
Chapter 2

Architecture of a

Search Engine

Search Engine Architecture

 A software architecture consists of software components,

 the interfaces provided by those components and

 the relationships between them

 Describes a system at a particular level of abstraction

 Architecture of a search engine determined by two

 requirements

 Effectiveness (quality of results)

 Efficiency (response time and throughput)

2

Indexing Process

3

Identifies and stores

documents for

indexing

Transforms documents into

index terms or features

Takes index terms and

creates data structures

(inverted indexes) to

support fast searching

Text + Meta data

(Doc type, structure,

features, size, etc.)

- One of the two major functions of search engine components

Query Process

4

Supports creation/refinement

of query, display of results

Uses query and indexes

to generate ranked list

of documents

Monitors and measures effectiveness

and efficiency (primarily offline)

using log data

- Another major function of search engine components



Must be both

efficient and

effective

Details: Text Acquisition

 Crawler

 Identifies and acquires documents for search engines

 Many types – Web, enterprise, desktop

 Web crawlers follow links to find documents

• Must efficiently find huge numbers of web pages ()

 and keep them up-to-date ()

• Single site crawlers for site search

• Topical or focused crawlers for specific search

 Document crawlers for enterprise and desktop search

• Follow links and scan directories

5

coverage

freshness

Text Acquisition
 Feeds

 Real-time streams of documents

• e.g., Web feeds for news, blogs, video, radio, TV

 RSS (Rich Site Summary) is a commonly-used web

 feed format (which has been standardized)

 Conversion

 Convert variety of documents into a consistent text plus

 metadata format

• e.g., HTML, Word, PDF, etc. → XML

 Convert text encoding for different languages

• Using a Unicode standard like UTF-8

6

Text Transformation
 Parser

 Processing the sequence of text tokens (i.e., words) in the

 document to recognize structural elements

• e.g., titles, links, headings, etc.

 Tokenizer recognizes “words” in the text (and queries) for

 comparison, a non-trivial process.

• Must consider issues like , , ,

 , , etc.

 Markup languages such as HTML and XML often used to

 specify structure

• Tags used to specify document elements, e.g., <h2>Overview</h2>

• Document parser uses syntax of markup language (or other

 formatting) to identify structure
7

capitalization hyphens apostrophes

non-alpha characters separators

Text Transformation
 Stopping

 Remove common (function) words, e.g., “and”, “or”, “the”, “in”

 Some impact on efficiency & effectiveness (reduce the size of

 indexes)

 A problem for some queries, e.g., “to be or not to be”

 Stemming

 Group words derived from a common stem, e.g., “compute”,

 “computer”, “computers”, “computing”

 Often effective (in terms of matching); not for all queries

 Benefits vary for different languages (Arabic vs. Chinese)

 Information Extraction

 Identify classes of index terms, e.g., named entity recognizers,

 identify classes such as people, locations, companies &

 dates, using part-of-speech tagging 8

Index Creation

 Document Statistics (collected during the indexing process)

 Gathers word counts and positions of words and other

 features (e.g., length of documents as number of tokens)

 Used in ranking algorithm (IR model dependent)

 Stored in lookup tables for fast retrieval

 Weighting (during the query process)

 Computes weights (the relative importance) of index terms

 Used in ranking algorithm (IR model dependent)

 e.g., TF-IDF weight

• Combination of term frequency (TF) in document and inverse

 document frequency (IDF) in the collection 9

10

Index Creation
 Inversion of word list, converting doc-term to term-doc

Sort

ab 2

being 2

charact 2

human 2

index 1

literat 1

novel 1

pap 1

report 1

report 2

result 1

technique 1

technique 1

 : :
 : :

 Word Doc#

Remove

Duplicates

ab 2 1

being 2 1

charact 2 1

human 2 1

index 1 1

literat 1 1

novel 1 1

pap 1 1

report 1 1

 2 1

result 1 1

technique 1 2

 : :
 : :

Word Doc# Freq Word Doc#

pap 1

report 1

novel 1

technique 1

literat 1

result 1

technique 1

index 1

 : :

report 2

charact 2

human 2

being 2

ab 2

 : :

11

Term-Document Incidence Matrix
 Matrix element (t, d) = 1, if term t in document d; 0, otherwise

 Example.
Documents

T
e
rm

s

 Term-Term Correlation Matrix: M  MT, where M is a term-

 document matrix, MT is the transpose of M, and ‘’ is

 the matrix composition operator

Index Creation
 Inversion

 Core of indexing process

 Converts document-term information to term-document for

 indexing

• Difficult for very large numbers of documents to achieve high

 efficiency (for initial setup and subsequent updates)

• Multiple-level indexing is desirable for very large number of

 indexes, e.g., B+-tree indexing

 Format of inverted file is designed for fast query processing

• Must also handle updates, besides creation

• Compression used for efficiency

12

User Interaction
 Query input

 Provides user interface and parser for query language

 Most web queries are very simple, such as keyword queries,

 other applications may use forms

 Query language used to describe more complex queries and

 results of query transformation

• Boolean queries

• “Quotes” for phrase queries, indicating relationships among words

• For keyword searches, longer queries yield less results

• Similar to SQL language used in DB applications

• IR query languages focus on content

 Goal: yields good (better) results for a range of (specific) queries

13

User Interaction
 Query transformation

 Performs text transformation on query text, e.g., stemming

 Improves initial query, both before and after initial search

 Spell checking/query suggestion, which provide alternatives

 (correcting spelling errors/specification) to the original

 query, is based on query logs

 Modify the original query with additional terms

• Query expansion: provides new, similar terms to a query

 based on term occurrences in documents or query logs

• Relevance feedback: terms in previous retrieved relevant

 documents

14

User Interaction

 Results output

 Constructs the display of ranked documents for a query

 Generates snippets to show how queries match documents

 Highlights important words and passages

 May provide clustering and other visualization tools

15

Ranking
 Scoring

 Calculates scores for documents using a ranking algorithm

 Is a core component of search engine

 Basic form of score is

  qi di

• where V is the vocabulary of the document collection

• qi & di are query and document term weights, respectively,

 e.g., TF/IDF or term probability for term i

 Many variations of ranking algorithms and retrieval models

 Must be calculated very rapidly to achieve performance

 optimization
16

|V|

i=1

