
Chapter 2 

Architecture of a 

Search Engine 



Search Engine Architecture 

 A software architecture consists of software components, 

 the interfaces provided by those components and

 the relationships between them 

 Describes a system at a particular level of abstraction 

 Architecture of a search engine determined by two    

   requirements 

 Effectiveness (quality of results) 

 Efficiency (response time and throughput) 

2 



Indexing Process 

3 

Identifies and stores  

documents for 

indexing 

Transforms documents into  

index terms or features 

Takes index terms and  

creates data structures 

(inverted indexes) to 

support  fast searching 

Text + Meta data  

(Doc type, structure,  

features, size, etc.) 

- One of the two major functions of search engine components 



Query Process 

4 

Supports creation/refinement  

of query, display of results 

Uses query and indexes  

to generate ranked list  

of documents 

Monitors and measures effectiveness 

and efficiency (primarily offline) 

using log data 

- Another major function of search engine components 

 

Must be both 

efficient and 

effective 



Details: Text Acquisition 

 Crawler 

 Identifies and acquires documents for search engines 

 Many types – Web, enterprise, desktop 

 Web crawlers follow links to find documents 

• Must efficiently find huge numbers of web pages (                )  

 and keep them up-to-date (                 ) 

• Single site crawlers for site search 

• Topical or focused crawlers for specific search 

 Document crawlers for enterprise and desktop search 

• Follow links and scan directories 

5 

coverage 

freshness 



Text Acquisition 
 Feeds  

 Real-time streams of documents 

• e.g., Web feeds for news, blogs, video, radio, TV 

 RSS (Rich Site Summary) is a commonly-used web     

  feed format (which has been standardized)  

 Conversion 

 Convert variety of documents into a consistent text plus 

    metadata format 

• e.g., HTML, Word, PDF, etc. → XML 

 Convert text encoding for different languages 

• Using a Unicode standard like UTF-8 

6 



Text Transformation 
 Parser 

 Processing the sequence of text tokens (i.e., words) in the    

       document to recognize structural elements 

• e.g., titles, links, headings, etc. 

 Tokenizer recognizes “words” in the text (and queries) for    

      comparison, a non-trivial process. 

• Must consider issues like                      ,              ,                     ,                    

                                 ,                  , etc. 

 Markup languages such as HTML and XML often used to     

       specify structure 

• Tags used to specify document elements, e.g., <h2>Overview</h2> 

• Document parser uses syntax of markup language (or other 

 formatting) to identify structure 
7 

capitalization hyphens apostrophes 

non-alpha characters  separators 



Text Transformation 
 Stopping 

 Remove common (function) words, e.g., “and”, “or”, “the”, “in” 

 Some impact on efficiency & effectiveness (reduce the size of 

     indexes) 

 A problem for some queries, e.g., “to be or not to be” 

 Stemming 

 Group words derived from a common stem, e.g., “compute”, 

     “computer”, “computers”, “computing” 

 Often effective (in terms of matching); not for all queries 

 Benefits vary for different languages (Arabic vs. Chinese) 

 Information Extraction 

 Identify classes of index terms, e.g., named entity recognizers, 

     identify classes such as people, locations, companies & 

     dates, using part-of-speech tagging 8 



Index Creation 

 Document Statistics (collected during the indexing process) 

 Gathers word counts and positions of words and other    

   features (e.g., length of documents as number of tokens) 

 Used in ranking algorithm (IR model dependent) 

 Stored in lookup tables for fast retrieval 

 Weighting (during the query process)  

 Computes weights (the relative importance) of index terms 

 Used in ranking algorithm (IR model dependent) 

 e.g., TF-IDF weight 

• Combination of term frequency (TF) in document and inverse   

 document frequency (IDF) in the collection 9 



10 

Index Creation 
 Inversion of word list, converting doc-term to term-doc 

Sort 

ab 2 

being 2    

charact  2 

human 2 

index 1 

literat 1 

novel 1 

pap 1 

report 1 

report 2 

result 1 

technique 1 

technique 1 

   :  : 
   :  : 

 Word     Doc# 

Remove 

Duplicates 

ab 2       1 

being 2       1 

charact  2 1 

human 2 1 

index 1 1 

literat 1 1 

novel 1 1 

pap 1 1 

report 1 1 

 2 1 

result 1 1 

technique 1 2 

   :  : 
   :  : 

Word    Doc#  Freq   Word    Doc# 

pap          1 

report 1    

novel 1 

technique 1 

literat 1 

result 1 

technique 1 

index 1 

     : : 

report 2 

charact 2 

human 2 

being 2 

ab 2 

     :  : 



11 

Term-Document Incidence Matrix 
 Matrix element (t, d) = 1, if term t in document d; 0, otherwise 

 Example.    
Documents 

T
e
rm

s
 

 Term-Term Correlation Matrix: M  MT, where M is a term-

 document matrix, MT is the transpose of M, and ‘’ is 

 the matrix composition operator 



Index Creation 
 Inversion 

 Core of indexing process 

 Converts document-term information to term-document for 

    indexing 

• Difficult for very large numbers of documents to achieve high   

 efficiency (for initial setup and subsequent updates) 

• Multiple-level indexing is desirable for very large number of 

 indexes, e.g., B+-tree indexing 

 Format of inverted file is designed for fast query processing 

• Must also handle updates, besides creation 

• Compression used for efficiency 

12 



User Interaction 
 Query input 

 Provides user interface and parser for query language 

 Most web queries are very simple, such as keyword queries, 

    other applications may use forms 

 Query language used to describe more complex queries and 

    results of query transformation 

• Boolean queries 

• “Quotes” for phrase queries, indicating relationships among words 

• For keyword searches, longer queries yield less results 

• Similar to SQL language used in DB applications  

• IR query languages focus on content 

 Goal: yields good (better) results for a range of (specific) queries 

13 



User Interaction 
 Query transformation 

 Performs text transformation on query text, e.g., stemming 

 Improves initial query, both before and after initial search 

 Spell checking/query suggestion, which provide alternatives 

     (correcting spelling errors/specification) to the original 

     query, is based on query logs 

 Modify the original query with additional terms  

• Query expansion: provides new, similar terms to a query 

 based on term occurrences in documents or query logs 

• Relevance feedback: terms in previous retrieved relevant 

 documents 

14 



User Interaction 

 Results output 

 Constructs the display of ranked documents for a query 

 Generates snippets to show how queries match documents 

 Highlights important words and passages 

 May provide clustering and other visualization tools 

15 



Ranking 
 Scoring 

 Calculates scores for documents using a ranking algorithm 

 Is a core component of search engine 

 Basic form of score is 

                qi di  

• where V is the vocabulary of the document collection 

• qi & di are query and document term weights, respectively, 

 e.g., TF/IDF or term probability for term i 

 Many variations of ranking algorithms and retrieval models 

 Must be calculated very rapidly to achieve performance 

     optimization 
16 

|V| 

 

i=1 


