Problem 1 [6 Points]. Exercise 2.2

Problem 2 [6 Points]. Exercise 2.3

Problem 3 [8 Points]. Create the inverted index for a collection of short documents given below. (See slide #10 in the lecture notes of Chapter 2 for an example.) You must show all the intermediate steps in creating the inverted index.

Doc 1 new home sales top forecasts
Doc 2 home sales rise in July
Doc 3 increase in home sales in July
Doc 4 July new home sales rise
Doc 5 single family and multiple family home sales rise

Problem 4. Consider the following short documents:

Doc 1 breakthrough drug for headache
Doc 2 new headache drug
Doc 3 new approach for treatment of headache
Doc 4 new hopes for headache patients

(a) [5 Points]. Create the term-document incidence matrix for the document collection listed above. (See slide #11 in the lecture notes of Chapter 2 for an example.)

(b) [5 Points]. Create the term-term correlation matrix for the term-document incidence matrix created in Part (a).

Problem 5 [5 Points]. Indices speed web query processing; however, it is usually a bad idea to create indices on every keyword and every combinations of keywords. Explain why.

Problem 6. Suppose we have a repository of 1000 documents, and we wish to build an inverted index with 10,000 keywords. A disk block can hold ten keyword-pointer pairs or 50 pointers to either a document or a position within a document. Further assume that the number of occurrences of the i^{th} most frequently occurred keyword is $\frac{100,000}{\sqrt{i}}$, for $i = 1, 2, \ldots, 10,000$.

(a) [5 Points]. What is the average number of keywords per document?
(b) [5 Points]. Suppose our inverted index only records for each keyword that is in all the documents. What is the maximum number of blocks we could need to hold the inverted index?

(c) [5 Points]. Suppose our inverted index holds pointers to each occurrence of each keyword. How many blocks do we need to hold the inverted index?