
A Synchronization Algorithm for Distributed Systems

Tai-Kuo Woo
Department of Computer Science

Jacksonville University
Jacksonville, FL 32211

Kenneth Block
D e p a r t m e n t o f C o m p u t e r a n d I n f o r m a t i o n S c i e n c e

U n i v e r s i t y o f F l o r i d a

G a i n e s v i l l e , F L 32611

A b s t r a c t

Synchronization is an impor tan t aspect of com-

puting. System performance can be greatly re-

duced if an inefficient synchronization algorithm

is used. llere we propose an algorithm for achiev-

ing mutual exclusion, a major task of synchro-

nization, for distributed systems using a tourna-

ment approach. In the algori thm, a request mes-

sage is passed from a leaf node to the root node,

and then back to the leaf node again, signaling

that a process is permit ted to enter the critical

section. A lluffman coding technique is used to

minimize the number of messages required and to

reduce the bound of delay. Iligh fault tolerance is

achieved through backtracking the messages that

have been acknowledged by the faulty node.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

1 I n t r o d u c t i o n

A problem that often arises in distributed sys-
tems is synchronizing concurrent processes, par-
ticularly guaranteeing mutual ly exclusive access
to shared resources. An efficient mutual ex-
clusion algori thm can maximize the parallelism
among concurrent processes. For distributed sys-
tems, the protocol of a mutual exclusion algo-
r i thm cannot be made to rely on access to shared
memory, but must communicate through mes-
sage passing. At present there are two mod-
els for achieving mutual exclusion in distributed
systems. The first model takes a probabilistic
approach [1, 3, 4, 5]. Each process generates a
random number and then compares its number
with others. The winner gets into the critical
section. The second model uses a deterministic
approach. Processes reach agreement by com-
paring local counters in the nodes, such as t ime
s tamps, sequence numbers, etc. [8, 10, 2]. Even
though the results may depend on the arrival se-
quence of the messages, tile decision of who gets
into the critical section is based on tile s tate of
the system. Most mutual exclusion algori thms
require that a process wishing to enter the criti-
cal section send messages to every other process.
The number of messages required for each en-
try to the critical section is O(n) where n is the
number of nodes in a distr ibuted system.

In this paper, we use a tournament approach
for achieving mutual exclusion. The idea is to

© 1991 ACM 089791-382-5/91/0003/0358 $1.50 358

let the processes compete with one another as in
a tournament. If a process wins, it advances to
the next level and competes with another pro-
cess, the winner of the level below. This compe-
tition continues until a process reaches the top
and then enters the critical section. While the
idea of using tournament is not new [9, 6], what
distinguishes this paper from others is the way
messages are passed and the arrangement of the
nodes, which is based on Huffman coding theory.
Also, most algorithms, whether probabilistic or
not, have weak reliability, since reaching agree-
ment requires a process to send messages directly
to every other process. The approach presented
in this paper lessens this problem; a faulty node
only affects its descendents, and other processes
can still enter critical section. Once a faulty node
is detected, it is replaced dynamically through a
backtracking technique.

This paper is organized as follows. In Section
2, we delineate the synchronization algorithm. In
Section 3, we describe how the Huffman coding
technique can be used to reduce the message traf-
fic. In Section 4, we discuss the strategy for in-
creasing fault-tolerance. In Section 5, we look at
network management. A conclusion is given in
Section 6.

2 Description of the Algo-
rithm

The protocol for a node wishing to enter the crit-
ical section is as follows. A node competes with
its neighbor at a designated node by sending a
request message containing information such as
the ID of the request node and its immediate des-
ignated nodes. A designated node is the place
where two nodes with processes interested in the
critical section compete against each other. For
instance, we can choose node 1 as the designated
node for nodes 2 and 3. Whenever these two
nodes have a request, the request messages are
forwarded to node 1. An alternative is to let the
message frame contain the node number of the
request and the level number. The level number
is initialized to 1. Each designated node calcu-
lates the node number of the designated node
at the next level by using the formula provided
in the procedure below. The designated node

•e

t e ~

o •

pw •

i # • 0

s • ~ . t •
• • s °

os • s s

Q © © © ©

I

(D
w ~ ~

0 s i

Figure 1: A Tournament Among Nodes

that determines who goes to the next level im-
mediately returns an acknowledgment to both
of its children and forwards the message to an-
other designated node at a higher level. Figure
1 shows the tournament among nodes. The solid
white circles represent nodes, and the grey cir-
cles denote designated nodes. Each designated
node holds a token, all of which are initialized to
be true. A request message from node I would
include designated nodes 0, 4, and 6. In the fig-
ure, nodes 0 and 1 compete at designated node
0; nodes 2 and 3 compete at designated node 1;
and so on. The designated node determines the
winner based on which request message arrives
first. The request message arriving first finds the
token is true and is forwarded to the designated
node at higher level. A request message that
gets to the designated node late is withheld un-
til the node whose message arrives first exits the
critical section. Since a node is only assigned as
a designated node once, it can receive at most
two request messages. When a node exits the
critical section, it issues messages to unblock the
request messages at the designated nodes. For
example, suppose both nodes 0 and 1 want to
enter the critical section and the request mes-
sage from node 1 arrives at node 0 first (i.e., the
message arrives at node 0 before node 0 gener-
ates a process for entering the critical section.)

359

The request message from node 1 is forwarded
to node 4, and the request message from node 0
is blocked. For ease of detection of faulty nodes,
an ACK_withheld and an ACK_forward are re-
turned to nodes 0 and 1, respectively. Node 4 for-
wards the request message from designated node
0 to designated node 6 if no request message is
received from node 1. When the request message
returns to node 1, it enters the critical section.
When node I finishes the critical section, it sends
messages_release to nodes 6, 4, and 0 to unbloek
the request messages.

The following procedures implement the pro-
tocol.

Procedure Enter_Critical.Section;
beg in

end ;

{Send a message to its immediate
designated node.}

Designated node ID:= Node ID/2.
message(request_critical_section,
node ID, level, designated node ID) ,
Designated node ID.
Go to sleep
{It wakes up and enters the critical
section when it receives a message of

request_critical_section with its node ID
and level equals log2n) }

Procedure Exit_Critical.Section;
begin

Designated node (k):= n-2 ;
{Starting with the designated node at the
highest level }

{Starting with the designated node at the
highest level }

for k:= log2 n to 1 do;
begin

Message(release_critical_section, node
ID) , Designated_node(k);
Designated node (k - 1):=
2 * Designate node(k) - n

{Compute the designated node at one
level below }

end
end;

Procedure Receiving_Message;

begin

case message o f

re lease_cri t ical .sect ion:

i f There is a request message being

withheld, t h e n

i f level = log2 n t h e n

Forward the withheld request

message to node ID.

else

Designated node ID : :

Designated node ID/2 + n/2;

Forward the withheld request

mesage to designated node ID

at a higher level.

else

Set the token on;

r eques t _critical_sectlon:

level :=level + 1;

if token is off t h e n

Withhold the message;

Return ACK_withheld

else

i f level = log2 n t h e n

Designated node ID :=

Node ID;

{The request message has

reached the top level and

is going to be returned to

the node which issues

the request }

else

Designated node ID :=

Designated I D / 2 + n/2;

{Compute the designated

node at the next level }

Set the token off and

forward the request message to

designated ID at a higher level.

Return ACK_forward;
end case

end;

360

2 . 1 P r o o f o f C o r r e c t n e s s

L e m m a 2.1 Mutual exclusion is guaranteed.
Mutual ezclusion ensures that only one process
is in the critical section at a time.

P r o o f o f L e m m a 2.1 The claim is true be-
cause each node has two immediate children and
each child can only send one request message.
At the root, only one request message can go
through. When releasing the critical section,
each withheld request message advances one level
and the request message withheld at the root gets
into the critical section. As a result, at any time,
only one process stays in the critical section.

L e m m a 2.2 Deadlock is impossible. Deadlock
is the situation where no process can ever enter
the critical section.

P r o o f o f L e m m a 2.2 The claim is true. If
only one process is at the highest level, it pro-
ceeds to the critical section. If more than one
process is at the highest level, one of the pro-
cesses advances to the next level and enters the
critical section eventually.

L e m m a 2.3 Starvation is not possible. Starva-
tion is the situation where a process is prevented
indefinitely from entering the critical section.

P r o o f o f L e m m a 2.3 A process which is with-
held at a level can never be passed by any of its
descendents. When a process exits the critical
section, the processes above the withheld pro-
cess move to a higher level and allow the with-
held process to advance one level. Eventually,
the withheld process enters the critical section.

3 A Technique for Reducing
Message Traffic

In distributed systems, nodes have different
probabilities of entering the critical section; i.e.,
some of them enter the critical section more fre-
quently than the others. The number of mes-
sages and the delay required for each entry to the
critical section is reduced if we place the nodes
with high probability of requesting the critical
section near the root. For example, in a system
of four nodes, 0..3, with probabilities 0.01, 0.1,

Figure 2: A New Arrangement of Nodes

0.1, and 0.79, respectively, it takes two messages
for each entry to the critical section if the nodes
are placed at leaves equidistant from the root.
However, if we rearrange the nodes, placing the
high probability nodes at the leaves closer to the
root, as shown in Figure 2, the expected number
of messages required for each entry to the critical
section is reduced to 1.22.

3 . 1 D e s c r i p t i o n o f t h e T e c h n i q u e

The technique for finding the optimal arrange-
ment of nodes can be found in coding theory. In
a tIuffman coding scheme [7], a set of items is to
be coded in binary for transmission. Each item is
associated with a probability of occurrence. To
minimize the average-length binary code, a short
binary code is used to represent an item with a
high probability of occurrence. If we treat each
binary digit as a message, the problem of min-
imizing the average length of binary code can
be transformed into the problem of minimizing
the average number of messages required for each
entry to the critical section. The Huffman cod-
ing algorithm works as follows. First, it orders
the items in descending order according to their
probabilities of occurrence. Second, the code of
the item with the lowest probability is concate-
nated with a "0" at the front, and the code of the
item with the second lowest probability is con-
catenated with a "1." Third, the probabilities of
these two items are summed up to form a new
item, and all the items are reordered. Again, the
last two items are concatenated with a "0" and a
'T ' , respectively. This process is repeated until

361

Figure 3: A Configuration of Nodes Using Huff-
man Coding Theory

only two items are left, and each is assigned a bi-
nary digit. For example, items 0 through 7 have
probabilities 1/2, 1/4, 1/16, 1/16, 1/16, 1/32,
1/64, and 1/64. Applying the ttuffman coding
algorithm would generate the binary codes shown
in Table 1.

Item
0
1
2
3
4
5
6
7

Probability Binary Code
1/2 0
1/4 10
1/16 1110
1/16 1101
1/16 1100
1/32 11110
1/64 111111
1/64 111110

Table 1: Binary Codes of Items Using Huffman
Coding Scheme

To transform the binary codes into the tourna-
ment tree, we start with the root, assigning 1 to
the right link of the root and 0 to the left link. If
any of the paths from the root down matches the
binary code of a node, it terminates. The paths
which do not match any binary code branch to
the next level. Eventually, all tile paths find a
match in the tree. Figure 3 shows the new con-
figuration of nodes using tluffman coding theory.

In the Huffman coding scheme, the probabili-
ties of items are known. The probability that a
node will issue a request to enter the critical sec-
tion can be estimated statistically from its past
history.

There is no doubt that the percentage of re-
duction of the number of messages required de-
pends on the variance of the probabilities that
nodes may issue a request for entry to the crit-
ical section; the higher the variance the greater
the percentage of reduction of messages.

3 .2 P e r f o r m a n c e E v a l u a t i o n

Itere, we perform a simulation to determine the
effectiveness of using Huffman coding to rear-
range the nodes. In the simulation, we calculate
the percentage of reduction of messages (the re-
duction coefficient, RC) required for each entry
to the critical section by using the Huffman cod-
ing technique for n = 4, 8, and 16, where n is the
number of nodes in the system. The reduction
coefficient is calculated by the formula below:

N M H
RC = 1

log2n

where N M H is the expected number of mes-
sages required using Huffman coding theory and
logan is the number of messages required with-
out using Huffman coding. The N M H is ob-
tained by taking the average of five simulation
runs. On each simulation run, a set of proba-
bilities is generated with the specified standard
deviation. Then, by associating each node with
a probability and appling the ~ Huffman coding
algorithm, an optimal arrangement of nodes is
determined. The N M H is calculated by the for-
mula below.

11

N M H = ~ pili
i = l

where Pi is the probability that node i may re-
quest to enter the critical section and li is the
number of links between the node and the root
in the tree. As shown in Tables 2, 3, and 4,
tile reduction coefficient increases as the stan-
dard deviation of the probabilities (tr) that the
nodes may issue a request to enter the critical
section increases.

362

a N M H R C

0.16 1.76 0.12
0.20 1.64 0.18
0.24 1.50 0 .25"
0.28 1.38 0.3i I
0.32 1 . 3 6 0.32.
0.36 !1.20 0.40

Table 2: Reduction Coefficient of Using Huffman
Coding (n=4)

cr N M H R C

0.09 ~2.61 0.13
0.11 2.40 0.20
0.13 2.28 0.24
0.15 2.16 0.28
0.17 2.13 0.29'
0 . 1 9 2 . 0 4 0 .32

Table 3: Reduction Coefficient of Using Huffman
Coding (n=8)

4 Network Rel iabi l i ty

There are two major issues in network reliabil-
ity: fault detection and fault tolerance. The dis-
tr ibuted algori thm proposed in this paper pro-
vides high reliability.

First, fault detection is very easy to imple-
ment. A node is monitored by its immediate chil-
dren. When a node receives a request message
from it children, an ACK is returned. If a child
node does not receive an ACK before a t imeout
period expires, the child node determines that its
parent node is faulty. To achieve high fault tol-
erance, we use a backtracking technique. When
a node forwards a request message to i ts 'parent
and an ACK is not returned before a t imeout
period expires, it forwards the request message
to the last node whose request message has been
acknowledged. For instance, node 5 forwards a
request message from node 1 to node 7 and an
ACK is returned to both node 5 and node 6. Note
that an ACK should include the ID number of
the node that originates the request to enter the
critical section. Later on if either node 5 or node
6 detects that node 7 is faulty, the new request
message, which could come from any of the de-
scendents of node 5 or node 6, is forwarded to
node 1, because node 1 was the last node to suc-
cessfully function on the chain leading to node
7.

To achieve multiple fault tolerance, a queue
of ACKs can be established at each node and
the replacing node for the faulty node can be
designated according to the ordering of the nodes
in the queue.

(7

O.05
O.06
O.07
0.08
0.09
O.IO

N M H R C I

3.48 0 . 1 3
3.40 0.15
3.20 0.20 "
2.88 0.28
2.8 !0.30
2.36 ~ 0.41

Table 4: Reduction Coefficient of Using Huffman
Coding (n=16)

5 Network Management

Since in the distributed algorithm each node re-
ceives request messages from its immediate de-
scendents, the addition of a node is very straight-
forward. First, the position of the new node on
the tree is calculated using the t tuffman coding
scheme. Second, the old parent notifies its im-
mediate child tha t a new parent has been estab-
lished. For example, if a new node 4 is to be in-
serted into the link between nodes 1 and 2, node
2 notifies node 1 that all request messages should
be sent to node 4.

363

Similarly, a node being deleted from the net-
work notifies its immediate children that all re-
quest messages should be sent to its neighbor.

6 C o n c l u s i o n

In this paper, we have described a mutual ex-
clusion algorithm for distributed systems using
a tournament approach. A process wishing to
enter the critical section must issue a request
message, which is then passed through the nodes
on the path from the leaves to the root. When
the request message is returned to the request-
ing node, the process enters the critical section.
When exiting the critical section, the process
sends a message to each node on the path the
message has passed through. As a result, the
number of messages required for each entry to
the critical section is 21og2n, where n is the num-
ber of nodes. To further reduce the number of
messages, the Huffman coding technique is used
to determine the position of each node in the
tournament based on the probability that a node
may issue a request for entry to the critical sec-
tion. Performance evaluation shows that this al-
gorithm produces a significant reduction in mes-
sages, which also implies a reduction in the av-
erage bound of delay. The reliability of the pro-
tocol is enhanced through a backtracking tech-
nique. When a node receives a request message
from one of its immediate children, it returns an
ACK to both of its children immediately. When
the children detect a faulty parent (i.e., no ACK
is received), the request message is forwarded to
the node whose request message passes through
the faulty node. Multiple fault tolerance can be
achieved by using a queue to store the nodes that
have passed through a faulty node. Also, since
a node needs to know only its parent and im-
mediate children, adding and deleting nodes can
be done on the fly. Moreover, the approach of
using Huffman coding technique can be applied
to other application fields, such as file structures
and database retrieval, without adding overhead.
For instance, in a hierarchical file structure, fre-
quently retrieved files are placed near the root
to reduce the amount of searching time. In dy-
namic hashing and indexing, the items recalled
most often should have the least rehashing and
reindexing.

R e f e r e n c e s

[1]

[21

Burns, J. E. Symmetry in Systems of Asyn-
chronous Processes. Proceedings of 22nd
Annual ACM Symposium on Foundations of
Computer Science. 1981, pp. 169-174.

Carvalho, O. and Roucairol, G. On Mutual
Exclusion in Computer Networks. Commu-
nications of the ACM, 26(2), Feb. 1983, pp.
146-147.

[3] Chang, C. K. Bidding Against Competi-
tor. IEEE Transactions on Software Engi-
neering, 16(1), Jan. 1990, pp. 100-104.

[4] Cohen, S, Lehmann, D, and Pnueli. Sym-
metric and Economical Solution to the Mu-
tual Exclusion Problem in Distributed Sys-
tems. Theoretical Computer Science. Vol.
34, 1984, pp. 215-226.

[5] Francez, N. and Rodeh, M. A Distributed
Abstract Data Type Implemented by a
Probabilistic Communication Scheme. Pro-
ceedings of the 21 th Annual ACM Sympo-
sium on Foundations of Computer Science,
1980, pp. 373-379.

[6] Graunke, G. and Thakkar, S. Synchroniza-
tion Algorithms for Shared-Memory Multi-
processors. IEEE Computer, June 1990, pp.
60-69.

[7]

[8]

Huffman, D. A Method for the Construc-
tion of Minimum Redundancy Code. Pro-
ceedings of IRE, 40, 1952.

Lamport, L. Time, Clocks, and the Ordering
of Events in a Distributed System. Commu-
nications of the ACM, 21(7), July 1978, pp.
558-565.

[9] Peterson, G. and M. Fischer. Economic So-
lutions for the Critical Section Problem in
a Distributed System. Proceedings of the
Ninth A C M Symposium on Theory of Com-
puting, 1977, pp. 91-97.

[10] Ricart, G. and Agrawala, A. K. An Optimal
Algorithm for Mutual Exclusion in Com-
puter Networks. Communications of the
ACM, 24(1), Jan. 1981, pp. 9-17.

364

