Verification and Validation

By Charles Knutson and Sam Carmichael, Embedded Systems Programming
Jun 1 2001 (11:56 AM)
URL: http://www.embedded. com/showArticle. jhtmi?articlelD=23900163

Every product has defects. Finding them as early in the development process as possible
is definitely something to strive for.

Building quality into software as it's being developed is far more effective than trying to test it in
after it's been built. Verification and validation techniques can be applied throughout the product
lifecycle to help assure that the correct product is being built and that the product is being buiit
correctly. This article introduces the fundamental theory and techniques of verification and
validation and discusses how these techniques have been successfully applied in the creation of
high quality embedded software.

The challenge of quality

We typically give the name "quality assurance” to the software development function involved in
testing or checking a product after it's been built. But do these folks actually "assure" anything?
Granted, if given proper authority, they can assure that a bad product doesn't get out the door. But
can they actually assure that a good product gets built in the first place? Very unlikely.

A deeper question might be, can you test quality into a product? Sure. You just have to construct a
testing sieve so tight that no bad product can get through it. {Good luck building such a test suite.)
Then you begin systematically rejecting everything that doesn't pass. (Good luck surviving the
political fallout.} The idea behind this approach is that eventually the development folks will begin
to figure out that they have to build good products, and they'll begin to change the way they do
things. Not the epitome of software process improvement. And yet, it's an all too common scenario
in software companies today.

When the software products being created are destined for embedded systems, the problem is
exacerbated. When you burn control software onto a ROM, put it in a device, and ship it to millions
of customers, you'd like to have a deeper sense of the innate quality of that software, Or when you
put a team of astronauts onto a launch pad and trust their lives to the software controlling the on-
board computers, you'd like to think it's going to work the first time.

Yes, you need to test. But the product you're testing must have been built with some level of
guality in the first place, particularly when your product is an embedded system of some kind. This
idea was well expressed by Boris Beizer, oddly enough (or perhaps appropriately enough) in a book
about testing:

"The single most important thing that can be done to achieve quality software is to design the
guality in. That's more important than how the quality assurance department is structured, who it
reports to, what testing is independent, what kind of reviews are held-more important than the



entire contents of this book, of Software Testing Techniques, and of the next ten bocks published
on software quality assurance."1

We concur completely with the notion that quality must be designed into software. So how do you
determine whether quality was inherent in the design in the first place? One important idea is to
have an eye toward quality throughout the product life cycle, from requirements elicitation all the
way to first customer ship.

To incorporate an attention to quality at each phase of software development requires a process to
govern its application. Most software process improvement modeis (such as CMM and ISO 9000)
begin with an assumption that effective and appropriate processes naturally and inevitably lead to
the production of high quality software.

"An underlying assumption of quality management is that the quality of the development process
directly affects the quality of delivered products. This assumption is derived from manufacturing
systems where product quality is intimately related to the production process."2

While it can be debated whether producing software is similar to producing steel3, it seems
reasonable that a repeatable, common sense process with an eye to quality from the beginning
stands a greater chance of producing quality software than a chaotic, ad hoc group of programmers
hacking together solutions and then testing them until they appear to work. As Peter Coffee stated,
"Quality is not a feature that can be added to a current product: It is a process, cone that begins
with product design and continues long after the product is sold."4

We believe that effective process will indeed contribute to the production of high quality software
that works right the first time. In the following sections, we will introduce basic principles of defect
management, and then discuss verification and validation of software through the product life
cycle. In particular we will discuss reviews, inspections, and testing as mechanisms for performing
verification and validation.

Defect management

Software contains faults or defects, which are errors in software introduced by developers. These
defects may have been introduced at virtuaily any point in the development process from
requirements to maintenance. These defects may lay dormant if the proper circumstances never
arise to force the problematic code into execution. Or they may become evident as failures.
Failures span a range of severity. In the worst case, the failures may take the form of system
crashes or incorrect system functionality. In milder cases, failures may simply make users unhappy
or dissatisfied (such as slow response time or an interface that's difficult to use).

Defects are to be avoided, of course. Two guiding principles govern the management of defects.
First, avoid introducing defects in the first place. That can be done by applying proper techniques
at each step in the product life cycle. For example, many defects are actually introduced during
requirements elicitation. And yet few software engineers have received any formal training in this
important function. By performing effective requirements elicitation, it's possible to avoid
introducing a significant number of defects. The same can be said for every other phase in the
product life cycle.

We know that, despite our best efforts, defects will be introduced into our products. The second
governing principle, then, is to detect defects as early in the process as possible. Once a defect has
been detected, it needs to be removed at the source. This means that if the defect was introduced
during low-level design, it needs to be removed there-ideally before coding begins. If the defect
was introduced during requirements elicitation, it needs to be removed there-ideally before high-
level design begins.



The longer we wait, the greater will be the cost involved in removing and repairing a defect.
Studies have indicated that the cost of defect removal rises dramatically the later they are
discovered in the product life cycle.5 To avoid inserting defects requires training in the particular
skills involved in each phase of software development.

The focus of verification and validation is to detect defects as early as possible after they are
introduced and remove them at the source. Deoing so not only makes the removal of defects
cheaper, it also provides a much stronger confidence that quality is being built into a product,
rather than trying to filter it in just before shipping.

Verification and validation

Verification and validation (commonly referred to as V&V) is concerned with answering two
fundamental questions: did we build the right product, and did we build the product right?

Speaking broadly, validation is concerned with building the right product, and verification is
concerned with building the product right.

The following definitions may shed light on what we mean exactly by building the right product and
building the product right. After these three definitions, we'll attempt our own summary of what we
mean by V&V.

Definition #1

Validation is the "determination of the correctness of the final program or software produced from
a development project with respect to the user needs and requirements. Validation is usually
accomplished by verifying each stage of the software development life cycle.”

Verification is defined as the "demonstration of consistency, completeness, and correctness of the
software at each stage and between each stage of the development life cycle."&

These definitions point out that validation is primarily concerned with making sure that the
requirements have been met by the final product. Verification is then concerned with the
translation and traceability of each stage of development to its dependent stage. In other words,
design can be shown to correctly derive from requirements. This definition makes the assumption
that validation is commonly achieved through verification of each phase.

Definition #2

"Verification involves evaluating software during each life-cycle phase t¢ ensure that it meets the
requirements set forth in the previous phase. Validation involves testing software or its
specification at the end of the development effort to ensure that it meets its requirements (that it
does what it is supposed to). While 'verification' and 'validation' have separate definitions, you can
derive the maximum benefit by using them synergistically and treating 'V&V' as an integrated
definition."7

This definition takes the view that validation is essentially what we typically refer to as "system
test" and involves assessing whether a final product meets its original requirements. it then takes
the leap that these two terms can be used "synergistically” as V&V. We would suggest that this
approach only works because they both begin with the ietter V and thus can be conveniently
bunched together. To do so is to lose a tremendous amount of the power inherent in the distinct
focus of each.

Definition #3

"Software testing is one element of a broader topic that is often referred to as verification and
validation (V&V). Verification refers to the set of activities that ensure that software correctly
implements a specific function. Validation refers to a different set of activities that ensure that the



software that has been built is traceable to customer requirements."8

This last definition is from a college textbook, and so is a little simpler than the others. The
definition of validation is agreeable, but the definition of verification here is a bit too simplistic.
There is more to verification than seeing that functions are implemented correctly.

In this article, we will use "validation" to refer to those activities that attempt to determine that
customer needs can be met by a product. This may include usability testing or other types of user
feedback. It may involve inspection of requirements documents or assessing whether requirements
elicitation was performed effectively. It may also include testing of the final system with respect to
the original user requirements to see that those requirements were met. Hence, validation helps to
see that we are building the right product.

We will use "verification" to refer to the transformational activities that are performed at each step
of the product life cycle. In other words, from a user requirements specification, a high-level design
can be made. At the point that the design document is complete, it can be "verified" against the
requirements document. At this point, defects can be detected and corrected. This high-level
design can then be used to verify the low-level design document that stems from it. This process of
verification applies at each stage in the development process and can include essentially every
document or artifact produced along the way, including (in addition to the documents already
mentioned) source code, internal documentation, user documentation, test plans, and test
specifications.

The most common way to perform validation of a system is through testing. Few other options are
available. Besides, if you have an accurate requirements document and a functioning system,
running it through its paces to see if it meets the defined requirements makes a great deal of
sense. But how do you assess the quality of a document? That's not as straightforward. The easiest
answer is, read it and talk about it. See if it's traceable to the document from which it was derived.
This process is largely one of reviews and inspections.

Reviews and inspections

"Technical work needs reviewing for the same reason that pencils need erasers: to err is human."9
It's possible to perform reviews at every stage of development, so long as documentation exists for
each stage. For example, if software is being built without defined accurate requirements, it is
essentially impossible to verify, via reviews or any other method, whether the design is accurate.
Since the design is not based on requirements, it simply stands alone, and any assertion of defects
uitimately devolves into a matter of personal opinion. So performing reviews and inspections
presumes a certain level of rigor in the process being applied to the creation of the software in the
first place.

Reviewing the intermediate development artifacts at each stage of development has two primary
values. First, we can detect defects early and remaove them when the cost is relatively low. Second,
and possibly more significant, we can influence the process within our company, forcing a greater
amount of rigor in the creation of the software in the first place. If management buys off on the
value of reviews, it will become immediately obvicus that without good requirements (or good
design) reviews won't bring much value.

Reviews typically involve a small group of people all looking at the same work product or
development artifact. Why involve other people? For the same reason an author can skip past a
typo in an article a dozen times, while & copy editor will see it more readily: we all have blind
spots. "We need technical reviews because although people are good at catching some of their own
errors, large classes of errors escape the originator more easily than they escape anyone else."%



Despite the benefits, there are challenges to reviews, some of them social. For some, the thought
of bringing one's heretofore private work product under the scrutiny of a room full of people is
disconcerting at best. It's not a pleasant experience to have one's baby dubbed ugly in a public
setting. For that reason, the scope of these meetings should be limited to a handful of people, and
all participants should be trained, so that negative repercussions can be avoided.

Reviews function as a form of guality filter that is applied at various points during software
development. The motivation behind reviews is to uncover errors and purify work products as early
as possible. Specifically, reviews attempt to achieve the following cutcomes:

s Point out needed improvements in the product.

e Confirm the parts that are good.

s Bring some consistency to the product in terms of coding style, document style, design
approach, and so on, which makes the technical work more manageabie.

e Improve the software development process.

Reviews can span the spectrum of formalism, from extremely formal to very informal. In the most
formal settings, many people may participate (although there are clearly points at which more
participants will reduce effectiveness), tremendous corporate resources may be expended, and lots
of photocopies are needed to keep everyone on the paper trail. On the other extreme, there are
very informal gatherings that are reviews nonetheless. These may involve just one or two people
gathering in a cube, or in the hall. It may be as simple as a request for help from one engineer to
another. 10

We typically use walkthrough to refer to less formal meetings in which a group reviews some work
product. In these informal meetings, few rules govern the meeting, diversions are common, and
the group often jumps into problem solving mode. These kinds of gatherings can be very valuable
under the right circumstances.

We typically use inspection to refer to more formal rheetings in which specific roles are played by
participants, specific rules govern the meeting, and greater rigor is applied, particularly when
involving the traceability of one work product to its predecessor.

Focus for V&V activities

A great number of things can be checked for during V&V activities, but four are particularly
significant: completeness, consistency, feasibility, and testability.

Completeness means that a work product is complete with respect to its predecessor. This means
that there are no items marked "TBD" (to be determined), there are no non-existent references, no
missing specification items (particularly unconsidered special cases), no missing functions, and no
missing products. If a previous work product identifies a function or feature, then the work product
being reviewed must have its analogous treatment of the same function or feature.

Consistency means that the work product does not create conflicting requirements. Consistency
can be internal (meaning within the work product itself) and external (with respect to another work
product), For example, a function may have a definition of output values that conflicts with the
input values of another function that it calls. Each functicn may be internally correct, but the defect
in the specification will become evident when the two functicns are integrated fater in the product
life cycle.

Feasibility relates primarily to the ability of delivering a work product that depends upon the one
being reviewed. For example, a requirement may be internally consistent and correct from the



user's perspective, but not feasible to construct given the level of human resources altocated to the
product. Similarly, a specification may require a particular level of performance by a module which
is almost certainly not achievable given the available technology. Feasibility should also explore
issues of risk, whether such risk relates to technical issues, cost or schedule, environment, or
interactions between the system and other systems or users.

Testability relates to the ability to perform specific tests on appropriate work products. In
particular, a work product must be specific, unambiguous, and quantitative or it cannot be tested.
For example, imagine a specification that states, "The sorting algorithm should he as fast as
possible." Such a requirement cannot he tested in a work product, because no objective measure
exists to determine whether a test passed cor failed. Paying attention to testability not only makes
the product more testable (obviously) but it leads to a higher quality work product {whether that
work product is tested or not), because designers and coders will have had to clarify these issues
before the final product is constructed, instead of discovering the problem later. In addition,
testability includes identifying "exit criteria," which help test engineers to know when the product
has been tested to a sufficient level before shipping.

Review meetings

Review meetings are typically limited in attendance, involving from three to five pecople. In these
meetings, members play specific roles for which they should already be trained. For these meetings
to be successful, each participant needs to prepare in advance, typically investing less than two
hours. In addition, the meeting must be kept to a reasonably short length, typicaily under two
hours. Such a meeting allows reviewers to focus on only a small portion of the work product. The
following are important principles that should guide review meetings.

Review the product, not the producer. The producer of the work product is net on trial. It is difficult
enough to objectively discuss a work product without getting personal about it. In some extreme
formats, a producer may either be asked to serve as a reader only, or as a bystander, or may be
not invited to the meeting at all. In addition, the results of the review should not be held against an
engineer, aithough defects that make it into shipping products may be.

Set an agenda and keep it. There is a large cost involved in taking up to four hours from each of
five engineers {collecfively about half an engineering week) for a review of some work product. If
such reviews are to succeed (and/or survive as a part of the process), all participants must have
the sense that their time has been well spent.

Limit debate and rebuttal. The moderator must keep controi of the meeting. If disagreements
arise, they should be noted by the scribe, assigned as action items to appropriate individuals, and
the meeting should move on. Any debate and rebuttal beyond the most minimal level will viclate
the previous principle of setting an agenda and keeping it.

Enunciate problem areas, but don't try to fix anything. The focus of the meeting is on discovery,
not repair. The purpose of the group in a formal review is not to collectively design. As tempting as
it is, the urge must be suppressed, and the meeting must move forward in its path of defect
discovery. The responsible engineer will have ample opportunity afterward to make changes.

Take written notes. A scribe should be designated. Ideally this person has no responsibility other
than writing, so that a written record can be created for the benefit of the individual responsible to
make changes after the meeting.

Limit the number of participants. Avoid giving special permission to bystanders who just want to be
"flies on the wall." There tends to be an optimal number of bodies in the rcom and exceeding that
number will almost certainly limit the effectiveness of the meetings.



Insist upon advance preparation. In order for the meeting to run on schedule, and for the time of
all participants to be well-spent, each attendee must prepare in advance. Without advance
preparation, everyone's time willi be wasted while the unprepared make up their learning curve in
front of everyone else. Typically, material should be distributed to participants two to three days in
advance of the scheduled meeting.

Develop a checklist for each work item to be reviewed. Checklists are absclutely essential for
reviews and inspections. Specific checklists should he developed for various kinds of work items.
These checklists can be used to walk through and perform a thorough check of relevant issues. In
addition, as meetings progress and other questions are raised, the checklists themselves should
evolve and become more thorough and complete over time.

Allocate resources and time schedules. If reviews are to be successful, management must
understand the time investment that they represent, and schedule accordingly. If reviews are
scheduled without giving the participating engineers credit for the time spent, they will not
succeed. Doing so may represent a leap of faith for management, but without it, the process is
essentially doomed.

Conduct meaningful training for all reviewers. While running an effective review meeting may be
intuitive to some, it's important that all participants be trained in the appropriate roles. Such
training may have less to do with imbuing the participants with the requisite skill sets, as much as
identifying for all the appropriate rules of engagement. Even a talented and sincere group of people
can waste tremendous time and conduct ineffective reviews if they don't all understand the ground
rules.

Review your early reviews. No single static process will help every company in every circumstance.
Reviews must be customized and changed over time to meet the needs of the development team.
Therefore, the reviews themselves should be reviewed in order to recommend appropriate changes
in the process.

Evidence suggests that inspections are cost effective in many situations. The primary reason for
this is that they reveal defects early in the cycle when they are relatively inexpensive to fix. In
addition, they can prevent the ripple effect that occurs when making a change to requirements
necessitates changes to multiple levels of design documents, product code, and product
documentation. Another key to the success of reviews is that they are designed to detect defects,
not failures. Finally, reviews naturally enforce improvement of the process, since each work
product must be traceable to a preceding work product. Immature organizations that do a poor job
of requirements and design will have few appropriate artifacts that can be used for reviews.

While it's clear that reviews can contribute greatly to the quality of software, it may not be intuitive
that they would necessarily be less expensive. But some of the evidence suggests that they may
actually be. The first assertions were made by Fagan in his early work on inspections. 11 Figure 1
shows a "snail curve" that attempts to explain how spending more in inspections up front may pay
off in less testing time (primarily bug fix and regression testing cycles) at the end and hence yield
a collective cost henefit.



R T W R G L

sonsiAR ST Al e e,
& PR e
L

et

s

;) Rigiyighritd b

So where does that leave testing? Right where it has always been. For all the confidence we can
place in things we design and build, even when we do it carefully, there's nothing quite like putting
it in water and seeing if it floats. It's still appropriate to run the software through its paces,
because there are still bound to be defects. However, if inspections are applied well, the number of
defects left in the product when testing begins will be dramatically smaller.

Testing

While formal reviews and inspections have occupied the bulk of our attention, testing is still a
significant and important part of V&V. When we test, we run software under controlled conditions
to detect defects. Just as we perform reviews and inspections at every appropriate level during the
requirements, design, and coding phases, we test wherever appropriate as software is being
created. The following sections briefly describe unit, integration, system, and regression tests.

Unit testing

The role of unit testing is to exercise a specific module in a controlled environment. This typicaily
involves some form of scaffolding, typically stubs and drivers. Stubs are modules of test software
that sit below a unit under test and mimic the behavior of dependent modules. Drivers are modules
of test software that sit above a unit and drive it in the same fashion that its calling modules might
do. Stubs and drivers typically work in harmony to create conditions or states in which the module
under test must respond.

Unit testing typically verifies a module's functional attributes, but may also test other things such
as performance, usability, and so on. It may be performed using either "black box" or "clear
box" (sometimes called "white box") methods. In black box testing, a module is treated as a box
whose internal behavior is not known. This box can be viewed as performing the function of
mapping input values to output values. Since these mappings should he specified, you can test
possible input values or conditions against the resulting ocutputs. Creating such tests is typically
done with no reference to the internal code, and the test cases either pass or fail.

In contrast, clear box testing requires an understanding of the code (although it should be equally
dependent on the appropriate specifications). For example, a test might focus on control flow by
seeking to exercise every line of code, or assuring that every decision point is traversed in every
possible way. However, a test might alse focus on data flow by seeing that all data manipulations
are considered.



Unit testing is typically viewed as a form of verification, since the behavior of functioning modules
is compared to functional specifications.

Integration testing

Once modules have been individually unit tested, we begin bolting them together to see how they
function when integrated with other modules. Modules can be integrated in a number of ways,
including top-down and bottom-up. Any approach can be taken so long as the tester understands
the appropriate behavior reprasented by a specific combination of modules, starting with the first
two, and ending with the adding of the last module to form a complete system. Ideally, integration
testing involves testing as each module is added.

Integration testing is typically viewed as a form of verification, since the behavior of modules in
combination is a product of functional specifications.

System testing

System testing involves the execution of an entire system or product to see that it conforms to the
overall system requirements. The system tester should be the customer's advocate, since the
guiding document should be either the user requirement document or a specification directly based
upon it.

System tests can be performed in different ways, including both simulated and real execution. In
some systems, such as the launch of a new space shuttle, it is impossible to test the actual
software in operation. So elaborate scaffolding is created to simulate all of the external conditions
that the system must be able to respond te. In such situations, there is an important dependency
on the quality of the test simulator, which causes an interesting quality dilemma. While the same
can be said for any automated system test, simulators are particularly challenging because of their
complexity, and because of the lack of other alternatives to validation.

System tests can pursue any number of quality factors including (but certainly not limited to)
functionality, performance, reliability, and usability.

Regression testing

Regression testing deals with testing software after bug fixes have been made to assure that the
software has not "regressed” or gotten worse because of the fix. This typically involves the re-
running of the original test suite that found the problem in the first place. There are two points of
focus for regression tests. The most important is to see that no new bugs were introduced. The
second is to see that the bug fix actually caused the failure to go away. For effective regression
testing, automated testing is almost an absolute must. There are two broad classes of tests: slow
ineffective ones, and fast effective ones. If you use fast effective ones, there is relatively little pain
associated with regression testing.

Who should test the software?

Testing is a profession with a specific set of skills that are employed to perform these critical V&V
functions. Good testers are involved in the development of software from the beginning, bringing a
quality perspective to the product life cycle. They apply engineering skills to create effective and
efficient (and automated) test suites. They design these tests from requirements, and apply them
in performing verification and validation functions. They understand that attempting to break the
product is in the best interests of the company and the customer. They are engineers whose
product is a test, and their skills are not strictly the same as those employed by development



engineers. Despite that, broadly speaking, two types of people often get roped into testing: users
and developers. There are problems with both.

A developer's job is constructive. He builds things. A tester's job is destructive. He breaks things.
There's a specific personality associated with each job, and it's not trivial to casually jump between
them. More importantly, developers should never be counted on to test their own code. For one
thing, they unconsciously flinch when they approach the tender areas of their code. Without even
realizing it they may skirt the problem areas in their software. They just can't bring themselves to
swing the hammer with sufficient force. But even if you can manage to brainwash a development
engineer into beating on his own code, he will still be less effective than a fresh pair of eyes. The
same blind spot in this engineer that led to a particular defect will undoubtedly lead to a similar
blind spot in the testing of the same software.

Another common approach is to get users to perform testing. While users can provide tremendous
feedback on usability issues, they are typically very poor for functional testing if the software has
any reasonable level of quality. Users tend to be repetitious, non-systematic, and unimaginative in
their testing. They also tend to be slow, due to a lack of confidence around the new software,
Having said that, users are excellent sources to understand potential use models, and hence may
permit testers to focus test cases around potential problem areas based upon actual usage
patterns.

Summary

Many companies have become comfortable with independent testing or validation functions, The
need for a safety net (or quality sieve, if you will) is obvious, particularly when building embedded
systems that don't enjoy quite the same ease of upgrading as other platforms. But in such
companies, testing is typically an activity that occurs at the end of the process, and provides one of
the few objective mechanisms o make sure a product possesses the requisite level of quality.

Our focus in this article has been on reviews and inspections because they are much less common
in software companies, despite the fact that they provide a more dependable mechanism for
building quality into a product as the development cycle unfolds. Visually inspecting a work product
with a small group of people is painstaking in many ways, but the benefits are potentially
enormous. '

Every product has defects. That's not going to change. We will find defects in products sooner or
later, The worst case is to find defects in the field. The best case is to find defects as early as
absolutely possible in the software development process. That gives us a much more reasonable
chance of producing software with fewer defects, and for the severity of those defects to be more
acceptable to customers. When you're building a software product that will be embedded in some
device, it's imperative that it be right befere the product releases. By the time the next version of
the device comes out, it might be too late.

Charles D. Knutson is an assistant professor of computer science at Brigham Young University in
Provo, UT. He holds a PhD in computer science from Oregon State University. You can contact him
at knutson@cs.byu.edu.

Sam Carmichael is a validation engineer at Micro Systems Engineering. Contact him at
carmicha@biotronik.com.

References and Notes

1. Beizer, Boris. Software System Testing and Quality Assurance. New York: Van Nostrand
Reinhald, 1984, p. 309.



Back

2. Sommerville, Ian. Software Engineering, 5th Edition. Reading, MA: Addison-Wesley, 1995, p.
615.
Back

3. Humphrey, Watts. "Characterizing the Software Process: A Maturity Framework," IEEE Software,
March 1988, pp. 73-79.
Back

4. Coffee, Peter. "Attacking the Quality Monster," PC Week, December 14, 1998.
Back

5. Boehm, Barry W. and C. Papaccio. "Understanding and Controlling Software Costs," IEEE
Transactions on Software Engineering, October 1998, p. 1466.
Back

6. Adrion, W. Richards, Martha A. Branstad, and John C. Cherniavsky. "Validation, Verification, and
Testing of Computer Software," Computing Surveys, June 1982, pp. 159-192.
Back

7. Wallace, Dolores R. and Roger U. Fugii. "Software Verification and validation: An Overview,"
IEEE Software, May 1989.
Back

8. Pressman, Roger S. Software Engineering: A Practitioner's Approach, 4th Edition. New York:
McGraw-Hill, 1997, p. 488.
Back

9. Weinberg, Gerald M. and Daniel P. Freedman. "Reviews, Walkthroughs, and Inspections,” IEEE
Transactions on Software Engineering, January 1984, pp. 68-72.
Back

10. These informal reviews can be tremendously valuable in discovering the sources of errors. A
common pattern is one that we've heard called, "Tell it fo the Furby." In this kind of review one
engineer shares his problem with another engineer, who typically asks the first to begin by
explaining what he's doing. While walking through his code or design, he will often see it from a
different perspective, just because he had to state it out loud to the other engineer. The second
engineer added no real value other than being the "Furby" for the first engineer to talk to. Still, a
tremendous value was added.

Back

11. Fagan, Michael E. "Advances in Software Inspections," IEEE Transactions on Software
Engineering, July 1986, pp. 744-751.
Back

Return to Table of Contents

Copyright 2003 ©® CMP Media LLC




