging, whereas in
Flickr, the vast majority of users has authored content (their pho-
tos).

For the purpose of search result ranking and top-k query pro-
cessing, we will mainly focus on the Friendship and Tag Similarity
scores, as discussed next.

4. SOCIAL SCORING MODEL
In line with the free-text tagging of the social communities, we

consider a query Q(u, q1 . . . qn), issued by a query initiator u, as
a set of tags (keywords) q1 . . . qn, possibly with weights for each
tag (which will be disregarded for the sake of presentation simplic-
ity). Result documents should contain at least one of the query
terms and be ranked according to a query-specific document score.
In contrast to standard IR query models, our document scores also
contain a social component: the content-based score of a document
is additionally user-specific, i.e., it depends on the social context of
the query initiator. This resembles the personalization approaches
offered by some search engines, but social networks have the addi-
tional asset of knowing friendship relations and the friends’ tagging
behavior and are thus the most natural habitat to further explore and
improve this idea.

Our social scoring model extends the traditional IR scoring mod-
els (tf-idf-based, probabilistic IR, language models) to search in
social networks, with the following ingredients: (1) a measure for
the importance of users, relative to the querying user, (2) a context-
specific tag frequency relative to the querying user that reflects the
relative importance of users which used a tag, and, optionally, (3)
the expansion of query tags with related (“semantically similar”)
tags. In the following, we denote by U the set of users, by D the
set of documents, and by T the set of tags.

Friendship Similarity. The importance of a user, relative to
the querying user, is quantified by the friendship similarity func-
tion Fu(u′). We define Fu(u) = 0 (as a user is not interested
in getting recommendations to her “own” documents/bookmarks
which she knows anyway), and we normalize the F values by set-
ting

∑
u′∈U Fu(u′) = 1 for all users u ∈ U . Fu(u′) may be

viewed as the probability that a random document that was tagged
by u′ will be interesting to u. The friendship similarity may be
a combination of syntactic measures (like overlap of tag usage),
social measures (like distance in the friendship graph), and global
measures (like a PageRank-style importance of users computed on
the friendship graph). In our implementation, we first compute an
overlap-based similarity O(u, u′) for directly connected users in
the friendship graph (direct friends) as the Dice coefficient of the
sets of tags u and u′ used:

O(u, u′) =
2× |tagset(u∧ u′)|

|tagset(u)|+ |tagset(u′)| .

We then extend this to users u and u′ that are indirectly connected
by one or more friendship paths by aggregating similarities along
each path and picking the path with highest similarity. To this end,
similarities can be averaged, multiplied, or multiplied weighted by
(linear or dampened) distance, etc. In the implementation, we use

Pu(u′) = max
path u=u0...uk=u′

k−1∏

i=0

O(ui, ui+1)

which favors users at small distances. Other types of direct friend-
ship strength and aggregation over paths can be easily plugged into
the model and our implementation.

As not all users are connected in the friendship graph, we addi-
tionally use a uniform background model to assign a small, con-
stant similarity also to unconnected users; so the final definition of
friendship similarity is:

Fu(u′) = α · 1

|U | + (1− α) · Pu(u′)

Social Frequency. To reflect the similarity of the users who
tagged a document that may be of interest to the querying user,
we introduce the notion of social frequency, which replaces the
standard term frequency (tf) and considers friendship similarities.
More formally, denoting by tfu(d, t) the number of times user u
used tag t for document d, we define the social frequency sfu(d, t)
for a tag t and a document d, relative to a user u, as

sfu(d, t) =
∑

u′∈U

Fu(u′) · tfu′(d, t).

Note that tfu(d, t) is typically 1 (tagged once) or 0 (not tagged at
all) in most of today’s social-tagging platforms, but it is conceiv-
able that quantitative ratings are factored into this measure or user
feedback leads to non-binary sf values. By plugging the definition
of Fu(u′) into the above formula, we obtain

sfu(d, t) =
∑

u′∈U

(
α

|U | · tfu′(d, t) + (1− α) · Pu(u′) · tfu′(d, t))
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showing us that the social frequency can be split into a global
part

∑
u′∈U αtfu′(d, t) = αTF (d, t) that is independent of the

querying user and corresponds to a weighted global term frequency
TF (d, t), and a user-specific frequency (the second sum) that de-
pends on the friendship strengths of the querying user. We will
make use of this decomposition for more efficient query processing
in Section 5.

Social Score for Tags. To compute the score su(d, t) of a doc-
ument d with respect to a single tag t relative to the querying user
u, we use a scoring function in the form of a simplified BM25 [28]
score:

su(d, t) =
(k1 + 1) · |U | · sfu(d, t)

k1 + |U | · sfu(d, t)
· idf(t)

where k1 is a tunable coefficient (just like in standard BM25) and
idf(t) is the inverse document frequency of tag t, instantiated as

idf(t) = log
|D| − df(t) + 0.5

df(t) + 0.5

with df(t) denoting the number of documents that were tagged with
t by at least one user. Unlike the original BM25 formula, our model
has no notion of document lengths; the number of tags assigned to
a document does not vary as much as the length of text documents.

Plugging the definitions of sfu(d, t) and Fu(u′) into the for-
mula, we obtain su(d, t) =

(k1 + 1)(αTF (d, t) + (1− α)
∑

u′∈U |U |Pu(u′)tfu′(d, t))

k1 + αTF (d, t) + (1− α)
∑

u′∈U |U |Pu(u′)tfu′(d, t)
·idf(t)

As a special case, we can emulate socially agnostic global scoring,
with just considering global tag frequencies TF (d, t) and idf(t),
by setting α = 1.

Tag Expansion. Even though related users are likely to have
tagged related documents, they may have used different tags to de-
scribe them. It is therefore essential to allow for an expansion of
query tags to “semantically” related tags. A simple way to account
for this would be to statically expand the query with a fixed num-
ber of similar tags; however, experiments on text IR have shown
that this can lead to topic drift and search results that are infe-
rior to those of the unexpanded, original query [9]. Our scoring
model therefore adopts the careful expansion approach proposed
in [34] that considers, for the score of a document, only the best
expansion of a query tag, not all of them. More formally, we in-
troduce the tag similarity tsim(t1, t2) for a pair of tags t1 and t2,
0 ≤ tsim(t1, t2) ≤ 1. The final score s∗u(d, t) of a document d
with respect to a tag t and relative to a querying user u, considering
tag expansion, is then defined as

s∗u(d, t) = max
t′∈T

tsim(t, t′) · su(d, t′)

In our current implementation, the similarity between two tags is
determined by the co-occurrence of the tags in the entire document
collection by estimating conditional probabilities:

tsim(t, t′) = P [t′|t] =
df(t ∧ t′)

df(t)

where df(t∧ t′) is the number of documents that have been tagged
by both tags (but possibly by different users). Other measures such
as SocialSimRank from [6] could be easily incorporated as well.

Social Score for Queries. Finally, the score for an entire query
with multiple tags q1 . . . qi is the sum of the per-tag scores:

s∗u(d, q1 . . . qn) =
∑

q1...qn

s∗u(d, qi)

Note that this score assumes a non-conjunctive query evaluation.
However, it can easily be extended to conjunctive evaluation by
setting s∗u(d, q1 . . . qn) = 0 when at least one of the s∗u(d, qi) = 0.

5. QUERY PROCESSING
This section introduces the CONTEXTMERGE algorithm to ef-

ficiently evaluate the top-k matches for a query, using the social-
context score introduced in the previous section. This algorithm
generally falls into the well-established framework of threshold al-
gorithms over impact-ordered inverted lists [15, 4] for efficient
top-k query processing. However, as the social score depends on
the user who submits a query, it is impossible to precompute per-
tag scores for each document and each user. Standard algorithms
that rely on scanning inverted lists cannot be applied here. Instead,
CONTEXTMERGE makes use of information that is available in so-
cial tagging systems anyway, namely lists of documents tagged by
a user and numbers of documents tagged with tags. It incremen-
tally builds social frequencies by considering users that are related
to the querying user in descending order of friendship similarity,
computes upper and lower bounds for the social score from these
frequencies, and stops the execution as soon as it can be guaranteed
that the best k documents have been identified.

5.1 Preprocessing
CONTEXTMERGE makes use of four different kinds of prepro-

cessed index lists that are built at indexing time and accessed mostly
sequentially in descending order of scores at querying time. Addi-
tionally, random accesses to look up the value of an item in a list
are possible, but more expensive than sequential accesses in terms
of access cost.

• DOCS(t) contains, for a tag t, the documents d tagged by at
least one user with tag t and the corresponding global tag
frequencies TF (d, t) (the total number of times all users to-
gether have tagged d with t), sorted by descending TF (d, t).

• USERDOCS(u,t) contains, for a user u and a tag t, the (un-
sorted) set of documents d tagged by u with t and their user-
specific tag frequency tfu(d, t) (the number of times u tagged
d with t, often 1 for today’s social-tagging platforms).

• FRIENDS(u) contains, for a user u, all related users u′ and
their similarity Pu(u′), sorted by descending Pu(u′).

• SIMTAGS(t) contains for a tag t all similar tags t′ with their
similarity tsim(t, t′), in descending order of tsim(t, t′) ·
idf(t′).

5.2 Algorithmic Framework
Figure 2 shows the general structure of our query processing

framework. To compute the top-k results for a query q1 . . . qn sub-
mitted by a user u, CONTEXTMERGE sequentially scans, for all
query tags, the DOCS lists and the USERDOCS lists of the friends
of u in an interleaved way, maintains a list of candidate documents
seen during the scans and a list of current top-k candidates, and
terminates as soon as none of the candidates can move to the top-k.
To improve efficiency, CONTEXTMERGE can additionally perform
random accesses to the index lists to lookup the values for selected
documents. Note that the algorithm can be further optimized if α is
set to extreme values: For α = 0, no DOCS lists need to be opened
as the execution can be limited to the context of u; analogously, if
α = 1, there is no need to consider any lists of friends, so just the
DOCS lists are read and CONTEXTMERGE behaves like a standard
top-k algorithm. However, the interesting case is for α between 0
and 1.

Sequential Scans. To limit the number of disk accesses, the
USERDOCS lists are opened only on demand, namely when the
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procedure CONTEXTMERGE(user u, query q1 . . . qn, α)
for i← 1 . . . n do

FRIENDS[i]← FRIENDS(u)
DOCS[i] ← DOCS(qi)

end for
candidates← ∅
repeat

for b← 1 . . . batchsize do
l ← CHOOSENEXTLIST( )
if l = FRIENDS[i] then

read USERDOCS(FRIENDS[i], q[i])
go to next entry in FRIENDS[i]

else if l = DOCS[i] then
read DOCS[i]

end if
end for
CHECKRANDOMACCESSES( )
if CHECKTERMINATION( ) then

break
end if

until termination
end procedure

Figure 2: CONTEXTMERGE without tag expansion

score that can be read from a USERDOCS list is greater than the
score from any DOCS list. The algorithm additionally scans, for
each query term, the list FRIENDS(u) of u’s friends to determine
an upper bound for the score that can be read from the USER-
DOCS list of the next friend for the query term. In each iteration
of the main loop, CONTEXTMERGE does a batch of batchsize list
accesses, where in each access a number of entries is read from
the list that can contribute the highest score. As we do not keep
precomputed scores in the list, but just frequencies, we need to
compute the score contributions from each list at run-time. To
do this, the algorithm maintains the last value high[i] read from
each DOCS[i] list (which is set to the top value in the list upon
initialization and updated when tuples are read from the list) and
the last value highF [i] read from the FRIENDS list in each query
dimension (i.e., original query tag). The upper bound for the next
score read from the DOCS[i] list can be computed by evaluating
su(d, t) with TF (d, t) = high[i] and setting the user-specific
part to 0. Analogously, the upper bound for the next USERDOCS
list in dimension i (which could be read if the USERDOCS list
for the next user in that dimension were opened) is computed as
(k1+1)·(1−α)|U|highF [i]·maxtf(qi))
k1+|U|·((1−α)highF [i]·maxtf(qi))

·idf(t), where maxtf(qi) is the
maximal term frequency of any user and any document for tag qi.
The idf values needed to compute these scores are fetched once
during the initialization of the execution.

The CHOOSENEXTLIST method of the algorithm then greed-
ily selects the list which has the highest expected score. If this is
a FRIENDS list, the corresponding USERDOCS list is read com-
pletely and the FRIENDS list in that dimension is advanced by one.
Note that in most of today’s social-tagging applications, all docu-
ments in the USERDOCS list will have the same tf value of 1, so
all of them are read in one shot. If the next list is a DOCS list, a
configurable number of entries is read from it (as DOCS lists are
usually much longer than USERDOCS lists).

Candidate Management and Termination Test. When scan-
ning the index lists, CONTEXTMERGE collects candidates for the
query result and maintains them in two disjoint priority queues, one
for the current top-k items and another one for all other candidates
that could still make it into the final top-k. For each candidate dj ,
the algorithm maintains the following information:

• TF (dj, qi), the value read for dj from the DOCS lists for
each query tag qi

• uf(dj , qi) =
∑

USERDOCS(u′) read for qi
Pu(u′)·tfu′(dj , qi),

the weighted sum of values read for dj from the USERDOCS
lists for each qi

• E(dj) ⊆ {1 . . . n}, the set of evaluated DOCS dimensions
in which dj has already been evaluated,

• r(dj , qi), the number of times dj has been seen in user lists
for qi,

• worstscore(dj), a lower bound for the total score of dj which
is computed from the values seen so far for dj ,

• bestscore(dj), an upper bound for the total score of dj .

To compute the worstscore of a candidate, su(dj , q) is evaluated
by setting TF (dj, qi) = 0 for i �∈ E(dj) and using uf(dj , qi)
instead of the summation

∑
u′∈U Pu(u′) · tfu(dj , qi). Note that

in conjunctive evaluation, the worstscore of a candidate remains 0
until the document has, for each query tag qi, been seen in DOCS(i)
(by sequential or random access) or in one of the USERDOCS lists
read for qi.

To compute dj ’s bestscore, we assume TF (dj, qi) = high[i] for
i �∈ E(dj) (the current upper bound of the corresponding DOCS
list). Additionally, we need to estimate the contribution C from
users that have not yet been seen, and use the sum uf(dj , qi) + C
in the social-context part of su(dj , q). As the algorithm considers
users in descending order of similarity, we know that for any user
u′ that has not yet been considered for qi, Pu(u′) ≤ highF [i].
Denoting by massi =

∑
USERDOCS(u′)readforqi

Pu(u′) the sum
of the similarities of users already considered for qi and by maxtf
the maximal tag frequency of any user for any document and tag in
the collection (which is usually 1), we can estimate the remaining
contribution as C = (1 − massi)maxtf , because the Pu values
are normalized to a sum of 1. Moreover, if we additionally know
the maximal number maxu[i] of users who tagged any document
with qi, the maximal contribution from unseen users for dj and qi

can be C = (maxu[i]− r(dj , qi)) ·maxtf (maxu[i] can be read
during the initialization of the algorithm; the initial high value of
the corresponding DOCS list is an upper bound for maxu[i] which
is tight if maxtf = 1).

The bestscore estimation can be made more precise if
TF (dj, qi) is known, because we can replace maxu[i] in the for-
mula by TF (dj, qi) which often is much smaller. If α > 0, i.e.,
if the algorithm scans the DOCS lists, we can replace maxu[i]
by high[i] if TF (dj, qi) is not yet known (if it was higher than
high[i], it would have already been read during the scan of the cor-
responding DOCS list).

In addition, the following information is derived at each step:

• the minimum worstscore min-k of the current top-k docs,
which serves as the stopping threshold, and

• the bestscore that any currently unseen document can get,
which is computed by assuming that such an unseen docu-
ment dv (for virtual document) appears right at the front of
the not yet seen parts of the lists. Its best score is then com-
puted by setting TF (dv, ti) = high[i], estimating the the
contribution from not yet seen users like explained above,
and evaluating the score in each dimension with these num-
bers.

The algorithm can safely terminate, yielding the correct top-k re-
sults, when the maximum bestscore of the candidate queue and the
best score of any unseen document is not larger than min-k. Ad-
ditionally, whenever a candidate in the queue has a bestscore that

527



is not higher than min-k, this candidate can be pruned from the
queue (which helps to keep the memory footprint of the execution
low as unneeded candidates can be removed early in the process).
To further limit the CPU overhead of testing the candidates, this
test is only performed after a full batch of scan steps, and only en-
abled after the bestscore of the unseen document dv is not greater
than min-k.

Random Accesses. In addition to sequential accesses (SA) to the
index lists, CONTEXTMERGE can also perform random accesses
(RA) to the index lists to look up missing scores of candidates.
However, it is not feasible to check all USERDOCS lists of not yet
seen users for a document, as this would require to explore the full
range of (potentially many thousands of transitive) friends. There-
fore, the only type of RA applied by CONTEXTMERGE is RA to
DOCS lists to look up the global term frequency of a document
for a tag. This serves two purposes: first, it can reduce the gap
between the document’s worstscore and bestscore because TF is
then known exactly for one more tag; second, the estimation of the
score contribution from the remaining friends gets more precise (as
TF (d, t) can be used in the estimation instead of maxtf(t)).

As RA are much more expensive than SA (in the order of 100
to 1,000 times for real systems), they have to be carefully selected
and scheduled to avoid any unnecessary work. Our scheduling for
RA follows the LAST heuristics from [7]: our algorithm performs
only SA until the estimated cost to perform all RA to remaining
candidates is at most as high as the cost for all SA done so far. We
estimate the number of RA by summing up, for all candidates, the
number of query dimensions (i.e., original query tags) that have not
yet been evaluated.

5.3 Including Tag Expansion
Tag expansion adds another dimension that CONTEXTMERGE

needs to combine with the user-expansion dimension. Concep-
tually, we add, for each similar tag tij of a query tag qi, a new
DOCS[i][j] list (which corresponds to DOCS(tij ) and a list
FRIENDS[i][j] of similar users. The score for these lists is com-
puted like the score for lists without tag expansion, but additionally
multiplied with tsim(qi, tij). Candidate documents now maintain,
for each query tag qi, the information shown above not only for qi

itself but also for each similar tag tij . Following the max-semantics
of our tag-expansion score, we can now estimate worstscores and
bestscores of candidates as the maximum worstscore and bestscore
for each similar tag, again weighted by tsim(qi, tij).

However, it would be very inefficient to directly include the lists
of all similar tags in the processing. Instead, CONTEXTMERGE

limits the number of expansion tags per original query tag (e.g., by
a limit of 10) and incrementally adds lists for similar tags to the
processing on the fly. To do this, the algorithm maintains, for each
query tag qi, the list SIMTAGS(qi) of tags similar to qi, and in-
cludes these lists in the list selection process (CHOOSENEXTLIST).
To compute the score bounds of a list SIMTAGS(qi), CON-
TEXTMERGE first reads the entry tij , tsim(qi, tij) from the top
of the list without actually removing it from the list and looks up
idf(tij). The score of the SIMTAGS(qi) list is then the maxi-
mum of the scores that the DOCS and FRIENDS lists for t had
if they were opened for scanning. If CHOOSENEXTLIST chooses
the SIMTAGS(qi) list, it adds DOCS[i][j] and FRIENDS[i][j]
to the processing.

In this dynamic handling of tag expansions, the computation of
worstscores for candidates must take into account that the actual
score of a document for a query tag qi is the maximum over all
similar tags tij whose lists are open. In addition, the bestscore
computation needs to consider that not all lists for expanded tags
may have been opened already. For each query tag qi where the
tag expansion limit has not yet been reached, it therefore computes

the maximal score that any document can get for the top tag tij

in SIMTAGS(qi), and the bestscore of a document is then the
maximum bestscore it can obtain in all open lists and the next ex-
pansion. Note that this bound is only correct because the entries in
SIMTAGS(qi) are sorted by tsim(qi, tij · idf(tij)).

6. EXPERIMENTS

6.1 Data Collections and Benchmark Queries
We evaluate the effectiveness of our scoring model and the effi-

ciency of the CONTEXTMERGE algorithm on three different datasets,
crawled from social network websites of different kinds:

• del.icio.us: We have partly crawled the social bookmark site
del.icio.us (http://del.icio.us/) with a total of 12,389 users,
175,754 bookmarks with 2,781,096 tags, and 152, 306 friend-
ship connections.

• Flickr: We have partly crawled Flickr (http://flickr.com/)
with a total of 52,347 users, 10,000,000 images with 29,111,183
tags, and 1,293,777 friendship connections. In addition to
explicit friends defined by the user (which rarely happens
in Flickr), we also considered two users as friends if one of
them commented a picture uploaded by the other.

• LibraryThing: We have partly crawled the social book cata-
log LibraryThing (http://www.librarything.com) with a total
of 9,986 users, 6,453,605 books with 14,295,693 tags, and
17,317 friendship edges. As users in LibraryThing typically
use tags that consist of multiple terms, we extracted the terms
from the tags and considered the set of terms used by a user
for a book as if she tagged the book with the terms. The
friendship here is again defined in a broader way, and con-
sists of explicit friends and users marked as having interest-
ing libraries.

Finding a good set of queries and relevant results for them is not
an easy task. Even though there has been some work on evaluating
queries in social networks, most notably by Bao et al. [6] who use
DMOZ categories as global ground truth, such methods don’t fit
our user-centric search task. Here, it is not sufficient to consider
global relevance measures, as the notion of relevance is highly sub-
jective and dependent on the initiator of the query and her personal
context. For example, a picture of a person may only be relevant
if she is known to the query initiator. However, when we execute
our queries in the context of a user taken from our collections, it is
not possible to ask this user to assess the subjective relevance of a
result item.

To solve this problem, we propose two independent evaluation
methods, a user-specific ground truth and a user study with man-
ual relevance assessments for selected queries. For a given query
Q(u, q1 . . . qn), we consider as user-specific ground truth the union
of all documents which were tagged with all query tags by u or any
of her direct friends. Our decision to consider also friend’s doc-
uments as part of the ground truth is based on the fact that these
are also documents that the user has direct access to and it is likely
that the user has seen, and agreed with, the tags assigned. Since
documents on the ground truth set contain tags from the query, we
evaluate the queries on a residual collection where query tags by
u and her friends are removed as they are known to lead towards
relevant results. Note that this introduces a penalty for our method
as the transitive friends with highest scores cannot contribute rel-
evant results by definition. Queries for the ground truth were ran-
domly selected from tag pairs with medium frequency in the cor-
pus (between 1,000 and 2,000), the query initiator was chosen ran-
domly among users that have previously used the query tags and
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Without Tag Expansion
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flickr 0.39 0.42 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.36
LibraryThing 0.61 0.65 0.65 0.66 0.67 0.66 0.66 0.68 0.70 0.72 0.71

With Tag Expansion
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flickr 0.42 0.40 0.40 0.40 0.40 0.39 0.39 0.40 0.40 0.40 0.36
LibraryThing 0.61 0.63 0.64 0.65 0.65 0.65 0.65 0.67 0.69 0.72 0.71

Table 1: NDCG-10 for varying α, manual assessments

Without Tag Expansion
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Delicious 0.15 0.25 0.27 0.33 0.34 0.35 0.35 0.37 0.39 0.39 0.36
LibraryThing 0.29 0.42 0.49 0.54 0.53 0.55 0.56 0.59 0.60 0.63 0.62

With Tag Expansion
α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Delicious 0.16 0.25 0.28 0.36 0.36 0.36 0.36 0.39 0.40 0.37 0.36
LibraryThing 0.30 0.41 0.46 0.53 0.52 0.53 0.55 0.57 0.59 0.61 0.60

Table 2: Precision@10 for varying α values, ground truth ex-
periments

have at least one friend in the collection. This process yielded 150
queries for delicious and 184 queries for LibraryThing; note that
this method cannot be applied to the Flickr data because there is
almost no overlap in the pictures users tag.

For the user study on the LibraryThing data, we asked five col-
leagues to register with LibraryThing, tag at least 20 books there,
and choose some friends among other users. They then suggested
28 queries related to the books they tagged. For Flickr, we collected
40 queries from other colleagues and randomly selected a (fictious)
query initiator among the users in our Flickr crawl who used all
query tags at least once on the same picture. We then ran the queries
with different configurations of our algorithm and pooled the re-
sults. In the assessment phase, a volunteer (which was the query
initiator for LibraryThing) was shown, in addition to the results for
the query from the pool, the documents (i.e., pictures, bookmarks,
or books) from the query initiator that contain at least one of the
query tags, in order to understand the personal context of the query
initiator. This way, we try to overcome the aforementioned problem
of subjectively assessing result qualities with the eyes of the query
initiator. The participant then marks each result as highly relevant,
relevant, or nonrelevant in the context of the query initiator (with-
out knowing which configuration generated the result).

6.2 Retrieval Effectiveness
We evaluate the effectiveness of our method by computing pre-

cision and normalized discounted cumulative gain (NDCG) [23] at
certain cutoff levels, where relevant documents were determined
either by human assessments or by the ground truth.

Results for the User Studies. The results from the user study are
shown in Table 1. For both the Flickr and the LibraryThing data set
the NDCG improved by increasing α, but dropped of when setting
α to 1. This shows that while the semantic aspect is more important
than social aspect for these specific datasets, the social component
helps improving the search result, in particular for Flickr. This can
also be seen with the precision@10, which for LibraryThing starts
at 0.50 for α = 0.0, increases to 0.53 for α = 0.9 and drops to
0.40 for α = 1.0.

Results for the User-Specific Ground Truth. The ground truth
based experiments (Table 2 show very similar results. Again, re-
sult quality improves then increasing α, but drops when ignoring
the social aspect and setting α = 1. For Delicious the social as-
pect seems to be more important than for the other data sets, here
the optimal value is α = 0.8. Overall search effectiveness clearly
benefits from integrating social scores.

Figure 3: Average Execution Cost without tag expansion

Figure 4: Average Execution Cost with tag expansion

6.3 Retrieval Efficiency
Our main concern in this paper has beeen the efficiency and scal-

ability of the query processing. To assess the efficiency of the CON-
TEXTMERGE algorithm, we evaluated the two sets of queries used
for the ground-truth based evaluation on the Librarything and de-
licious data sets, and in addition a set of 164 queries on the Flickr
data set that were computed similarly to the others. The algorithm
was implemented in Java, with the index lists stored in an Oracle
10g database. The experiments were done on an Windows-based
server machine with four Opteron CPUs and 16GB of memory. We
measured wall-clock runtimes and abstract cost in terms of disk ac-
cesses, where the cost for a random access was 100 and the cost for
a sequential access 1. We compared our algorithm with a standard
join-then-sort algorithm that reads all index lists involved in the
query execution into memory, uses an in-memory hash join to com-
bine entries for the same document, and finally does an in-memory
sort of the candidate set to compute the top-k results.

For each collection, we performed a large variety of experiments
to explore the space of alphas, thresholds for maximal tag expan-
sion, and conjunctive vs. disjunctive evaluation. For space restric-
tions, we limit the discussion to selected results with conjunctive
evaluation, results with disjunctive evaluation generally followed
the same trends. Figure 3 depicts the average abstract cost per
query for the three collections and selected values of α, evaluated
with CONTEXTMERGE and the baseline without tag expansion. It
is evident that our highly efficient top-k algorithm has at most half
the cost of the baseline algorithm for most values of α, and shows
even higher savings for the LibraryThing collection. Table 3 shows
some additional details for the experiments on LibraryThing; it is
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Configuration time[s] avg.#SA avg.#SA avg.#SA to avg.#RA #avg.
overall to DOCS USERDOCS overall #exp
alpha = 0.0

CONTEXTMERGE 0.70 70,588 0 70,588 65 0
CONTEXTMERGE w/ tag exp. 1.37 126,772 0 126,772 194 7
Baseline 1.43 165,352 0 165,352 0 0
Baseline w/ tag exp. 6.10 67,0405 0 67,0405 0 20

alpha = 0.5
CONTEXTMERGE 0.68 76,012 21,834 54,178 23 0
CONTEXTMERGE w/ tag exp. 0.84 78,808 22,063 56,745 64 2
Baseline 2.0 248,093 82,742 165,351 0 0
Baseline w/ tag exp. 9.92 1,118,554 448,149 670,405 0 20

alpha = 1.0
CONTEXTMERGE 0.14 11,341 11,341 0 1 0
CONTEXTMERGE w/ tag exp. 0.21 12,223 12,223 0 9 1
Baseline 0.59 82742 82,742 0 0 0
Baseline w/ tag exp. 3.43 448,149 448,149 0 0 20

Table 3: Efficiency details for LibraryThing with conjunctive
evaluation

evident from the table that wall-clock runtime of our algorithm is
also at least 50% better than that of the baseline (which is also the
case for the other two collections).

Figure 4 shows abstract cost for the same setup, but now with tag
expansion up to a limit of 10 similar tags. Note that the bars for the
LibraryThing baseline experiment have been cut at 350,000. Here,
the effectiveness of our dynamic tag expansion is clearly evident, as
it saves factors of 3-5 compared to the baseline method which needs
to completely scan the lists of all 10 related tags for each query tag.
Table 3 again shows details for some experiments on LibraryThing;
here, our highly efficient method manages to reduce runtime by up
to an order of magnitude over the baseline. The column avg.#exp
shows the average number of similar tags considered per query.
Whereas the baseline methods needs to consider all tags, our self-
throttling expansion technique requires only very few similar tags.

7. CONCLUSIONS
Social search is a promising direction to increase user-perceived

query result quality. This paper developed an effective scoring
model for user-centric searches in social networks, and introduced
the CONTEXTMERGE algorithm to efficiently evaluate queries in
such networks, dynamically including related users in the execu-
tion. Combining a top-k algorithm with dynamic tag expansion
and dynamic expansion to similar users, CONTEXTMERGE is up
to an order of magnitude faster in terms of measured runtime and
cheaper in terms of abstract cost than the standard baseline method
of processing inverted lists.
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