Chapter 10

Social Search
Social Search

“Social search describes search acts that make use of social interactions with others. These interactions may be explicit or implicit, co-located or remote, synchronous or asynchronous”

Social search

- Search within a social environment
- Communities of users actively participating in the search process
- Goes beyond classical search tasks
- Facilitates the “information seeking” process [Evans 08]

Key differences

- Users interact with the system (standard & Social)
- Users interact with one another in an open/social environment implicitly (reading)/explicitly (writing) such as
 - Visiting social media sites, e.g., YouTube
 - Browsing through social networking sites, e.g., Facebook
Web 2.0

- Social search includes, but is not limited to, the so-called social media site

 Collectively referred to as “Web 2.0” as opposed to the classical notion of the Web (“Web 1.0”)

- Social media sites

 - User generated content
 - Users can tag their own and other’s content
 - Users can share favorites, tags, etc., with others
 - Provide unique data resources for search engines

- Example.

 YouTube, MySpace, Facebook, LinkedIn, Digg, Twitter, Flickr, Del.icio.us, and CiteULike
Social Media/Networking Sites

<table>
<thead>
<tr>
<th>SM Services</th>
<th>Level of Collaboration</th>
<th>Content: Audio</th>
<th>Content: Video</th>
<th>Content: Image</th>
<th>Content: Text</th>
<th>Content: Aggregation</th>
<th>Provider Censorship</th>
<th>User Censorship</th>
<th>Privacy</th>
<th>Communication Type</th>
<th>Provides API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook</td>
<td>HIGH</td>
<td>NONE</td>
<td>LOW</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>LOW</td>
<td>NONE</td>
<td>HIGH</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>LinkedIn</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>LOW</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>BOTH</td>
<td>1-TO-MANY</td>
<td>NO</td>
</tr>
<tr>
<td>Twitter</td>
<td>MEDIUM</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>HIGH</td>
<td>NONE</td>
<td>HIGH</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>Delicious</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>LOW</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>PUBLIC</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>Flickr</td>
<td>MEDIUM</td>
<td>NONE</td>
<td>HIGH</td>
<td>HIGH</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>YouTube</td>
<td>HIGH</td>
<td>NONE</td>
<td>HIGH</td>
<td>NONE</td>
<td>LOW</td>
<td>NONE</td>
<td>LOW</td>
<td>HIGH</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>Skype</td>
<td>LOW</td>
<td>HIGH</td>
<td>HIGH</td>
<td>NONE</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>PRIVATE</td>
<td>NO</td>
</tr>
<tr>
<td>Last.fm</td>
<td>LOW</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>LOW</td>
<td>NONE</td>
<td>LOW</td>
<td>LOW</td>
<td>BOTH</td>
<td>MANY-TO-MANY</td>
<td>GOOD</td>
</tr>
<tr>
<td>yelp.com</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>1-TO-MANY</td>
<td>OK</td>
</tr>
<tr>
<td>WikiAnswers</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>LOW</td>
<td>HIGH</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>PUBLIC</td>
<td>MANY-TO-MANY</td>
</tr>
<tr>
<td>World of Warcraft</td>
<td>MEDIUM</td>
<td>MEDIUM</td>
<td>HIGH</td>
<td>NONE</td>
<td>LOW</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>LOW</td>
<td>BOTH</td>
<td>NO</td>
</tr>
</tbody>
</table>
Social Media/Network Sites

<table>
<thead>
<tr>
<th>Feature</th>
<th>Facebook</th>
<th>LinkedIn</th>
<th>Delicious</th>
<th>Twitter</th>
<th>LibraryThing</th>
<th>Flickr</th>
<th>YouTube</th>
<th>MySpace</th>
<th>Last.fm</th>
<th>CiteULike</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Search</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
<td>maybe</td>
<td>yes</td>
<td>maybe</td>
<td>maybe</td>
<td>yes</td>
</tr>
<tr>
<td>Recommendation</td>
<td>friends, groups, ads, links, books, links, groups, books, links, groups, people, location</td>
<td>connections, jobs, ads, books, news articles, movies, videos, groups</td>
<td>books, groups, links, movies, location</td>
<td>books, groups, links</td>
<td>users, pics, travel, groups, links, videos</td>
<td>video, links, people, books, groups, ads, links, (provides rec based on search habits)</td>
<td>friends, groups, ads, links, (provides rec based on search habits)</td>
<td>friends, music, concerts (the rec application exists)</td>
<td>articles, links, groups</td>
<td></td>
</tr>
<tr>
<td>Filtering</td>
<td>messages, activity, jobs, news art, links</td>
<td>links, news articles, Messages (hashtag)</td>
<td>conversations, groups</td>
<td>pics</td>
<td>videos</td>
<td>messages, activity, messages, music</td>
<td>new papers, articles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ads Suggestion</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
<td>maybe</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Collaborative Searching/Filtering</td>
<td>yes</td>
<td>depending on topic</td>
<td>yes</td>
<td>yes</td>
<td>depending on topic</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
<td>depending on topic</td>
</tr>
<tr>
<td>User Similarity (profile)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
<td>yes</td>
</tr>
<tr>
<td>Personal Interest Identification</td>
<td>yes</td>
<td>depending on domain</td>
<td>yes</td>
<td>yes</td>
<td>yes (but may not be comprehensive)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>depending on topic</td>
<td></td>
</tr>
<tr>
<td>Topic Identification</td>
<td>maybe</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>maybe</td>
<td>maybe</td>
<td>maybe</td>
<td>maybe</td>
<td>maybe</td>
<td>yes (within area of study)</td>
</tr>
<tr>
<td>Tag (matching/suggestions)</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>maybe</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Social Search Topics

- Online *user-interactive* data, which provide a new and interesting search experience
 - **User tags**: users assign tags to data items, a *manual indexing* approach
 - **Searching within communities**: *virtual* groups of online users, who share *common interests*, interact socially, such as blogs and QA systems
 - **Recommender systems**: individual users are represented by their *profiles* (fixed queries – long-term info. need) such as CNN Alert Service, Amazon.com, etc.
 - **Peer-to-peer network**: querying a community of “nodes” (individual/organization/search engine) for an info. need
 - **Metasearch**: a special case of P2P – all the nodes are *SEs*
User Tags and Manual Indexing

Then: Library card catalogs

- *Indexing terms* chosen with search in mind
- *Experts generate* indexing terms manually
- Terms are very *high quality* based on the US Library of Congress (LOC) *Subject Headings* standardized by the LOC
- Terms chosen from *controlled/fixed vocabulary* and subject guides (a drawback)

Now: Social media tagging

- *Social media sites* allow *users to generate* own tags manually (+)
- Tags not always chosen with search in mind (-)
- Tags can be *noisy* or even *incorrect* and without quality control (-)
- Tags chosen from *folksonomies*, user-generated taxonomies (+)
Social Search Topics

Example. Some of the 116 million tags of LibraryThing, which archives 95 million book records w/ 1.93 million users (04/15)

Lou Gehrig: the luckiest man
by David A. Adler

<table>
<thead>
<tr>
<th>Members</th>
<th>Reviews</th>
<th>Popularity</th>
<th>Average rating</th>
<th>Conversations</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>3</td>
<td>163,594</td>
<td>★★★★★ (4)</td>
<td>None</td>
</tr>
</tbody>
</table>

Recently added by: Ip118825, Kaylinn_Hall, michele123, PamathIES, sargib, mendomom, farrahpa (see more)

Your library

Add to your library

LibraryThing recommendations

1. Teammates by Peter Golenbock
2. Luckiest man: the life and death of Lou Gehrig by Jonathan Eig
3. Iron horse: Lou Gehrig in his time by Ray Robinson
4. Mighty Jackie by Marissa Moss
5. Rosalie by Joan Hewett
6. Baseball (True Books: Sports) by Mike Kennedy
7. Baseball Latino Baseball Pioneers and Legends by Jonah Winter
8. Play ball like the Hall of Famers by Steven Krasner
9. Hank Aaron: Brave in Every Way by Peter Golenbock
10. George Washington's teeth by Deborah Chandra

Member recommendations:
No member recommendations (contribute a recommendation)

(see more recommendations and anti-recommendations for this book)
Social Tagging

According to [Guan 10]

- **Social tagging services** allow users to annotate online resources with freely chosen keywords.
- Tags are collectively *contributed* by users and represent their comprehension of resources.
- Tags provide meaningful descriptors of resources and implicitly reflect users’ interests.
- Tagging services provide keyword-based search, which returns resources annotated by given tags.

Types of User Tags

- Content-based
 - Tags describe the *content* of an item, e.g., car, woman, sky

- Context-based
 - Tags describe the *context* of an item, e.g., NYC, empire bldg

- Attribute-based
 - Tags describe the *attributes* of an item, e.g., Nikon (type of camera), black and white (type of movie), etc.

- Subjective-based
 - Tags *subjectively* describe an item, e.g., pretty, amazing, etc.

- Organizational-based
 - Tags that organize items, e.g., to do, not read, my pictures, …
Searching Tags

- Searching collaboratively tagged items, i.e., user tags, is challenging
 - Most items have only a few tags, i.e., complex items are sparingly represented, e.g., “aquariums” ≠ “goldfish”, which is the vocabulary mismatch problem
 - Tags are very short

- Boolean (AND/OR), probabilistic, vector space, and language modeling will fail if use naively
 - High precision but low recall for conjunctive (AND) queries
 - Low precision but high recall for disjunctive (OR) queries
Tag Expansion

- Can overcome *vocabulary mismatch* problem, such as “aquariums” and “topical fish”, by expanding tag representation with *external knowledge*

- Possible external sources
 - Thesaurus
 - Web search results
 - Query logs

- After *tags* have been *expanded*, can use standard retrieval models
Example. Web search results enhance a tag representation, “tropical fish,” a query.

A retrieved snippet

Pseudo-relevance feedback over related terms

Age of Aquariums - Tropical Fish
Huge educational aquarium site for tropical fish hobbyists, promoting responsible fish keeping internationally since 1997.

The Krib (Aquaria and Tropical Fish)
This site contains information about tropical fish aquariums, including archived usenet postings and e-mail discussions, along with new ...

Keeping Tropical Fish and Goldfish in Aquariums, Fish Bowls, and ...
Keeping Tropical Fish and Goldfish in Aquariums, Fish Bowls, and Ponds at AquariumFish.net.

$P(w | \text{“tropical fish”})$
Searching Tags

- Even with tag expansion, *searching tags* is challenging
- Tags are inherently *noisy* (*off topic, inappropriate*) and *incorrect* (*misspelled, spam*)
- Many items may *not* even be tagged, which become virtually *invisible* to any search engine
- Typically *easier* to find *popular* items with many tags than *less* popular items with *few/no* tags

- How can we automatically *tag items with few or no tags*?
 - Uses *inferred tags* to
 - Improve tag search
 - Automatic tag suggestion
Methods for Inferring Tags

- **TF-IDF**: $\text{wt}(w) = \log(f_{w,D} + 1) \log(N / df_w)$
 - Suggest tags that have a high TF-IDF weight in the item
 - Only works for textual items

- **Classification** (determines the appropriateness of a tag)
 - Train binary classifier for each tag, e.g., using SVM
 - Performs well for popular tags, but not as well for rare tags

- **Maximal marginal relevance**
 - Finds relevant tags to the item and novel with respect to others
 - $\text{MMR}(t; T_i) = \left(\lambda \text{Sim}_{item}(t, i) - (1 - \lambda) \max_{t \in T_i} \text{Sim}_{tag}(t_i, t) \right)$

where $\text{Sim}_{item}(t, i)$ is the similarity between tag t and item i, i.e., T_i and
$\text{Sim}_{tag}(t_i, t)$ is the similarity between tags t_i and t
$\lambda (\in 0..1)$, a tunable parameter
Browsing and Tag Clouds

- **Search** is useful for finding items of interest
- **Browsing** is more useful for exploring collections of tagged items

Various ways to visualize collections of tags
- **Tag clouds** (show the popularity of tags based on sizes)
- (Tags are) Alphabetically *order* and/or *weighted*
- Formatted/sorted according to *popularity*
As defined in [Schrammel 09], tag clouds are

- Visual displays of set of words (tags) in which attributes of the text such as size, color, font weight, or intensity are used to represent relevant properties, e.g., frequency of documents linked to the tag

- A good visualization technique to communicate an “overall picture”

What is an online community?

- Groups of entities (i.e., users, organizations, websites) that *interact* in an online environment to share common goals, interests, or traits
- Besides tagging, community users also *post* to newsgroups, blogs, and other forums
- To improve the overall user experiments, web search engines should automatically find the *communities* of a user

Example.

- Baseball fan community, digital photography community, etc.

Not all communities are made up of humans!

- Web communities are collections of web pages that are all about a *common topic*
Online Communities

According to [Seo 09]

- **Online communities** are valuable information sources where knowledge is accumulated by interactions between people.

- Online community pages have many unique textual or structural features, e.g.,
 - A *forum* has several sub-forums covering high-level topic categories.
 - Each *sub-forum* has many threads.
 - A *thread* is a more focused topic-centric discussion unit and is composed of *posts* created by community members.

Finding Communities

- How to design general-purpose algorithms for finding every possible type of on-line community?

- What are the criteria used for finding a community?
 - *Entities* (users) within a community are *similar* to each other
 - *Members* of a community are likely to *interact* more with one another of the community than those outside of the community

- Can represent interactions between a set of entities as a graph
 - *Vertices* (V) are entities
 - *Edges* (E), directed or undirected, denote *interactions* of entities
 - *Undirected* edges represent symmetric relationships
 - *Directed* edges represent non-symmetric or causal relationships
HITS

- Hyperlink-Induced Topic Search (HITS) algorithm can be used to find communities
 - A link analysis algorithm, like PageRank
 - Each entity has a hub and authority score

- Based on a circular set of assumptions
 - Good hubs point to good authorities
 - Good authorities are pointed to by good hubs

- Iterative algorithm:
 \[
 A(p) = \sum_{q \rightarrow p} H(q)
 \]
 Authority score of \(p \) is the sum of the hub scores of the entities pointing at \(p \)

 \[
 H(p) = \sum_{p \rightarrow q} A(q)
 \]
 Hub score of \(p \) is the sum of the authority scores pointed at by \(p \)
HITS

- Form community (C)
 - Apply the *entity interaction graph* to find communities
 - Identify a subset of the entities (V), called candidate entities, be members of C (based on common interest)
 - Entities with large *authority scores* are the core or “authoritative” members of C
 - to be a strong authority, an entity must have many *incoming* edges, all with moderate/large *hub* scores, and
 - To be a strong hub, an entity must have many outgoing edges, all with moderate/large *authority* scores
 - Vertices not connected with others have *hub* and *authority* scores of 0
Finding Communities

- Clustering
 - Community finding is an inherently unsupervised learning problem
 - Agglomerative or K-means clustering approaches can be applied to entity interaction graph to find communities
 - Use the vector representation to capture the connectivity of various entities
 - Compute the authority values based on the Euclidean distance

- Evaluating community finding algorithms is hard

- Can use communities in various ways to improve web search, browsing, expert finding, recommendation, etc.
Graph Representation

Node: 1 2 3 4 5 6 7

Vector:

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
Question Answering

- **Goal**
 - Automatically answer questions submitted by humans in a natural language form

- **Approaches**
 - Rely on techniques from diverse areas of study, e.g., IR, NLP, Onto, and ML, to identify users’ info. needs & textual phrases potentially suitable answers for users

- **Exploit**

 (Web) Data Sources, i.e., doc corpus

Data from Community Question Answering Systems (CQA)
Question Answering (QA)

- Question answering (QA) is a specialized form of IR.
- Given a collection of documents/collaborative QA system, the QA system attempts to retrieve correct answers to questions posted in natural language.
- Unlike search engines, QA systems generate answers instead of providing ranked lists of documents.
- Current (non-collaborative) QA systems extract answers from large corpora such as the Web.
- Fact-based QA limits range of informational questions to those with simple, short answers.
 - who, where, why, what, when, how (5W 1H/WH) questions
Question Answering

- CQA-based approaches
 - Analyze questions (& corresponding answers) archived at CQA sites to locate answers to a newly-created question
 - Exploit "wealth-of-knowledge" already provided by CQA users

- Existing popular CQA sites
 - Yahoo! Answers, WikiAnswers, and StackOverflow
Question Answering

- Example.

CQA-Based
Question Answering

- Challenges for finding an answer to a new question from QA pairs archived at CQA sites

- Misleading Answers
- No Answers
- Incorrect Answers
- Spam Answers
- Answerer reputation
Question Answering

- Challenges (cont.) 300 millions posted under Yahoo! Answers since 2005: an average of 7,000 questions & 21,000 answers per hour

Account for the fact that questions referring to the same topic might be formulated using similar, but not the same, words

Identifying the most suitable answer among the many available
Matching posted questions to the best answerers who can contribute the needed information

- Based on the expertise/past performance of the answerers who have answered similar questions
- (Problem) Are the potential answerers willing to accept & answer the questions recommended to them on time?
 - When do users tend to answer questions in a CQA system?
 - How do users tend to choose the questions to answers in CQA?

(A solution) Analyze the answering behavior of answerers

- When: Analyze the overall/user-specific temporal activity patterns & identify stable daily/weekly periodicities
- How: Analyze factors that affect users’ decision, including question category, question positions, & question text
Applying a question-routing scheme that considers the answering, commenting & voting propensities of a group of answerers

- (Question) What routing strategy should be employed to ensure that a question gets answers with lasting value?

- (A Solution) Answerers collaborate to answer questions, who are chosen according to their compatibility, topical expertise & availability, to offer answers with high values.

- QA process is a collaborative effort that requires inputs from different types of users.

- User-user compatibility is essential in CQA services.

- Evaluating topics, expertise & availability are critical in building the framework for achieving the goal of a CQA system.
Increasing the participation of expert answerers by using a question recommendation system to proactively warn answerers the presence of suitable questions to answer

(How?) Using community feedback tools, which serve as a crowd-sourced mechanism

- Users can vote, positively or negatively, for questions or answers, which are casted into a single score & serve as a proxy for question/answer quality

(Another Solution) Using the present of text (in questions & answers) for modeling the experts & the questions.

- Users & questions are represented as vectors of latent features
- Users with expertise in similar topics are likely to answer similar questions, which can be recommended to expert users
Question Answering

- Corpus-based approaches
 - Analyze text documents from diverse online sources to locate answers that satisfy the info. needs expressed in a question

- Overview

"When is the next train to Glasgow?"

"8:35, Track 9."

QA SYSTEM

Data sources

Text Corpora & RDBMS

Question

Query

Docs

Answers

Extract Keywords

Search Engine

Passage Extractor

Answer Selector

Corpus

Question

Answer
Question Answering

- **Classification:** Factoid vs. List (of factoids) vs. Definition

 - “What lays blue eggs?” -- one fact
 - “Name 9 cities in Europe” -- multiple facts
 - “What is information retrieval? -- textual answer

- **Open vs. Closed domain**

- **Challenges**
 - “What is apple?”
 - “Magic mirror in my hand, who is the fairest in the land?”

- **Identifying actual user’s information needs**

- **Converting to quantifiable measures**

- **Answer ranking**
Corpus-Based QA Systems

- Corpus-based QA systems rely on a collection of docs, attempting to retrieve correct answers to questions posed in natural languages.
Question Answering

Question Processing Module: Given a question \(Q \) as input, the module process, analyzes, creates a representation of the information requested in \(Q \), and determines:

- The question type (such as informational) based on a taxonomy of possible questions already coded into the system, e.g.,
 - \(Who \): asking for people
 - \(Where \): referring to places/locations
 - \(When \): looking for time/occasion
 - \(Why \): obtaining an explanation/reason
 - \(What \): requesting specific information
 - \(How \): describing the manner that something is done

- The expected answer type through semantic processing of \(Q \)

- The question focus, which represents the main information that is required to answer \(Q \)
Sample types of questions, their corresponding answer types, and statistics from the set of TREC 8 questions
Question/Answer Classification

- **Question Type Classification:** provide *constraints* on what constitutes relevant data, the nature of the answer
 - Using Support Vector Machines (SVM) to classify \(Q \) based on feature sets, e.g., text (a bag of words) or semantic (named entities) features, e.g., proper names/adjectives

- **Answer Type Classification:** mapping question type to answer types can be a one-to-many mapping, since question classification can be ambiguous, e.g., *what*

- **Question Focus:** is defined as a *word* or a *sequences of words* indicating what info. is being asked in \(Q \), e.g.,
 - “*What is the longest river in New South Wales*” has the focus on “longest river” in the question type of ‘*what*’
 - Using *pattern matching* rules to identify the question focus
Paragraph Indexing Module (or Document Processing Module) relies on one or more IR systems to gather info. from a collection of document corpora

- **Filter** paragraphs, retaining non-stop, stemmed words
- **Perform** indexing on remaining keywords in paragraphs
- **Access** the quality of indexed (keywords in) paragraphs & order the extracted paragraphs according to how plausible they contain answers to questions (e.g., based on the question keywords in the paragraphs)
Question Answering

- Answer Processing Module is responsible for identifying & extracting answers from paragraphs passed to it
 - Answer Identification determines paragraphs which contain the required answer type based on named entity recognition/part-of-speech tagger to recognize answers
 - Answer Extraction retrieves relevant words/phrases in answers to the given question
 - Answer Correctness can be verified by the confidence in the correctness of an answer based on the lexical analysis (using WordNet?) on the correct answer type

- Types of answers to questions & questions are in the same domain
Community Based Question Answering

- Some complex information needs can’t be answered by traditional search engines
 - No single webpage may exist that satisfies the information needs
 - Information may come from multiple sources
 - Human (non-)experts in a wide range of topics form a community-based question answering (CQA) group, e.g., Yahoo! Answers

- CQA tries to overcome these limitations
 - Searcher enters questions
 - Community members answer questions
Example Questions

What part of Mexico gets the most tropical storms?
How do you pronounce the french words, coeur and miel?
GED test?
Why do I have to pay this fine?
What is Schrödinger’s cat?
What’s this song?
Hi...can u ppl tell me sumthing abt death dreams??
What are the engagement and wedding traditions in Egypt?
Fun things to do in LA?
What lessons from the Tao Te Ching do you apply to your everyday life?
Foci of a hyperbola?
What should I do today?
Why was iTunes deleted from my computer?
Heather Locklear?
Do people in the Australian Defense Force (RAAF) pay less tax than civilians?
Whats a psp xmb?
If C(-3, y) and D(1, 7) lie upon a line whose slope is 2, find the value of y.?
Why does love make us so irrational?
Am I in love?
What are some technologies that are revolutionizing business?
Community Based Question Answering

- Pros
 - Users can find answers to complex or obscure questions with diverse opinions about a topic
 - Answers are from humans, not algorithms, that can be interacted with who share common interests/problems
 - Can search archive of previous questions/answers, e.g., Yahoo! Answers

- Cons
 - Some questions never get answered
 - Often takes time (possibly days) to get a response
 - Answers may be wrong, spam, or misleading
Community Based Question Answering

- Yahoo! Answers, a community-driven question-and-answer site launched by Yahoo! on July 5, 2005
Question Answering Models

- How can we effectively search an archive of question/answer pairs databases?

- Can be treated as a translation problem
 - Translate a question into a related/similar question which likely have relevant answers
 - Translate a question into an answer: less desirable

- The vocabulary mismatch problem
 - Traditional IR models likely miss many relevant questions
 - Many different ways to ask the same question
 - Stopword removal and stemming do not help
 - Solution: consider related concepts (i.e., words)—the probability of replacing one word by another
Question Answering Models

- Translation-based language model (for finding related questions, then answers): translate w (in Q) from t (in A)

$$P(Q|A) = \prod_{w \in Q} \sum_{t \in V} P(w|t)P(t|A)$$

where Q is a question
- A is a related question in the archive
- V is the vocabulary
- $P(w | t)$ are the translation probability
- $P(t | A)$ is the (smoothed) probability of generating t given A

- Anticipated problem: a good (independent) term-to-term translation might not yield a good overall translation
- Potential solution: matches of the original question terms are given more weight than matches of translated terms
Question Answering Models

- **Enhanced** translation model, which extends the *translation-based language model* on ranking Q:

$$P(Q|A) = \prod_{w \in Q} \frac{(1 - \beta)f_{w,A} + \beta \sum_{t \in V} P(w|t)f_{t,A} + \mu \frac{c_w}{|C|}}{|A| + \mu}$$

where $\beta \in [0..1]$ controls the influence of the translation probability

- μ is a *smoothing* parameter
- $|A|$ is the number of words in question A
- C_w is *count* of w in the entire collection C, and
- $|C|$ is the total number of *word occurrence* in C

- when $\beta \rightarrow 1$, the model becomes more similar to the translation-based language model
- when $\beta \rightarrow 0$, the model is equivalent to the original query likelihood model, without influence from the translation model
Computing Translation Probabilities

- Translation probabilities are learned from a parallel corpus
- Most often used for learning inter-language probabilities
- Can be used for intra-language probabilities
 - Treat question-answer pairs as parallel corpus
 - Translation probabilities are estimated from archived pairs \((Q_1, A_1), (Q_2, A_2), \ldots, (Q_N, A_N)\)

- Drawbacks
 - Computationally expensive: sum over the entire vocabulary, which can be very large
 - Solution: considering only a small number (e.g., 5) of (most likely) translations per question term
Sample Question/Answer Translations

<table>
<thead>
<tr>
<th>everest</th>
<th>xp</th>
<th>search</th>
</tr>
</thead>
<tbody>
<tr>
<td>everest</td>
<td>xp</td>
<td>search</td>
</tr>
<tr>
<td>mountain</td>
<td>window</td>
<td>google</td>
</tr>
<tr>
<td>tallest</td>
<td>install</td>
<td>information</td>
</tr>
<tr>
<td>29,035</td>
<td>drive</td>
<td>internet</td>
</tr>
<tr>
<td>highest</td>
<td>computer</td>
<td>website</td>
</tr>
<tr>
<td>mt</td>
<td>version</td>
<td>web</td>
</tr>
<tr>
<td>ft</td>
<td>click</td>
<td>list</td>
</tr>
<tr>
<td>measure</td>
<td>pc</td>
<td>free</td>
</tr>
<tr>
<td>feet</td>
<td>program</td>
<td>info</td>
</tr>
<tr>
<td>mount</td>
<td>microsoft</td>
<td>page</td>
</tr>
</tbody>
</table>
Document Filtering

- Ad hoc retrieval
 - Document collections are static and information needs change with time
 - Results returned when query is entered

- Document filtering
 - Document collections change with time, but (long-term) information needs are static
 - Long term information needs represented as a profile
 - Documents entering system that match the profile are delivered to the user via a push mechanism
 - Must be efficient and effective (minimizes FPs and FNs)
Profiles

- Represents long-term information needs and personalizes the search experience

- Can be represented in different ways by including
 - A Boolean or keyword query
 - Sets of relevant and non-relevant documents
 - Social tags and named entities
 - Relational constraints
 - “Published before 1990”
 - “Price in the $10 - $25 range”

- Actual representation usually depends on the underlying filtering model

- Static (filtering) or updated over time (adaptive filtering)
Document Filtering Scenarios

Static Filtering

Easier to process, less robust

Adaptive Filtering

More robust, requires frequent updates
Static Filtering

- Given a fixed profile, how can we determine if an incoming document should be delivered?

- Treat as an IR problem
 - Boolean
 - Vector space
 - Language modeling

- Treat as supervised learning problem
 - Naïve Bayes
 - Support vector machines

Require predefined threshold value
Static Filtering with Language Models

- Assume a profile P consists of K relevant documents $T_i \ (1 \leq i \leq K)$ each with weight α_i

- Probability of a word w given the profile P is

$$P(w|P) = \frac{(1 - \lambda) \sum_{i=1}^{K} \alpha_i f_{w,T_i}}{\sum_{i=1}^{K} \alpha_i |T_i|} + \lambda \frac{c_w}{|C|}$$

- α_i is the weight (important) associated with T_i
- f_{w,T_i} is the frequency of occurrence of w in T_i
- λ is a smoothing parameter
- C_w is count of w in the entire collection C, and
- $|C|$ is the total number of word occurrence in C
Static Filtering with Language Models

- Probability of a word w given a new document D is
 \[P(w \mid D) = (1 - \lambda) \frac{f_{w,D}}{|D|} + \lambda \frac{C_w}{|C|} \]

- KL-divergence between profile and document model is used as score

- If $-KL(P \mid\mid D) \geq \theta$, then deliver D to P, where θ is some relevance threshold
Adaptive Filtering

- In adaptive filtering, *profiles* are dynamic

- How can *profiles* change (from static to dynamic)?
 1. User can explicitly *update* the profile
 2. User can provide (relevance) *feedback* about the documents delivered to the profile
 3. Implicit user *behavior* can be *captured* and used to update the profile
Adaptive Filtering Models

- Rocchio
 - Profiles treated as vectors

 \[P' = \alpha P + \beta \frac{1}{|Rel|} \sum_{D_i \in Rel} D_i - \gamma \frac{1}{|Nonrel|} \sum_{D_i \in Nonrel} D_i \]

- Relevance-based (profiles) language models

 \[P(w|P) = \frac{1}{|Rel|} \sum_{D_i \in Rel} \sum_{D \in C} P(w|D)P(D_i|D) \approx \frac{1}{|Rel|} \sum_{D_i \in Rel} P(w|D_i) \]

 where \(C \) is the set of documents in the collection

 \[P(D_i | D) \], the probability that \(D_i \) is generated from \(D \)’s LM,

 which is very close to 1 if \(D_i = D \); 0, otherwise
Fast Filtering with Millions of Profiles

- Real filtering systems
 - May have thousands or even millions of profiles
 - Many new documents will enter the system daily

- How to efficiently filter in such a system?
 - Most profiles are represented as text or a set of features
 - Build an inverted index for the profiles
 - Distill incoming documents as “queries” and run against index
Evaluation of Filtering Systems

- Definition of “good” depends on the purpose of the underlying filtering system
 - Do not produce ranking of documents for each profile
 - Evaluation measures, such as Precision@n and MAP, are non-relevant; precision, recall, and F-measure are computable

<table>
<thead>
<tr>
<th></th>
<th>Relevant</th>
<th>Non-Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>Not retrieved</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

- Generic filtering evaluation measure:

\[U = \alpha \cdot TP + \beta \cdot TN + \delta \cdot FP + \gamma \cdot FN \]

\(\alpha = 2, \beta = 0, \delta = -1, \) and \(\gamma = 0 \) are widely used
Summary of Filtering Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Profile Representation</th>
<th>Profile Updating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>Boolean Expression</td>
<td>N/A</td>
</tr>
<tr>
<td>Vector Space</td>
<td>Vector</td>
<td>Rocchio</td>
</tr>
<tr>
<td>Language Modeling</td>
<td>Probability Distribution</td>
<td>Relevance Modeling</td>
</tr>
<tr>
<td>Classification</td>
<td>Model Parameters</td>
<td>Online Learning</td>
</tr>
</tbody>
</table>
Recommender Systems (RSs)

- RSs are software tools providing suggestions for items to be of use to users, such as what items to buy, what music to listen to, or what online news to read.

- Primarily designed to evaluate the potentially overwhelming number of alternative items may offer:
 - The explosive growth & variety of information on the Web frequently lead users to make poor decisions.
 - Offer ranked lists of items by predicting the most suitable products or services based on the users’ preferences & constraints.
 - Often rely on recommendations provided by others in making routine, daily decisions, the collaborative-filtering technique.
 - Use various types of knowledge & data about users/items.
Content-based Recommender Systems:

- Try to recommend new items similar to those a given user has liked in the past
 - Identify the common characteristics of items being liked by user u and recommend to u new items that share these characteristics
 - An item i, which is a text document, can be represented as a feature vector x_i that contains the TF-IDF weights of the most informative keywords
 - A profile of u, denoted profile vector x_u, can be obtained from the contents of items rated by u, denoted \mathcal{S}_u, and each item i rated by u, denoted r_{ui}
 \[
 x_u = \sum_{i \in \mathcal{S}_u} r_{ui} x_i
 \]
 which adds the weights of x_i to x_u a scalar value
Content-based Recommender Systems:

- Approach: analyze the descriptions of items previously rated by a user & build a user profile (to present user interests/preferences) based on the features of the items.
Content-Based Filtering

Advantages:

- **User Independence**: explores *solely ratings* provided by the user to build her own profile, but not other users’ (as in collaborative filtering)

- **Transparency**: recommendations can be explained by explicitly listing *content features* that caused an item to be recommended

- **New Items**: items *not yet rated* by any user can still be recommended, unlike collaborative recommenders which rely solely on other users’ rankings to make recommendations
Content-Based Filtering

Shortcomings:

- **Limited Content Analysis**: there is a natural limit in the number/types of *features* that can be associated with items which require *domain knowledge* (e.g., movies)

- **Over-specialization**: tendency to produce recommendations with a limited degree of novelty, i.e., the *serendipity* problem, which restricts its usefulness in applications

- **New User**: when few ratings are available (as for a new user), CBF cannot provide reliable recommendations
Recommender Systems

Collaborative Filtering

Recommender Systems:

- Unlike content-based filtering approaches which use the content of items previously rated by users.

- Collaborative filtering (CF) approaches rely on the ratings of a user, and those of other users in the system.

- Intuitively, the rating of a user u for a new item i is likely similar to that of user v if u and v have rated other items in a similar way.

- Likewise, u is likely to rate two items i and j in a similar fashion, if other users have given similar ratings to i & j.

- CF overcomes the missing content problem of the content-based filtering approach through the feedback, i.e., ratings, of other users.
Collaborative Filtering Recommender Systems:

- Instead of relying on content, which may be a bad indicator, CF are based on the quality of items evaluated by peers.
- Unlike content-based systems, CF can recommend items with very different content, as long as other users have already shown interest for these different items.
- Goal: identify users whose preferences are similar to those of a given user who has liked in the past.
- Two general classes of CF methods:
 - Neighborhood-based methods
 - Model-based methods
Collaborative Filtering

Neighborhood-based (or heuristic-based) Filtering:

- User-item ratings stored in the system are directly used to predict ratings for new items, i.e., using either the user-based or item-based recommendation approach
 - **User-based**: evaluates the interest of a user u for an item i using the ratings for i by other users, called neighbors, that have similar rating patterns

 The neighbors of u are typically users v whose ratings on the items rated by both u and v are most correlated to those of u

 - **Item-based**: predicts the rating of u for an item i based on the ratings of u for items similar to i
Neighborhood-Based Recommendation

Example.

<table>
<thead>
<tr>
<th></th>
<th>The Matrix</th>
<th>Titanic</th>
<th>Die Hard</th>
<th>Forrest Gump</th>
<th>Wall-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Lucy</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Eric</td>
<td>4</td>
<td>?</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Diane</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A “toy example” showing the ratings of four users for five movies.

- Eric & Lucy have very similar tastes when it comes to movies, whereas Eric and Diane have different tastes.
- Eric likely asks Lucy the opinion on the movie “Titanic” and discards the opinion of Diane.
User-based Rating Prediction:

- Predicts the rating r_{ui} of a user u for a new item i using the ratings given to i by users most similar to u, called nearest-neighbors.

- Given the k-nearest-neighbor of u who have rated item i, denoted $N_i(u)$, the rating of r_{ui} can be estimated as

$$r_{ui} = \frac{1}{|N_i(u)|} \sum_{v \in N_i(u)} r_{vi}$$

- If the neighbors of u can have different levels of similarity with respect to u, denoted w_{uv}, the predicted rating is

$$r_{ui} = \frac{\sum_{v \in N_i(u)} w_{uv} r_{vi}}{\sum_{v \in N_i(u)} |w_{uv}|}$$
Collaborative Filtering

Item-based Rating Prediction:

- While *user-based* methods rely on the opinion of like-minded users, i.e., similar users, to predict a rating, *item-based* approaches look at ratings given to similar items.

- Example. Instead of consulting with his peers, Eric considers the ratings on the movies he (& others) has (have) seen.

- Let $N_u(i)$ be the set of items rated by user u most similar to item i, the predicted rating of u for i is

$$r_{ui} = \frac{\sum_{j \in N_u(i)} w_{ij} r_{uj}}{\sum_{j \in N_u(i)} |w_{ij}|}$$
Collaborative Filtering

Advantages of Neighborhood-based Filtering:

- **Simplicity**: the methods are intuitive & relatively simple to implement (w/ only the no. of neighbors requires tuning)
- **Justifiability**: the methods provide a concise & intuitive justification for the computed predictions
- **Efficiency**: the methods require no costly training phases & storing nearest neighbors of a user requires very little memory. Thus, it is scalable to millions of users & items
- **Stability**: the methods are not significantly affected by the constant addition of users, items, and ratings in a large commercial applications & do not require retraining
Collaborative Filtering

- Static and adaptive filtering are not social tasks; profiles (and their users) are assumed to be independent of each other.

- Similar users are likely to have similar preferences or profiles.

- Collaborative filtering exploits relationships between users’ profiles to improve how items (documents) are matched to users (profiles).

 - If A is similar to B and A judged a document D is relevant, then it is likely that D is also relevant to B.

 - Often used as a component of recommender system.
Collaborative Filtering

According to [Ma 09], there are two widely-used types of methods for collaborative filtering:

- **Neighborhood-based methods**
 - Include user-based approaches, which predict the ratings of active users based on the computed information of items similar to those chosen by the active user.
 - Suffer from data sparsity and scalability problems

- **Model-based methods** use the observed user-item ratings to train a compact model that explains the given data so that ratings can be predicted

Rating using User Clusters

- Clustering can be used to find groups of similar users
- Measure *user/user similarity* using rating correlation:
 \[\frac{\sum_{i \in I_u \cap I_{u'}} (r_u(i) - \hat{r}_u) \cdot (r_{u'}(i) - \hat{r}_{u'})}{\sqrt{\sum_{i \in I_u \cap I_{u'}} (r_u(i) - \hat{r}_u)^2 \sum_{i \in I_u \cap I_{u'}} (r_{u'}(i) - \hat{r}_{u'})^2}} \]
- Use *average rating* of other users within the same cluster to rate *unseen* items
 \[\hat{r}_u(i) = \frac{1}{|\text{Cluster}(u)|} \sum_{u' \in \text{Cluster}(u)} r_{u'}(i) \]
Collaborative Filtering

- **Example.** Predicts the missing values in the user-item matrix [Ma 09]

<table>
<thead>
<tr>
<th></th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
<th>i_4</th>
<th>i_5</th>
<th>i_6</th>
<th>i_7</th>
<th>i_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_2</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_3</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>u_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_5</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_6</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

User-item Matrix

Predicted User-item Matrix
Recommender Systems

Evaluating Recommendation Systems

- Recommendation systems have a variety of properties, such as **accuracy** and **robustness**, that may affect user experience.

- **Prediction Accuracy**:
 - Predict user opinions (e.g., ratings) over items or the probability of usage (e.g., purchasing).
 - Basic assumption: a recommender system that provides more **accurate** predictions will be **preferred** by the user.
 - Measuring prediction accuracy in a user study measures the accuracy given a recommendation.
 - Commonly used rating accuracy measures: Root Mean Squared Error (RMSE) or Mean Absolute Error (MAE).
Recommender Systems

Evaluating Recommendation Systems (Continued)

- **Prediction Accuracy:**

 - **Usage Prediction Measures** (recommend items for users to use): Precision, Recall (True Positive Rate), and False Positive Rate

 - 4 possible outcomes for the recommended & hidden items

<table>
<thead>
<tr>
<th>Recommended</th>
<th>Not Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td>True-Positive (TP)</td>
</tr>
<tr>
<td>Not Used</td>
<td>False-Positive (FP)</td>
</tr>
</tbody>
</table>

- **Precision** = \(\frac{\#TP}{\#TP + \#FP} \)

- **Recall** = \(\frac{\#TP}{\#TP + \#FN} \)

- **False Positive Rate** = \(\frac{\#FP}{\#FP + \#TN} \)
Recommender Systems

- **Novelty Recommendations**
 - Recommending items that the user did **not** know about, but is not surprising, e.g., a **new** movie by the same director
 - An offline evaluation strategy
 - Split the data set on time by hiding all the user ratings that occurred after a specific point in time (**ST**)
 - Hide ratings that occurred prior to **ST**
 - When recommending, the system is **rewarded** for each item that was recommended & rated after **ST**, but is **punished** for each item that was recommended prior to **ST**
Recommender Systems

Serendipity Recommendations

- Is a measure of how surprising the successful recommendations are
- E.g., following a successful movie recommendation, the user learns of a new actor that (s)he likes

Diversity Recommendations

- Is generally defined as the opposite of similarity in which suggesting similar items may not be useful to the user
- The most explored method for measuring diversity uses item-item similarity, typically based on item content
- In recommenders that assist in information search, more diverse recommendations will result in shorter search interactions