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A b s t r a c t  

Synchronization is an impor tan t  aspect of com- 

puting. System performance can be greatly re- 

duced if an inefficient synchronization algorithm 

is used. llere we propose an algorithm for achiev- 

ing mutual  exclusion, a major  task of synchro- 

nization, for distributed systems using a tourna- 

ment approach.  In the algori thm, a request mes- 

sage is passed from a leaf node to the root node, 

and then back to the leaf node again, signaling 

that a process is permit ted to enter the critical 

section. A lluffman coding technique is used to 

minimize the number of messages required and to 

reduce the bound of delay. Iligh fault tolerance is 

achieved through backtracking the messages that  

have been acknowledged by the faulty node. 
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1 I n t r o d u c t i o n  

A problem that  often arises in distributed sys- 
tems is synchronizing concurrent processes, par- 
ticularly guaranteeing mutual ly  exclusive access 
to shared resources. An efficient mutual  ex- 
clusion algori thm can maximize the parallelism 
among concurrent processes. For distributed sys- 
tems, the protocol of a mutual  exclusion algo- 
r i thm cannot be made to rely on access to shared 
memory,  but must  communicate  through mes- 
sage passing. At present there are two mod- 
els for achieving mutual  exclusion in distributed 
systems. The first model takes a probabilistic 
approach [1, 3, 4, 5]. Each process generates a 
random number  and then compares  its number  
with others. The winner gets into the critical 
section. The  second model uses a deterministic 
approach. Processes reach agreement  by com- 
paring local counters in the nodes, such as t ime 
s tamps,  sequence numbers,  etc. [8, 10, 2]. Even 
though the results may depend on the arrival se- 
quence of the messages, tile decision of who gets 
into the critical section is based on tile s tate of  
the system. Most mutual  exclusion algori thms 
require that  a process wishing to enter the criti- 
cal section send messages to every other process. 
The number of messages required for each en- 
try to the critical section is O(n)  where n is the 
number of nodes in a distr ibuted system. 

In this paper,  we use a tournament  approach 
for achieving mutual  exclusion. The  idea is to 
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let the processes compete with one another as in 
a tournament.  If a process wins, it advances to 
the next level and competes with another pro- 
cess, the winner of the level below. This compe- 
tition continues until a process reaches the top 
and then enters the critical section. While the 
idea of using tournament  is not new [9, 6], what 
distinguishes this paper from others is the way 
messages are passed and the arrangement of the 
nodes, which is based on Huffman coding theory. 
Also, most algorithms, whether probabilistic or 
not, have weak reliability, since reaching agree- 
ment requires a process to send messages directly 
to every other process. The approach presented 
in this paper lessens this problem; a faulty node 
only affects its descendents, and other processes 
can still enter critical section. Once a faulty node 
is detected, it is replaced dynamically through a 
backtracking technique. 

This paper is organized as follows. In Section 
2, we delineate the synchronization algorithm. In 
Section 3, we describe how the Huffman coding 
technique can be used to reduce the message traf- 
fic. In Section 4, we discuss the strategy for in- 
creasing fault-tolerance. In Section 5, we look at 
network management.  A conclusion is given in 
Section 6. 

2 Description of the Algo- 
rithm 

The protocol for a node wishing to enter the crit- 
ical section is as follows. A node competes with 
its neighbor at a designated node by sending a 
request message containing information such as 
the ID of the request node and its immediate des- 
ignated nodes. A designated node is the place 
where two nodes with processes interested in the 
critical section compete against each other. For 
instance, we can choose node 1 as the designated 
node for nodes 2 and 3. Whenever these two 
nodes have a request, the request messages are 
forwarded to node 1. An alternative is to let the 
message frame contain the node number of the 
request and the level number. The level number 
is initialized to 1. Each designated node calcu- 
lates the node number of the designated node 
at the next level by using the formula provided 
in the procedure below. The designated node 
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Figure 1: A Tournament  Among Nodes 

that  determines who goes to the next level im- 
mediately returns an acknowledgment to both 
of its children and forwards the message to an- 
other designated node at a higher level. Figure 
1 shows the tournament  among nodes. The solid 
white circles represent nodes, and the grey cir- 
cles denote designated nodes. Each designated 
node holds a token, all of which are initialized to 
be true. A request message from node I would 
include designated nodes 0, 4, and 6. In the fig- 
ure, nodes 0 and 1 compete at designated node 
0; nodes 2 and 3 compete at designated node 1; 
and so on. The designated node determines the 
winner based on which request message arrives 
first. The request message arriving first finds the 
token is true and is forwarded to the designated 
node at higher level. A request message that  
gets to the designated node late is withheld un- 
til the node whose message arrives first exits the 
critical section. Since a node is only assigned as 
a designated node once, it can receive at most 
two request messages. When a node exits the 
critical section, it issues messages to unblock the 
request messages at the designated nodes. For 
example, suppose both nodes 0 and 1 want to 
enter the critical section and the request mes- 
sage from node 1 arrives at node 0 first (i.e., the 
message arrives at node 0 before node 0 gener- 
ates a process for entering the critical section.) 
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The request message from node 1 is forwarded 
to node 4, and the request message from node 0 
is blocked. For ease of detection of faulty nodes, 
an ACK_withheld and an ACK_forward are re- 
turned to nodes 0 and 1, respectively. Node 4 for- 
wards the request message from designated node 
0 to designated node 6 if no request message is 
received from node 1. When the request message 
returns to node 1, it enters the critical section. 
When node I finishes the critical section, it sends 
messages_release to nodes 6, 4, and 0 to unbloek 
the request messages. 

The following procedures implement the pro- 
tocol. 

Procedure Enter_Critical.Section; 
beg in  

end  ; 

{Send a message to its immediate 
designated node.} 

Designated node ID:= Node ID/2. 
message(request_critical_section, 
node ID, level, designated node ID) , 
Designated node ID. 
Go to sleep 
{It wakes up and enters the critical 
section when it receives a message of 

request_critical_section with its node ID 
and level equals log2n) } 

Procedure Exit_Critical.Section; 
begin  

Designated node (k):= n-2 ;  
{Starting with the designated node at the 
highest level } 

{Starting with the designated node at the 
highest level } 

for  k:= log2 n to 1 do; 
begin  

Message(release_critical_section, node 
ID) , Designated_node(k); 
Designated node (k - 1):= 
2 * Designate node(k) - n 

{Compute the designated node at one 
level below } 

end  
end; 

Procedure Receiving_Message; 

begin 

case message  o f  

re lease_cri t ical .sect ion:  

i f  There is a request message being 

withheld, t h e n  

i f  level = log2 n t h e n  

Forward the withheld request 

message to node ID. 

else 

Designated node ID : :  

Designated node ID/2  + n/2; 

Forward the withheld request 

mesage to designated node ID 

at a higher level. 

else 

Set the token on; 

r eques t  _critical_sectlon: 

level :=level + 1; 

if  token is off t h e n  

Withhold the message; 

Return ACK_withheld 

else 

i f  level = log2 n t h e n  

Designated node ID := 

Node ID; 

{The request message has 

reached the top level and 

is going to be returned to 

the node which issues 

the request } 

else 

Designated node ID := 

Designated I D / 2  + n/2; 

{Compute the designated 

node at the next level } 

Set the token off and 

forward the request message to 

designated ID at a higher level. 

Return ACK_forward; 
end  case 

end; 
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2 . 1  P r o o f  o f  C o r r e c t n e s s  

L e m m a  2.1 Mutual exclusion is guaranteed. 
Mutual ezclusion ensures that only one process 
is in the critical section at a time. 

P r o o f  o f L e m m a  2.1 The claim is true be- 
cause each node has two immediate children and 
each child can only send one request message. 
At the root, only one request message can go 
through. When releasing the critical section, 
each withheld request message advances one level 
and the request message withheld at the root gets 
into the critical section. As a result, at any time, 
only one process stays in the critical section. 

L e m m a  2.2 Deadlock is impossible. Deadlock 
is the situation where no process can ever enter 
the critical section. 

P r o o f  o f  L e m m a  2.2 The claim is true. If 
only one process is at the highest level, it pro- 
ceeds to the critical section. If more than one 
process is at the highest level, one of the pro- 
cesses advances to the next level and enters the 
critical section eventually. 

L e m m a  2.3 Starvation is not possible. Starva- 
tion is the situation where a process is prevented 
indefinitely from entering the critical section. 

P r o o f  o f  L e m m a  2.3 A process which is with- 
held at a level can never be passed by any of its 
descendents. When a process exits the critical 
section, the processes above the withheld pro- 
cess move to a higher level and allow the with- 
held process to advance one level. Eventually, 
the withheld process enters the critical section. 

3 A Technique for Reducing 
Message Traffic 

In distributed systems, nodes have different 
probabilities of entering the critical section; i.e., 
some of them enter the critical section more fre- 
quently than the others. The number of mes- 
sages and the delay required for each entry to the 
critical section is reduced if we place the nodes 
with high probability of requesting the critical 
section near the root. For example, in a system 
of four nodes, 0..3, with probabilities 0.01, 0.1, 

Figure 2: A New Arrangement of Nodes 

0.1, and 0.79, respectively, it takes two messages 
for each entry to the critical section if the nodes 
are placed at leaves equidistant from the root. 
However, if we rearrange the nodes, placing the 
high probability nodes at the leaves closer to the 
root, as shown in Figure 2, the expected number 
of messages required for each entry to the critical 
section is reduced to 1.22. 

3 . 1  D e s c r i p t i o n  o f  t h e  T e c h n i q u e  

The technique for finding the optimal arrange- 
ment of nodes can be found in coding theory. In 
a tIuffman coding scheme [7], a set of items is to 
be coded in binary for transmission. Each item is 
associated with a probability of occurrence. To 
minimize the average-length binary code, a short 
binary code is used to represent an item with a 
high probability of occurrence. If we treat each 
binary digit as a message, the problem of min- 
imizing the average length of binary code can 
be transformed into the problem of minimizing 
the average number of messages required for each 
entry to the critical section. The Huffman cod- 
ing algorithm works as follows. First, it orders 
the items in descending order according to their 
probabilities of occurrence. Second, the code of 
the item with the lowest probability is concate- 
nated with a "0" at the front, and the code of the 
item with the second lowest probability is con- 
catenated with a "1." Third,  the probabilities of 
these two items are summed up to form a new 
item, and all the items are reordered. Again, the 
last two items are concatenated with a "0" and a 
'T ' ,  respectively. This process is repeated until 
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Figure 3: A Configuration of Nodes Using Huff- 
man Coding Theory 

only two items are left, and each is assigned a bi- 
nary digit. For example, items 0 through 7 have 
probabilities 1/2, 1/4, 1/16, 1/16, 1/16, 1/32, 
1/64, and 1/64. Applying the ttuffman coding 
algorithm would generate the binary codes shown 
in Table 1. 

Item 
0 
1 
2 
3 
4 
5 
6 
7 

Probability Binary Code 
1/2 0 
1/4 10 
1/16 1110 
1/16 1101 
1/16 1100 
1/32 11110 
1/64 111111 
1/64 111110 

Table 1: Binary Codes of Items Using Huffman 
Coding Scheme 

To transform the binary codes into the tourna- 
ment tree, we start with the root, assigning 1 to 
the right link of the root and 0 to the left link. If 
any of the paths from the root down matches the 
binary code of a node, it terminates. The paths 
which do not match any binary code branch to 
the next level. Eventually, all tile paths find a 
match in the tree. Figure 3 shows the new con- 
figuration of nodes using tluffman coding theory. 

In the Huffman coding scheme, the probabili- 
ties of items are known. The probability that a 
node will issue a request to enter the critical sec- 
tion can be estimated statistically from its past 
history. 

There is no doubt that the percentage of re- 
duction of the number of messages required de- 
pends on the variance of the probabilities that 
nodes may issue a request for entry to the crit- 
ical section; the higher the variance the greater 
the percentage of reduction of messages. 

3 .2  P e r f o r m a n c e  E v a l u a t i o n  

Itere, we perform a simulation to determine the 
effectiveness of using Huffman coding to rear- 
range the nodes. In the simulation, we calculate 
the percentage of reduction of messages (the re- 
duction coefficient, RC) required for each entry 
to the critical section by using the Huffman cod- 
ing technique for n = 4, 8, and 16, where n is the 
number of nodes in the system. The reduction 
coefficient is calculated by the formula below: 

N M H  
RC = 1 

log2n 

where N M H  is the expected number of mes- 
sages required using Huffman coding theory and 
logan is the number of messages required with- 
out using Huffman coding. The N M H  is ob- 
tained by taking the average of five simulation 
runs. On each simulation run, a set of proba- 
bilities is generated with the specified standard 
deviation. Then, by associating each node with 
a probability and appling the ~ Huffman coding 
algorithm, an optimal arrangement of nodes is 
determined. The N M H  is calculated by the for- 
mula below. 

11 

N M H = ~ pili 
i = l  

where Pi is the probability that node i may re- 
quest to enter the critical section and li is the 
number of links between the node and the root 
in the tree. As shown in Tables 2, 3, and 4, 
tile reduction coefficient increases as the stan- 
dard deviation of the probabilities (tr) that the 
nodes may issue a request to enter the critical 
section increases. 
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a N M H  R C  

0.16 1.76 0.12 
0.20 1.64 0.18 
0.24 1.50 0 .25"  
0.28 1.38 0.3i I 
0.32 1 . 3 6  0.32. 
0.36 !1.20 0.40 

Table 2: Reduction Coefficient of Using Huffman 
Coding (n=4) 

cr N M H R C  

0.09 ~2.61 0.13 
0.11 2.40 0.20 
0.13 2.28 0.24 
0.15 2.16 0.28 
0.17 2.13 0.29' 
0 . 1 9 2 . 0 4  0 .32  

Table 3: Reduction Coefficient of Using Huffman 
Coding (n=8) 

4 Network Rel iabi l i ty  

There are two major  issues in network reliabil- 
ity: fault detection and fault  tolerance. The dis- 
tr ibuted algori thm proposed in this paper pro- 
vides high reliability. 

First, fault detection is very easy to imple- 
ment. A node is monitored by its immediate  chil- 
dren. When a node receives a request message 
from it children, an ACK is returned. If a child 
node does not receive an ACK before a t imeout  
period expires, the child node determines that  its 
parent node is faulty. To achieve high fault tol- 
erance, we use a backtracking technique. When 
a node forwards a request message to i ts 'parent 
and an ACK is not  returned before a t imeout  
period expires, it forwards the request message 
to the last node whose request message has been 
acknowledged. For instance, node 5 forwards a 
request message from node 1 to node 7 and an 
ACK is returned to both node 5 and node 6. Note 
that  an ACK should include the ID number of 
the node that  originates the request to enter the 
critical section. Later on if either node 5 or node 
6 detects that  node 7 is faulty, the new request 
message, which could come from any of the de- 
scendents of node 5 or node 6, is forwarded to 
node 1, because node 1 was the last node to suc- 
cessfully function on the chain leading to node 
7. 

To achieve multiple fault tolerance, a queue 
of ACKs can be established at each node and 
the replacing node for the faulty node can be 
designated according to the ordering of the nodes 
in the queue. 

(7 

O.05 
O.06 
O.07 
0.08 
0.09 
O.IO 

N M H  R C  I 

3.48 0 . 1 3  
3.40 0.15 
3.20 0.20 " 
2.88 0.28 
2.8 !0.30 
2.36 ~ 0.41 

Table 4: Reduction Coefficient of Using Huffman 
Coding (n=16) 

5 Network Management  

Since in the distributed algorithm each node re- 
ceives request messages from its immediate de- 
scendents, the addition of a node is very straight- 
forward. First, the position of the new node on 
the tree is calculated using the t tuffman coding 
scheme. Second, the old parent notifies its im- 
mediate child tha t  a new parent has been estab- 
lished. For example, if a new node 4 is to be in- 
serted into the link between nodes 1 and 2, node 
2 notifies node 1 that  all request messages should 
be sent to node 4. 
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Similarly, a node being deleted from the net- 
work notifies its immediate children that all re- 
quest messages should be sent to its neighbor. 

6 C o n c l u s i o n  

In this paper, we have described a mutual ex- 
clusion algorithm for distributed systems using 
a tournament approach. A process wishing to 
enter the critical section must issue a request 
message, which is then passed through the nodes 
on the path from the leaves to the root. When 
the request message is returned to the request- 
ing node, the process enters the critical section. 
When exiting the critical section, the process 
sends a message to each node on the path the 
message has passed through. As a result, the 
number of messages required for each entry to 
the critical section is 21og2n, where n is the num- 
ber of nodes. To further reduce the number of 
messages, the Huffman coding technique is used 
to determine the position of each node in the 
tournament based on the probability that a node 
may issue a request for entry to the critical sec- 
tion. Performance evaluation shows that this al- 
gorithm produces a significant reduction in mes- 
sages, which also implies a reduction in the av- 
erage bound of delay. The reliability of the pro- 
tocol is enhanced through a backtracking tech- 
nique. When a node receives a request message 
from one of its immediate children, it returns an 
ACK to both of its children immediately. When 
the children detect a faulty parent (i.e., no ACK 
is received), the request message is forwarded to 
the node whose request message passes through 
the faulty node. Multiple fault tolerance can be 
achieved by using a queue to store the nodes that 
have passed through a faulty node. Also, since 
a node needs to know only its parent and im- 
mediate children, adding and deleting nodes can 
be done on the fly. Moreover, the approach of 
using Huffman coding technique can be applied 
to other application fields, such as file structures 
and database retrieval, without adding overhead. 
For instance, in a hierarchical file structure, fre- 
quently retrieved files are placed near the root 
to reduce the amount of searching time. In dy- 
namic hashing and indexing, the items recalled 
most often should have the least rehashing and 
reindexing. 
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