Chapter 6

Queries and Interfaces
Keyword Queries

- Simple, natural language queries were designed to enable everyone to search

- Current search engines do not perform well (in general) with natural language queries

- People trained (in effect) to use keywords
 - Compare average of about 2.8 words/Web query to average of 30 words/Community-based Question Answering (CQA) query

- Keyword selection is not always easy
 - Query refinement techniques can help
Stem Classes

- Stemming generates *stem classes*

- A stem class is the group of words that will be transformed into the *same stem* by the stemming algorithm
 - Generated by running *stemmer* on large corpus
 - e.g., Porter stemmer on TREC News on 3 stem classes with the first entry being the *stem*

```
/bank banked banking bankings banks
/ocean oceaneering oceanic oceanics oceanization oceans
/polic polical polically [police] policeable policed
-policement policer policers polices policial
-policically policier policiers policies policing
-policization policize policly [policy] policying policys
```
Stem Classes

- Stem classes are often *too big* and *inaccurate*
- Modify using analysis of *word co-occurrence*
- **Assumption:**
 - *Word variants* that could substitute for each other should *co-occur* often in documents. For example,
 - Meeting ~ Assembly
 - Adult ~ Grown up
Modifying Stem Classes

- For all pairs of words in the stem classes, count how often they co-occur in text windows of W words, where W is in the range 50-100.

- Compute a co-occurrence or association metric for each pair, which measures the degree of association between the words.

- Construct a graph where the vertices represent words and the edges are between words whose co-occurrence metric is above a threshold value, which is set empirically.

- Find the connected components of the graph. These are the new stem classes.
Modifying Stem Classes

- Dices’ Coefficient is an example of a term association measure
 - \[2 \frac{n_{ab}}{n_a + n_b} \], where \(n_x \) is the number of windows (documents) containing \(x \)
 - a measure of the proportion of term co-occurrence

- Two vertices are in the same connected component of a graph if there is a path between them
 - Forms word clusters based on a threshold value

- Sample output of modification
 - /policies [policy]
 - /police policed policing
 - /bank banking banks
Spell Checking

- Important part of *query processing*

 - 10-15% of all Web queries have *spelling errors*

- There are many types of errors, e.g., errors extracted from query logs

- Examples of misspelled words:
 - periner sisters
 - brimingham news
 - catamarn sailing
 - hair extenssions
 - marshmellow world
 - miniture golf courses
 - psyhics
 - home doceration

- Examples of typos:
 - realstateisting.bc.com
 - akia 1080i manunal
 - ultimatwarcade
 - mainsourcebank
 - dellottitouche
Spell Checking

- Basic approach: suggest corrections for words not found in spelling dictionary
 - Many spelling errors are related to websites, products, companies, people, etc. that are unlikely to be found
- Suggestions found by comparing word to words in dictionary using similarity measure
- Most common similarity measure is edit distance
 - Number of operations required to transform one word into the other
Edit Distance

- Damerau-Levenshtein Distance
 - Counts the minimum number of *insertions, deletions, substitutions, or transpositions* of single characters required
 - e.g., Damerau-Levenshtein distance 1 (single-character errors)

 extensions → extensions (insertion error)
 poiner → pointer (deletion error)
 marshmellow → marshmallow (substitution error)
 birmingham → birmingham (transposition error)

- Distance 2

 deceration → deceration
 deceration → decoration
Edit Distance

- Different techniques used to speed up calculation of edit distances -- restrict to words that

 - start with same character (spelling errors rarely occur in the first letter)

 - come with similar length (spelling errors rarely occur on words with the same length)

 - sound the same (homophone, rules map words to codes)

- Last option uses a (same) phonetic code to group words

 - e.g., Soundex, a phonetic index grouping words that sound alike but are spelled differently
Soundex Code

1. Keep the first letter (in upper case).

2. Replace these letters with hyphens: a,e,i,o,u,y,h,w.

3. Replace the other letters by numbers as follows:

 1: b,f,p,v
 2: c,g,j,k,q,s,x,z
 3: d,t
 4: l
 5: m,n
 6: r

4. Delete adjacent repeats of a number.

5. Delete the hyphens.

6. Keep the first three numbers or pad out with zeros.

extensssions → E235; extensions → E235
marshmellow → M625; marshmallow → M625
brimmingham → B655; birmingham → B655
poineer → P560; pointer → P536 (correct word may not always have the same Soundex code)
Spelling Correction Issues

- Ranking corrections (> 1 possible corrections for an error)
 - “Did you mean...” feature requires accurate ranking of possible corrections (more likely: the best suggestion)

- Context
 - Choosing right suggestion depends on context (other words)
 - e.g., lawers → lowers, lawyers, layers, lasers, lagers
 but trial lawers → trial lawyers

- Run-on errors (word boundaries are skipped/mistyped)
 - e.g., “mainscourcebank”
 - Missing spaces can be considered another single character error in right framework
Noisy Channel Model

- Address the issues of *ranking*, *context*, and *run-on errors*

- User chooses word w based on *probability distribution* $P(w)$
 - Called the *language model*
 - Can capture *context information* about the *frequency of occurrence* of a word in text, e.g., $P(w_1 | w_2)$
 - The *probability* of observing a word, given that another one has just been observed

- User writes word w, but *noisy channel* causes word e to be written instead with probability $P(e | w)$
 - Called *error model*
 - Represents information about the *frequency* of spelling errors
Noisy Channel Model

- Need to estimate probability of correction – to represent info. about the frequency of different types of errors

 \[
 P(w \mid e) = P(e \mid w)P(w), \text{ i.e., the probability that given a written word } e, \text{ the correct word is } w
 \]

- Estimate language model probability using context

 \[
 P(w) = \lambda P(w) + (1 - \lambda)P(w \mid wp)
 \]

 where \(wp \) is a previous word of \(w \), and \(\lambda \) is a parameter which specifies the relative importance of \(P(w) \) & \(P(w \mid wp) \)

- Examples.

 - “fish tink”: “tank” and “think” both likely corrections, but
 \[
 P(\text{tank} \mid \text{fish}) > P(\text{think} \mid \text{fish})
 \]
Noisy Channel Model

- Language model probabilities estimated using corpus and query log

- Both simple and complex methods have been used for estimating error model
 - Simple approach: assume that all words with same edit distance have same probability, only edit distance 1 and 2 considered
 - More complex approach: incorporate estimates based on common typing errors
 - Estimates are derived from large collections of text by finding many pairs of (in)correctly spelled words
Relevance Feedback

- A *query expansion* and *refinement* technique
- User identifies relevant (and maybe non-relevant) documents in the initial result list
- System modifies query using terms from those documents and *re-ranks* documents
- Pseudo-relevance feedback
 - Assumes top-ranked documents are relevant – no user input
 - Keywords are added/dropped or their weights increase/decrease
Pseudo-relevance Feedback Example

1. **Badmans Tropical Fish**
 A freshwater aquarium page covering all aspects of the tropical fish hobby, ... to Badman's Tropical Fish. ... world of aquariology with Badman's Tropical Fish. ...

2. **Tropical Fish**
 Notes on a few species and a gallery of photos of African cichlids.

3. **The Tropical Tank Homepage - Tropical Fish and Aquariums**
 Info on tropical fish and tropical aquariums, large fish species index with ... Here you will find lots of information on Tropical Fish and Aquariums. ...

4. **Tropical Fish Centre**
 Offers a range of aquarium products, advice on choosing species, feeding, and health care, and a discussion board.

5. **Tropical fish - Wikipedia, the free encyclopedia**
 Tropical fish are popular aquarium fish, due to their often bright coloration. ... Practical Fishkeeping • Tropical Fish Hobbyist • Koi. Aquarium related companies: ...

6. **Tropical Fish Find**
 Home page for Tropical Fish Internet Directory ... stores, forums, clubs, fish facts, tropical fish compatibility and aquarium ...

7. **Breeding tropical fish**
 ... interested in keeping and/or breeding Tropical, Marine, Pond and Coldwater fish. ... Breeding Tropical Fish ... breeding tropical, marine, coldwater & pond fish ...

8. **FishLore**
 Includes tropical freshwater aquarium how-to guides, FAQs, fish profiles, articles, and forums.

9. **Cathy's Tropical Fish Keeping**
 Information on setting up and maintaining a successful freshwater aquarium.

10. **Tropical Fish Place**
 Tropical Fish information for your freshwater fish tank ... great amount of information about a great hobby, a freshwater tropical fish tank ...
If we assume top 10 are relevant, most frequent terms are (with frequency):

- a (926), td (535), href (495), http (357), width (345), com (343), nbsp (316), www (260), tr (239), htm (233), class (225), jpg (221)

- Too many stopwords and HTML expressions

For query expansion, use only snippets and remove stopwords

- tropical (26), fish (28), aquarium (8), freshwater (5), breeding (4), information (3), species (3), tank (2), Badman’s (2), page (2), hobby (2), forums (2)
Relevance Feedback - Query Logs

- Drawback of the pseudo-relevance feedback strategy:
 - When the initial ranking does not contain many relevant documents, the expansion are unlikely to be helpful.

- *Query logs* provide important contextual information that can be used effectively for query expansion.

- Context in this case is:
 - Previous queries that are the *same*
 - Previous queries that are *similar*
 - Query sessions including the *same query*

- Query history for individuals could be used for caching.
Relevance Feedback

- Rocchio algorithm
 - Based on the concept of *optimal query*
 - **Maximizes** the difference between the
 1. average vector representing the *relevant* documents, and
 2. average vector representing the *non-relevant* documents

- Modifies query according to

\[q'_j = \alpha \cdot q_j + \beta \cdot \frac{1}{|\text{Rel}|} \sum_{D_i \in \text{Rel}} d_{ij} - \gamma \cdot \frac{1}{|\text{Nonrel}|} \sum_{D_i \in \text{Nonrel}} d_{ij} \]

- \(\alpha, \beta, \) and \(\gamma \) are parameters
 - Typical values 8, 16, and 4
Snippet Generation

- Successful search engine interface depends on users’ understanding of the (contents of) query results

Tropical Fish
One of the U.K.s Leading suppliers of Tropical, Coldwater, Marine Fish and Invertebrates plus... next day fish delivery service ...
www.tropicalfish.org.uk/tropical_fish.htm Cached page

- Snippets are query-dependent document summaries

- Snippet generation is a simple *text summarization*

 - Rank each sentence in a document using a significance factor, first proposed by H. P. Luhn in 50’s

 - Select the *top sentences* for the summary with a number of significant words
Sentence Selection

- Significance factor for a sentence is calculated based on the occurrence of significant words

 - If \(f_{d,w} \) is the frequency of word \(w \) in document \(d \), then \(w \) is a significant word if it is not a stopword, i.e., a high-frequency word, and

 \[
 f_{d,w} \geq \begin{cases}
 7 - 0.1 \times (25 - s_d), & \text{if} \ s_d < 25 \\
 7, & \text{if} \ 25 \leq s_d \leq 40 \\
 7 + 0.1 \times (s_d - 40), & \text{otherwise}
 \end{cases}
 \]

 where \(s_d \) is the number of sentences in document \(d \)

 - Text is bracketed by significant words (limit on number of non-significant words in bracket)
Sentence Selection

- **Significance factor** for bracketed text spans is computed by (i) dividing the square of the number of *significant words* in the span by (ii) the total number of words.

- **Example.**

 \[
 w w w w w w w w w w w .
 \]
 \((\text{Initial sentence})\)

 \[
 w w s w s s w w s w w .
 \]
 \((\text{Identify significant words})\)

 \[
 w w [s w s s w w s] w w .
 \]
 \((\text{Text span bracketed by significant words})\)

 The limit set for non-significant words in a bracket is typically 4

 Significance factor = \(4^2/7 = 2.3\)
Snippet Generation

- Involves more features than just *significance factor*

- A typical sentence-based, snippet-generation approach:
 1. Whether the *sentence* is a heading
 2. Whether it is the 1st or 2nd line of the document
 3. The total number of *query terms* occurring in the *sentence*
 4. The number of unique *query terms* in the *sentence*
 5. The *longest contiguous* run of *query words* in the *sentence*
 6. A *density* measure of *query words* (i.e., *significance factor* on *query words* in *sentences*)

- *Weighted* combination of *features* used to rank *sentences*