

Real-Time Embedded

Multithreading:

Using ThreadX

®

 and ARM

®

Edward L. Lamie

San Francisco, CA

lam144001_FM.fm Page i Tuesday, October 19, 2004 2:13 PM

21

C

HAPTER

3

RTOS C

ONCEPTS

AND

 D

EFINITIONS

3.1 Introduction

The purpose of this chapter is to review some of the essential concepts and definitions
used in embedded systems.

1

 You have already encountered several of these terms in pre-
vious chapters, and you will read about several new concepts here.

3.2 Priorities

Most embedded real-time systems use a priority system as a means of establishing the
relative importance of threads in the system. There are two classes of priorities: static
and dynamic. A

static priority

 is one that is assigned when a thread is created and
remains constant throughout execution. A

dynamic priority

 is one that is assigned when
a thread is created, but can be changed at any time during execution. Furthermore, there
is no limit on the number of priority changes that can occur.

ThreadX provides a flexible method of dynamic priority assignment. Although each
thread must have a priority, ThreadX places no restrictions on how priorities may be
used. As an extreme case, all threads could be assigned the same priority that would
never change. However, in most cases, priority values are carefully assigned and modi-
fied only to reflect the change of importance in the processing of threads. As illustrated
by Figure 3.1, ThreadX provides priority values from 0 to 31, inclusive, where the value 0
represents the highest priority and the value 31 represents the lowest priority.

1

A relatively small number of terms and concepts are reviewed in this chapter. For a more complete
listing, see the online Embedded Systems Glossary by Michael Barr at http://www.netrino.com/
Publications/Glossary/.

lam144001_ch03.fm Page 21 Thursday, October 14, 2004 7:20 PM

22

C

HAPTER

3: RTOS C

ONCEPTS

AND

 D

EFINITIONS

Figure 3.1 Priority values.

3.3 Ready Threads and Suspended Threads

ThreadX maintains several internal data structures to manage threads in their various
states of execution. Among these data structures are the Suspended Thread List and the
Ready Thread List. As implied by the nomenclature, threads on the Suspended Thread
List have been

suspended—

temporarily stopped executing—for some reason. Threads
on the Ready Thread List are not currently executing but are ready to run.

When a thread is placed in the Suspended Thread List, it is because of some event or
circumstance, such as being forced to wait for an unavailable resource. Such a thread
remains in that list until that event or circumstance has been resolved. When a thread is
removed from the Suspended Thread List, one of two possible actions occurs: it is placed
on the Ready Thread List, or it is terminated.

When a thread is ready for execution, it is placed on the Ready Thread List. When
ThreadX schedules a thread for execution, it selects and removes the thread in that list
that has the highest priority. If all the threads on the list have equal priority, ThreadX
selects the thread that has been waiting the longest.

2

 Figure 3.2 contains an illustration
of how the Ready Thread List appears.

Figure 3.2 Ready Thread List.

If for any reason a thread is not ready for execution, it is placed in the Suspended
Thread List. For example, if a thread is waiting for a resource, if it is in “sleep” mode, if
it was created with a TX_DONT_START option, or if it was explicitly suspended, then

Priority
Value

Meaning

0
Highest
priority

1

:

31
Lowest
priority

2

This latter selection algorithm is commonly known as First In First Out, or FIFO.

Threads ready to be executed are ordered by
priority, then by FIFO

lam144001_ch03.fm Page 22 Thursday, October 14, 2004 7:20 PM

it will reside in the Suspended Thread List until that situation has cleared. Figure 3.3
contains a depiction of this list.

Figure 3.3 Suspended Thread List.

3.4 Preemptive, Priority-Based Scheduling

The term

preemptive, priority-based scheduling

 refers to the type of scheduling in which
a higher priority thread can interrupt and suspend a currently executing thread that has
a lower priority. Figure 3.4 contains an example of how this scheduling might occur.

Figure 3.4 Thread preemption.

In this example, Thread 1 has control of the processor. However, Thread 2 has a
higher priority and becomes ready for execution. ThreadX then interrupts Thread 1 and
gives Thread 2 control of the processor. When Thread 2 completes its work, ThreadX
returns control to Thread 1 at the point where it was interrupted. The developer does
not have to be concerned about the details of the scheduling process. Thus, the devel-
oper is able to develop the threads in isolation from one another because the scheduler
determines when to execute (or interrupt) each thread.

3.5 Round-Robin Scheduling

The term

round-robin scheduling

 refers to a scheduling algorithm designed to provide
processor sharing in the case in which multiple threads have the same priority. There are
two primary ways to achieve this purpose, both of which are supported by ThreadX.

Threads are not sorted in any particular order

Pr
io

ri
ty

Time

Thread 1
begins

Thread 1
finishes

Thread 1
interrupted

Thread 2
executing

Round-Robin Scheduling

23

lam144001_ch03.fm Page 23 Thursday, October 14, 2004 7:20 PM

24

C

HAPTER

3: RTOS C

ONCEPTS

AND

 D

EFINITIONS

Figure 3.5 illustrates the first method of round-robin scheduling, in which Thread 1
is executed for a specified period of time, then Thread 2, then Thread 3, and so on to
Thread n, after which the process repeats. See the section titled

Time-Slice

 for more
information about this method. The second method of round-robin scheduling is
achieved by the use of a cooperative call made by the currently executing thread that
temporarily relinquishes control of the processor, thus permitting the execution of other
threads of the same or higher priority. This second method is sometimes called

cooperative
multithreading

. Figure 3.6 illustrates this second method of round-robin scheduling.

Figure 3.5 Round-robin processing.

Figure 3.6 Example of cooperative multithreading.

With cooperative multithreading, when an executing thread relinquishes control of
the processor, it is placed at the end of the Ready Thread List, as indicated by the shaded
thread in the figure. The thread at the front of the list is then executed, followed by the
next thread on the list, and so on until the shaded thread is at the front of the list. For
convenience, Figure 3.6 shows only ready threads with the same priority. However, the
Ready Thread List can hold threads with several different priorities. In that case, the
scheduler will restrict its attention to the threads that have the highest priority.

In summary, the cooperative multithreading feature permits the currently executing
thread to voluntarily give up control of the processor. That thread is then placed on the

Thread n Thread 1

Thread 2

Thread 3Thread 4

Ready Thread List containing threads with the same
priority. Currently executing thread (shaded) voluntarily relinquishes

the processor and is placed on this list.

lam144001_ch03.fm Page 24 Tuesday, October 19, 2004 2:06 PM

Ready Thread List and it will not gain access to the processor until after all other
threads that have the same (or higher) priority have been processed.

3.6 Determinism

As noted in Chapter 1, an important feature of real-time embedded systems is the con-
cept of determinism. The traditional definition of this term is based on the assumption
that for each system state and each set of inputs, a unique set of outputs and next state
of the system can be determined. However, we strengthen the definition of determinism
for real-time embedded systems by requiring that the time necessary to process any task
is predictable. In particular, we are less concerned with average response time than we
are with worst-case response time. For example, we must be able to guarantee the worst-
case response time for each system call in order for a real-time embedded system to be
deterministic. In other words, simply obtaining the correct answer is not adequate. We
must get the right answer within a specified time frame.

Many RTOS vendors claim their systems are deterministic and justify that assertion
by publishing tables of minimum, average, and maximum number of clock cycles
required for each system call. Thus, for a given application in a deterministic system, it is
possible to calculate the timing for a given number of threads, and determine whether
real-time performance is actually possible for that application.

3.7 Kernel

A

kernel

 is a minimal implementation of an RTOS. It normally consists of at least a
scheduler and a context switch handler. Most modern commercial RTOSes are actually
kernels, rather than full-blown operating systems.

3.8 RTOS

An RTOS is an operating system that is dedicated to the control of hardware, and
must operate within specified time constraints. Most RTOSes are used in embedded
systems.

3.9 Context Switch

A

context

 is the current execution state of a thread. Typically, it consists of such items as
the program counter, registers, and stack pointer. The term

context switch

 refers to the
saving of one thread’s context and restoring a different thread’s context so that it can be
executed. This normally occurs as a result of preemption, interrupt handling, time-
slicing (see below), cooperative round-robin scheduling (see below), or suspension of a
thread because it needs an unavailable resource. When a thread’s context is restored,
then the thread resumes execution at the point where it was stopped. The kernel per-
forms the context switch operation. The actual code required to perform context
switches is necessarily processor-specific.

Context Switch

25

lam144001_ch03.fm Page 25 Thursday, October 14, 2004 7:20 PM

26

C

HAPTER

3: RTOS C

ONCEPTS

AND

 D

EFINITIONS

3.10 Time-Slice

The length of time (i.e., number of timer-ticks) for which a thread executes before relin-
quishing the processor is called its

time-slice

. When a thread’s (optional) time-slice
expires in ThreadX, all other threads of the same or higher priority levels are given a
chance to execute before the time-sliced thread executes again. Time-slicing provides
another form of round-robin scheduling. ThreadX provides optional time-slicing on a
per-thread basis. The thread’s time-slice is assigned during creation and can be modified
during execution. If the time-slice is too short, then the scheduler will waste too much
processing time performing context switches. However, if the time-slice is too long then
threads might not receive the attention they need.

3.11 Interrupt Handling

An essential requirement of real-time embedded applications is the ability to provide fast
responses to asynchronous events, such as hardware or software interrupts. When an
interrupt occurs, the context of the executing thread is saved and control is transferred
to the appropriate interrupt vector. An

interrupt vector

 is an address for an

interrupt ser-
vice routine (ISR),

 which is user-written software designed to handle or service the needs
of a particular interrupt. There may be many ISRs, depending on the number of interrupts
that needs to be handled. The actual code required to service interrupts is necessarily
processor-specific.

3.12 Thread Starvation

One danger of preemptive, priority-based scheduling is

thread starvation

. This is a situa-
tion in which threads that have lower priorities rarely get to execute because the processor
spends most of its time on higher-priority threads. One method to alleviate this problem
is to make certain that higher-priority threads do not monopolize the processor. Another
solution would be to gradually raise the priority of starved threads so that they do get an
opportunity to execute.

3.13 Priority Inversion

Undesirable situations can occur when two threads with different priorities share a com-
mon resource.

Priority inversion

 is one such situation; it arises when a higher-priority
thread is suspended because a lower-priority thread has acquired a resource needed by
the higher-priority thread. The problem is compounded when the shared resource is not
in use while the higher-priority thread is waiting. This phenomenon may cause priority
inversion time to become nondeterministic and lead to application failure. Consider
Figure 3.7, which shows an example of the priority inversion problem.

In this example, Thread 3 (with the lowest priority) becomes ready. It obtains mutex M
and begins its execution. Some time later, Thread 2 (which has a higher priority)
becomes ready, preempts Thread 3, and begins its execution. Then Thread 1 (which has
the highest priority of all) becomes ready. However, it needs mutex M, which is owned

lam144001_ch03.fm Page 26 Thursday, October 14, 2004 7:20 PM

by Thread 3, so it is suspended until mutex M becomes available. Thus, the higher-priority
thread (i.e., Thread 1) must wait for the lower-priority thread (i.e., Thread 2) before it
can continue. During this wait, the resource protected by mutex M is not being used
because Thread 3 has been preempted by Thread 2. The concept of priority inversion is
discussed more thoroughly in a later chapter.

Figure 3.7 Example of priority inversion.

3.14 Priority Inheritance

Priority inheritance

 is an optional feature that is available with ThreadX for use only
with the mutex services. (Mutexes are discussed in more detail in the next chapter.)
Priority inheritance allows a lower-priority thread to temporarily assume the priority of
a higher-priority thread that is waiting for a mutex owned by the lower-priority thread.
This capability helps the application to avoid nondeterministic priority inversion by
eliminating preemption of intermediate thread priorities. This concept is discussed more
thoroughly in a later chapter.

3.15 Preemption-Threshold

Preemption-threshold

3

 is a feature that is unique to ThreadX. When a thread is created,
the developer has the option of specifying a priority ceiling for disabling preemption.

Thread 3 obtains mutex M

Pr
io

ri
ty

Time

Even though Thread 1 has the highest
priority, it must wait for Thread 2.

Thus, priorities have become inverted.

Thread 1 becomes ready but
suspends because it needs

mutex M

Thread 2 becomes ready,
preempts Thread 3, and

proceeds with its processing

3

Preemption-threshold is a trademark of Express Logic, Inc. There are several university research
papers that analyze the use of preemption-threshold in real-time scheduling algorithms. A complete
list of URLs for these papers can be found at http://www.expresslogic.com/research.html.

Preemption-Threshold

27

lam144001_ch03.fm Page 27 Thursday, October 14, 2004 7:20 PM

28

C

HAPTER

3: RTOS C

ONCEPTS

AND

 D

EFINITIONS

This means that threads with priorities greater than the specified ceiling are still allowed
to preempt, but those with priorities equal to or less than the ceiling are not allowed to
preempt that thread. The preemption-threshold value may be modified at any time during
thread execution. Consider Figure 3.8, which illustrates the impact of preemption-
threshold. In this example, a thread is created and is assigned a priority value of 20 and
a preemption-threshold of 15. Thus, only threads with priorities higher than 15 (i.e., 0
through 14) will be permitted to preempt this thread. Even though priorities 15 through
19 are higher than the thread’s priority of 20, threads with those priorities will not be
allowed to preempt this thread. This concept is discussed more thoroughly in a later
chapter.

Figure 3.8 Example of preemption-threshold.

3.16 Key Terms and Phrases

Priority Comment

0
Preemption allowed for threads with priorities

from 0 to 14 (inclusive).
:

14

15 Thread is assigned preemption-threshold

=

 15
[This has the effect of disabling preemption for
threads with priority values from 15 to 19 (inclusive).]

:

19

20 Thread is assigned Priority

=

 20.

:

31

asynchronous event ready thread

context switch Ready Thread List

cooperative multithreading round-robin scheduling

determinism RTOS

interrupt handling scheduling

kernel sleep mode

preemption suspended thread

preemption-threshold Suspended Thread List

priority thread starvation

priority inheritance time-slice

priority inversion timer-tick

lam144001_ch03.fm Page 28 Thursday, October 14, 2004 7:20 PM

Problems

29

3.17 Problems

1. When a thread is removed from the Suspended Thread List, either it is placed on the
Ready Thread List or it is terminated. Explain why there is not an option for that
thread to become the currently executing thread immediately after leaving the Sus-
pended Thread List.

2. Suppose every thread is assigned the same priority. What impact would this have on
the scheduling of threads? What impact would there be if every thread had the same
priority and was assigned the same duration time-slice?

3. Explain how it might be possible for a preempted thread to preempt its preemptor?
Hint: Think about priority inheritance.

4. Discuss the impact of assigning every thread a preemption-threshold value of 0 (the
highest priority).

lam144001_ch03.fm Page 29 Thursday, October 14, 2004 7:20 PM

