Chapter 10
Social Search
Social Search

“Social search describes search acts that make use of social interactions with others. These interactions may be explicit or implicit, co-located or remote, synchronous or asynchronous”

- **Social search**
 - Search within a *social environment*
 - *Communities* of users *actively participating* in the search process
 - Goes beyond classical search tasks
 - Facilitates the “information seeking” process [Evans 08]

Social vs. Standard Search

Key differences

- Users interact with the system (standard & Social)
- Users interact with one another in an open/social environment implicitly (reading)/explicitly (writing) such as
 - Visiting *social media sites*, e.g., YouTube
 - Browsing through *social networking sites*, e.g., Facebook
Social search includes, but is not limited to, the so-called social media site

- Collectively referred to as “Web 2.0” as opposed to the classical notion of the Web (“Web 1.0”)

Social media sites

- User generated content, such as comments
- Users can tag their own and other’s content
- Users can share favorites, tags, etc., with others
- Provide unique data resources for search engines

Example.

- YouTube, Facebook, LibraryThing, LinkedIn, Flickr, Last.FM, Twitter, CiteULike, Del.icio.us, & MySpace
Social Media/Network Sites

<table>
<thead>
<tr>
<th>Feature</th>
<th>Facebook</th>
<th>LinkedIn</th>
<th>Delicious</th>
<th>Twitter</th>
<th>LibraryThing</th>
<th>Flickr</th>
<th>YouTube</th>
<th>MySpace</th>
<th>Last.fm</th>
<th>CiteULike</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Search</td>
<td>yes</td>
</tr>
<tr>
<td>Recommendation</td>
<td>friends, groups, ads, links, connections, jobs, ads, books, news art, location, books, links, news articles, movies, videos, groups</td>
<td>books, groups, links people, location</td>
<td>books, groups, links</td>
<td>users, pics, travel, groups, links, videos</td>
<td>video, links, people,</td>
<td>friends, groups, ads, links,</td>
<td>friends, music, concerts (the rec application exists)</td>
<td>articles, links, groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtering</td>
<td>messages, activity,</td>
<td>jobs, news art, links</td>
<td>links, news articles,</td>
<td>Messages (hashtag)</td>
<td>conversations, groups</td>
<td>pics</td>
<td>videos</td>
<td>messages, activity,</td>
<td>messages, music</td>
<td>new papers, articles</td>
</tr>
<tr>
<td>Ads Suggestion</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
<td>maybe</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Collaborative Searching/Filtering</td>
<td>yes</td>
<td>depending on topic</td>
<td>yes</td>
<td>yes</td>
<td>depending on topic</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
</tr>
<tr>
<td>User Similarity (profile)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
<td>yes</td>
</tr>
<tr>
<td>Personal Interest Identification</td>
<td>yes</td>
<td>depending on domain</td>
<td>yes</td>
<td>yes</td>
<td>yes (but may not be comprehensive)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>depending on topic</td>
<td></td>
</tr>
<tr>
<td>Topic Identification</td>
<td>maybe</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>No (or not really comprehensive)</td>
<td>maybe</td>
<td>maybe</td>
<td>maybe</td>
<td>maybe</td>
<td>yes (within area of study)</td>
</tr>
<tr>
<td>Tag (matching/suggestions)</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>maybe</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Social Media/Networking Sites

<table>
<thead>
<tr>
<th>SM Services</th>
<th>Level of Collaboration</th>
<th>Content: Audio</th>
<th>Content: Video</th>
<th>Content: Image</th>
<th>Content: Text</th>
<th>Content: Aggregation</th>
<th>Provider Censorship</th>
<th>User Censorship</th>
<th>Privacy</th>
<th>Communication Type</th>
<th>Provides API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook</td>
<td>HIGH</td>
<td>NONE</td>
<td>LOW</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>LOW</td>
<td>NONE</td>
<td>HIGH</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>LinkedIn</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>BOTH</td>
<td>1-TO-MANY</td>
<td>NO</td>
</tr>
<tr>
<td>Twitter</td>
<td>MEDIUM</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>NONE</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>Delicious</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>LOW</td>
<td>HIGH</td>
<td>NONE</td>
<td>PUBLIC</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>Flickr</td>
<td>MEDIUM</td>
<td>NONE</td>
<td>HIGH</td>
<td>HIGH</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>BOTH</td>
<td>GOOD</td>
</tr>
<tr>
<td>YouTube</td>
<td>HIGH</td>
<td>NONE</td>
<td>HIGH</td>
<td>NONE</td>
<td>LOW</td>
<td>NONE</td>
<td>LOW</td>
<td>HIGH</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>Skype</td>
<td>LOW</td>
<td>HIGH</td>
<td>HIGH</td>
<td>NONE</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>PRIVATE</td>
<td>NO</td>
</tr>
<tr>
<td>Last.fm</td>
<td>LOW</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>LOW</td>
<td>NONE</td>
<td>LOW</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>yelp.com</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>BOTH</td>
<td>1-TO-MANY</td>
<td>OK</td>
</tr>
<tr>
<td>WikiAnswers</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>LOW</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>PUBLIC</td>
<td>MANY-TO-MANY</td>
</tr>
<tr>
<td>World of Warcraft</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>NONE</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>LOW</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>NO</td>
</tr>
</tbody>
</table>
Social Search Topics

- Online *user-interactive* data, which provide a new and interesting search experience
 - **User tags:** users assign tags to data items, a *manual indexing* approach
 - **Searching within communities:** *virtual* groups of online users, who share *common interests*, interact socially, such as blogs and QA systems
 - **Recommender systems:** individual users are represented by their *profiles* (fixed queries – long-term info. need), e.g., YouTube, Amazon.com, CNN Alert Service, etc.
 - **Peer-to-peer network:** querying a community of “nodes” (individual/organization/search engine) for an info. need, e.g., Metasearch
Recommender Systems (RSs)

- RSs are software tools providing suggestions for items to be of use to users, such as what items to buy, what music to listen to, or what online news to read.

- Primarily designed to evaluate the potentially overwhelming number of alternative items may offer:
 - The explosive growth & variety of information on the Web frequently lead users to make poor decisions.
 - Offer ranked lists of items by predicting the most suitable products or services based on the users’ preferences & constraints.
 - Often rely on recommendations provided by others in making routine, daily decisions, the collaborative-filtering technique.
 - Use various types of knowledge & data about users/items.
Recommender Systems

- Content-based Recommender Systems:
 - Try to recommend new items *similar* to those a given user has *liked* in the past
 - Identify the *common characteristics* of items being liked by user u and recommend to u new items that share these characteristics
 - An item i, which is a text document, can be represented as a feature vector x_i that contains the TF-IDF weights of the most informative keywords
 - A profile of u, denoted profile vector x_u, can be obtained from the contents of items *rated* by u, denoted \mathcal{r}_u, and each item i rated by u, denoted r_{ui}
 \[
 x_u = \sum_{i \in \mathcal{r}_u} r_{ui} x_i
 \]
 which adds the weights of x_i to x_u a scalar value
Recommender Systems

- **Content-based Recommender Systems:**
 - Approach: analyze the descriptions of items previously rated by a user & build a user profile (to present user interests/preferences) based on the features of the items.
Content-Based Filtering

- Advantages:
 - **User Independence**: explores *solely ratings* provided by the user to build her own profile, but not other users’ (as in collaborative filtering)
 - **Transparency**: recommendations can be explained by explicitly listing *content features* that caused an item to be recommended
 - **New Items**: items *not yet rated* by any user can still be recommended, unlike collaborative recommenders which rely solely on other users’ rankings to make recommendations
Content-Based Filtering

- Shortcomings:
 - Limited Content Analysis: there is a natural limit in the number/types of features that can be associated with items which require domain knowledge (e.g., movies)
 - Over-specialization: tendency to produce recommendations with a limited degree of novelty, i.e., the serendipity problem, which restricts its usefulness in applications
 - New User: when few ratings are available (as for a new user), CBF cannot provide reliable recommendations
Collaborative Filtering Recommender Systems:

- Unlike content-based filtering approaches which use the content of items previously rated by users.
- Collaborative filtering (CF) approaches rely on the ratings of a user, and those of other users in the system.
- Intuitively, the rating of a user u for a new item i is likely similar to that of user v if u and v have rated other items in a similar way.
- Likewise, u is likely to rate two items i and j in a similar fashion, if other users have given similar ratings to i & j.
- CF overcomes the missing content problem of the content-based filtering approach through the feedback, i.e., ratings, of other users.
Collaborative Filtering

Collaborative Filtering Recommender Systems:

- Instead of relying on content, which may be a bad indicator, CF are based on the *quality* of items evaluated by peers.
- Unlike content-based systems, CF can recommend items with very different content, as long as other users have already shown interested for these different items.
- Goal: identify users whose *preferences* are similar to those a given user has liked in the past.
- Two general classes of CF methods:
 - *Neighborhood-based* methods
 - *Model-based* methods
Collaborative Filtering

- Neighborhood-based (or heuristic-based) Filtering:
 - User-item ratings stored in the system are directly used to predict ratings for new items, i.e., using either the user-based or item-based recommendation approach

 - **User-based**: evaluates the interest of a user u for an item i using the ratings for i by other users, called neighbors, that have similar rating patterns

 The neighbors of u are typically users v whose ratings on the items rated by both u and v are most correlated to those of u

 - **Item-based**: predicts the rating of u for an item i based on the ratings of u for items similar to i
Neighborhood-Based Recommendation

- **Example.**

<table>
<thead>
<tr>
<th></th>
<th>The Matrix</th>
<th>Titanic</th>
<th>Die Hard</th>
<th>Forrest Gump</th>
<th>Wall-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Lucy</td>
<td>1</td>
<td>5</td>
<td>?</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Eric</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Diane</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

A “toy example” showing the ratings of four users for five movies.

- Eric & Lucy have very similar tastes when it comes to movies, whereas Eric and Diane have different tastes.
- Eric likely asks Lucy the opinion on the movie “Titanic” and discards the opinion of Diane.
Collaborative Filtering

- **User-based Rating Prediction:**
 - Predicts the rating r_{ui} of a user u for a new item i using the ratings given to i by users most similar to u, called nearest-neighbors.
 - Given the k-nearest-neighbor of u who have rated item i, denoted $N_i(u)$, the rating of r_{ui} can be estimated as:
 $$r_{ui} = \frac{1}{|N_i(u)|} \sum_{v \in N_i(u)} r_{vi}$$
 - If the neighbors of u can have different levels of similarity with respect to u, denoted w_{uv}, the predicted rating is:
 $$r_{ui} = \frac{\sum_{v \in N_i(u)} w_{uv} r_{vi}}{\sum_{v \in N_i(u)} |w_{uv}|}$$
Collaborative Filtering

- **Item-based Rating Prediction:**
 - While *user-based* methods rely on the opinion of like-minded users, i.e., similar users, to predict a rating, item-based approaches look at ratings given to similar items.
 - **Example.** Instead of consulting with his peers, Eric considers the ratings on the movies he (& others) has (have) seen.

- Let $N_u(i)$ be the set of items rated by user u most similar to item i, the predicted rating of u for i is:

$$r_{ui} = \frac{\sum_{j \in N_u(i)} w_{ij} r_{uj}}{\sum_{j \in N_u(i)} |w_{ij}|}$$
Collaborative Filtering

Advantages of Neighborhood-based Filtering:

- **Simplicity**: the methods are intuitive & relatively simple to implement (w/ only the no. of neighbors requires tuning)

- **Justifiability**: the methods provide a concise & intuitive justification for the computed predictions

- **Efficiency**: the methods require no costly training phases & storing nearest neighbors of a user requires very little memory. Thus, it is scalable to millions of users & items

- **Stability**: the methods are not significantly affected by the constant addition of users, items, and ratings in a large commercial applications & do not require retraining
Community Based Question Answering

- Some complex information needs can’t be answered by traditional search engines
 - No single webpage may exist that satisfies the information needs
 - Information may come from multiple sources
 - Human (non-)experts in a wide range of topics form a community-based question answering (CQA) group, e.g., Yahoo! Answers

- CQA tries to overcome these limitations
 - Searcher enters questions
 - Community members answer questions
Example Questions

What part of Mexico gets the most tropical storms?
How do you pronounce the french words, coeur and miel?
 GED test?
 Why do I have to pay this fine?
 What is Schrödinger’s cat?
 What’s this song?
 Hi...can u ppl tell me sumthing abt death dreams??
What are the engagement and wedding traditions in Egypt?
 Fun things to do in LA?
What lessons from the Tao Te Ching do you apply to your everyday life?
 Foci of a hyperbola?
 What should I do today?
Why was iTunes deleted from my computer?
 Heather Locklear?
Do people in the Australian Defense Force (RAAF) pay less tax than civilians?
 Whats a psp xmb?
If C(-3, y) and D(1, 7) lie upon a line whose slope is 2, find the value of y.?
 Why does love make us so irrational?
 Am I in love?
What are some technologies that are revolutionizing business?
Question Answering

- **Goal**
 - Automatically answer questions submitted by humans in a natural language form

- **Approaches**
 - Rely on techniques from diverse areas of study, e.g., IR, NLP, and Ontology, to identify users’ info. needs & textual phrases potentially suitable answers for users

- **Exploit**
 - (Web) Data Sources, i.e., doc corpus
 - Data from Community Question Answering Systems (CQA)
Question Answering (QA)

- Question answering (QA) is a specialized form of IR

- Given a collection of documents/collaborative QA system, the QA system attempts to retrieve correct answers to questions posted in natural language

- Unlike search engines, QA systems generate answers instead of providing ranked lists of documents

- Current (non-collaborative) QA systems extract answers from large corpora such as the Web

- Fact-based QA limits range of informational questions to those with simple, short answers

 - who, where, why, what, when, how (5W 1H/WH) questions
Question Answering

- CQA-based approaches
 - Analyze questions (& corresponding answers) archived at CQA sites to locate answers to a newly-created question
 - Exploit “wealth-of-knowledge” already provided by CQA users
- Existing popular CQA sites
 - Yahoo! Answers, StackOverflow, and WikiAnswers
Community Based Question Answering

Yahoo! Answers, a community-driven question-and-answer site launched by Yahoo! on July 5, 2005
Community Based Question Answering

- **Pros**
 - Users can find answers to *complex* or *obscure* questions with *diverse* opinions about a topic
 - Answers are from *humans*, not algorithms, that can be interacted with who share common interests/problems
 - Can search *archive* of previous questions/answers, e.g., Yahoo! Answers

- **Cons**
 - Some questions *never get answered*
 - Often takes *time* (possibly days) to get a response
 - Answers may be *wrong*, *spam*, or *misleading*
Question Answering

- Challenges for finding an answer to a new question from QA pairs archived at CQA sites

- No Answers
- Misleading Answers
- Incorrect Answers
- SPAM
- Spam Answers
- Answerer reputation

CQA-Based
Question Answering Models

- How can we effectively search an archive of question/answer pairs databases?
- Can be treated as a translation problem
 - Translate a question into a related/similar question which likely have relevant answers
 - Translate a question into an answer: less desirable
- The vocabulary mismatch problem
 - Traditional IR models likely miss many relevant questions
 - Many different ways to ask the same question
 - Stopword removal and stemming do not help
 - Solution: consider related concepts (i.e., words)—the probability of replacing one word by another
Question Answering

- Challenges (cont.) 300 millions posted under Yahoo! Answers since 2005: an average of 7,000 questions & 21,000 answers per hour

Account for the fact that questions referring to the same topic might be formulated using similar, but not the same, words

Identifying the most suitable answer among the many available
Question Answering Models

- Translation-based language model (for finding related questions, then answers): translate \(w \) (in \(Q \)) from \(t \) (in \(A \))

\[
P(Q|A) = \prod_{w \in Q} \sum_{t \in V} P(w|t)P(t|A)
\]

where \(Q \) is a question
\(A \) is a related question in the archive
\(V \) is the vocabulary

- Anticipated problem: a good (independent) term-to-term translation might not yield a good overall translation

- Potential solution: \textit{matches} of the original question terms are given \textit{more weight} than matches of \textit{translated} terms
Question Answering Models

- *Enhanced* translation model (ETM), which extends the *translation-based language model* on ranking Q:

 $$P(Q|A) = \prod_{w \in Q} \frac{(1 - \beta)f_{w,A} + \beta \sum_{t \in V} P(w|t)f_{t,A} + \mu \frac{c_w}{|C|}}{|A| + \mu}$$

 where $\beta \in 0 .. 1$ controls the influence of the translation probability

 μ is a *smoothing* parameter

 $|A|$ is the number of words in question A

 C_w is *count* of w in the entire collection C, and

 $|C|$ is the total number of *word occurrence* in C

 - when $\beta \leftrightarrow 1$, the model becomes more similar to the translation-based language model

 - when $\beta \leftrightarrow 0$, the model is equivalent to the original query likelihood model, without influence from the translation model
Translation probabilities are learned from a parallel corpus.

Most often used for learning inter-language probabilities.

Can be used for intra-language probabilities:
- Treat question-answer pairs as parallel corpus.
- Translation probabilities are estimated from archived pairs \((Q_1, A_1), (Q_2, A_2), \ldots, (Q_N, A_N)\).

Drawbacks:
- Computationally expensive: sum over the entire vocabulary, which can be very large.
- Solution: considering only a small number (e.g., 5) of (most likely) translations per question term.
Sample Question/Answer Translations

<table>
<thead>
<tr>
<th>everest</th>
<th>xp</th>
<th>search</th>
</tr>
</thead>
<tbody>
<tr>
<td>everest</td>
<td>xp</td>
<td>search</td>
</tr>
<tr>
<td>mountain</td>
<td>window</td>
<td>google</td>
</tr>
<tr>
<td>tallest</td>
<td>install</td>
<td>information</td>
</tr>
<tr>
<td>29,035</td>
<td>drive</td>
<td>internet</td>
</tr>
<tr>
<td>highest</td>
<td>computer</td>
<td>website</td>
</tr>
<tr>
<td>mt</td>
<td>version</td>
<td>web</td>
</tr>
<tr>
<td>ft</td>
<td>click</td>
<td>list</td>
</tr>
<tr>
<td>measure</td>
<td>pc</td>
<td>free</td>
</tr>
<tr>
<td>feet</td>
<td>program</td>
<td>info</td>
</tr>
<tr>
<td>mount</td>
<td>microsoft</td>
<td>page</td>
</tr>
</tbody>
</table>
User Tags and Manual Indexing

Then: Library card catalogs

- *Indexing terms* chosen with search in mind
- *Experts generate* indexing terms *manually*
- Terms are very *high quality* based on the US Library of Congress (LOC) *Subject Headings* standardized by the LOC
- Terms chosen from *controlled/fixed vocabulary* and subject guides (a drawback)

Now: Social media tagging

- *Social media sites* allow *users to generate* own tags *manually* (+)
- Tags not always chosen with search in mind (-)
- Tags can be *noisy* or even *incorrect* and without quality control (-)
- Tags chosen from *folksonomies*, user-generated taxonomies (+)
Example. Some of the 128 million tags of LibraryThing, which archives 106 million book records w/ 2.06 million users (06/16)
Social Tagging

According to [Guan 10]

- **Social tagging services** allow users to annotate online resources with freely chosen keywords.
- Tags are collectively *contributed* by users and represent their comprehension of resources.
- Tags provide meaningful descriptors of resources and implicitly reflect users’ interests.
- Tagging services provide **keyword-based search**, which returns resources annotated by given tags.

Types of User Tags

- Content-based
 - Tags describe the *content* of an item, e.g., car, woman, sky

- Context-based
 - Tags describe the *context* of an item, e.g., NYC, empire bldg

- Attribute-based
 - Tags describe the *attributes* of an item, e.g., Nikon (type of camera), black and white (type of movie), etc.

- Subjective-based
 - Tags *subjectively* describe an item, e.g., pretty, amazing, etc.

- Organizational-based
 - Tags that organize items, e.g., to do, not read, my pictures, …
Searching Tags

- Searching collaboratively tagged items, i.e., *user tags*, is challenging
 - Most items have only a few tags, i.e., complex items are sparely represented, e.g., “aquariums” ≠ “goldfish”, which is the vocabulary mismatch problem
 - Tags are very short

- *Boolean* (AND/OR), *probabilistic*, *vector space*, and language modeling will fail if use naïvely
 - *High* precision but *low* recall for conjunctive (AND) queries
 - *Low* precision but *high* recall for disjunctive (OR) queries
Tag Expansion

- Can overcome *vocabulary mismatch* problem, such as “aquariums” and “topical fish”, by expanding tag representation with *external knowledge*

- Possible external sources
 - Thesaurus
 - Web search results
 - Query logs

- After *tags* have been *expanded*, can use standard retrieval models
Tag Expansion Using Search Results

Example. Web search results *enhance* a tag representation, “tropical fish,” a query

A retrieved snippet

Pseudo-relevance feedback over related terms

- **Age of Aquariums - Tropical Fish**
 Huge educational aquarium site for tropical fish hobbyists, promoting responsible fish keeping internationally since 1997.

- **The Krib (Aquaria and Tropical Fish)**
 This site contains information about tropical fish aquariums, including archived usenet postings and e-mail discussions, along with new ...

 ...

- **Keeping Tropical Fish and Goldfish in Aquariums, Fish Bowls, and**
 Keeping Tropical Fish and Goldfish in Aquariums, Fish Bowls, and Ponds at AquariumFish.net.

- **P(w | “tropical fish”)**
Searching Tags

- Even with tag expansion, *searching tags* is challenging
- Tags are inherently *noisy* (*off topic, inappropriate*) and *incorrect* (*misspelled, spam*)
- Many items may *not* even be tagged, which become virtually *invisible* to any search engine
- Typically *easier* to find *popular* items with many tags than *less* popular items with *few/no* tags
 - How can we automatically *tag items with few or no tags*?
 - Uses *inferred tags* to
 - Improve tag search
 - Automatic tag suggestion
Methods for Inferring Tags

- **TF-IDF**: \(wt(w) = \log(f_{w,D} + 1) \log(N / df_w) \)
 - Suggest tags that have a high TF-IDF weight in the item
 - Only works for textual items

- **Classification** (determines the appropriateness of a tag)
 - Train binary classifier for each tag, e.g., using SVM
 - Performs well for popular tags, but not as well for rare tags

- **Maximal marginal relevance**
 - Finds *relevant* tags to the item and *novel* with respect to others
 - \(MMR(t; T_i) = \left(\lambda \cdot Sim_{item}(t, i) - (1 - \lambda) \max_{t \in T_i} Sim_{tag}(t_i, t) \right) \)
 - Large, if \(t \) is very relevant to \(T_i \), but differs from other tags of \(T_i \)
 - Using TF/IDF
 - Using query results

where \(Sim_{item}(t, i) \) is the similarity between tag \(t \) and item \(i \), i.e., \(T_i \)
\(Sim_{tag}(t_i, t) \) is the similarity between tags \(t_i \) and \(t \)
\(\lambda (\in 0..1) \), a tunable parameter
Searching with Communities

- What is an online community?
 - Groups of entities (i.e., users, organizations, websites) that interact in an online environment to share common goals, interests, or traits
 - Besides tagging, community users also post to newsgroups, blogs, and other forums
 - To improve the overall user experiments, web search engines should automatically find the communities of a user

- Example.
 - Baseball fan community, digital photography community, etc.

- Not all communities are made up of humans!
 - Web communities are collections of web pages that are all about a common topic
Online Communities

According to [Seo 09]

- Online communities are valuable information sources where knowledge is accumulated by interactions between people.

- Online community pages have many unique textual or structural features, e.g.,
 - A *forum* has several sub-forums covering high-level topic categories.
 - Each *sub-forum* has many threads.
 - A *thread* is a more focused topic-centric discussion unit and is composed of *posts* created by community members.

Finding Communities

- How to design general-purpose algorithms for finding every possible type of on-line community?

- What are the criteria used for finding a community?
 - Entities (users) within a community are similar to each other
 - Members of a community are likely to interact more with one another of the community than those outside of the community

- Can represent interactions between a set of entities as a graph
 - Vertices (V) are entities
 - Edges (E), directed or undirected, denote interactions of entities
 - Undirected edges represent symmetric relationships
 - Directed edges represent non-symmetric or causal relationships
HITS

- Hyperlink-Induced Topic Search (HITS) algorithm can be used to find communities
 - A *link analysis* algorithm, like PageRank
 - Each entity has a hub and authority score

- Based on a *circular* set of assumptions
 - Good hubs point to good authorities
 - Good authorities are pointed to by good hubs

- Iterative algorithm:
 \[
 A(p) = \sum_{q \rightarrow p} H(q) \quad \text{Authority score of } p \text{ is the sum of the hub scores of the entities pointing at } p
 \]
 \[
 H(p) = \sum_{p \rightarrow q} A(q) \quad \text{Hub score of } p \text{ is the sum of the authority scores pointed at by } p
 \]
HITS

- Form community \((C)\)
 - Apply the *entity interaction graph* to find communities
 - Identify a subset of the entities \((V)\), called *candidate entities*, be members of \(C\) (based on common interest)
 - Entities with large *authority scores* are the *core* or “authoritative” members of \(C\)
 - to be a *strong authority*, an entity must have many *incoming* edges, all with moderate/large *hub* scores, and
 - To be a *strong hub*, an entity must have many outgoing edges, all with moderate/large *authority* scores
 - Vertices *not* connected with others have *hub* and *authority* scores of 0
Finding Communities

- **Clustering**
 - Community finding is an inherently **unsupervised learning** problem
 - Agglomerative or K-means clustering approaches can be applied to *entity interaction graph* to find communities
 - Use the vector representation to capture the **connectivity** of various entities
 - Compute the **authority** values based on the *Euclidean distance*

- Evaluating community finding algorithms is **hard**

- Can use communities in various ways to improve web search, browsing, expert finding, recommendation, etc.
Graph Representation

Node: 1 2 3 4 5 6 7
Vector:

0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 4
0 0 1 0 0 0 0 5
0 1 1 1 0 0 0 6
0 0 0 0 0 0 0 7