125

Model-View-Controller

The Model-View-Controller architectural pattern (MVC) divides an
interactive application into three components. The model contains
the core functionality and data. Views display information to the user.
Controllers handle user input. Views and controllers together
comprise the user interface. A change-propagation mechanism
ensures consistency between the user interface and the model.

ation e

lying o 1

tare ["r}:} ; Example Consider a simple information system for political elections with

their S proportional representation. This offers a spreadsheet for entering
i data and several kinds of tables and charts for presenting the current

ditis results. Users can interact with the system via a graphical interface.

wing ‘ All information displays must reflect changes to the voting data

that .. immediately.

sues core data

> the :

ithe Black: 43%

. The Red: 39%

ence Blue: 6%

Green: 10%
Others: 2%

Black 43

Red 39

Blue 6

Green 10

Others 2

pie chart bar chart parliament spreadsheet

It should be possible to integrate new ways of data presentation, such
as the assignment of parliamentary seats to political parties, without
major impact to the system. The system should also be portable to
platforms with different ‘look and feel' standards, such as
workstations running Motif or PCs running Microsoft Windows 95.

126

Context

Problem

Solution

Architectural Patterns

Interactive applications with a flexible human-computer interface.

User interfaces are especially prone to change requests. When you
extend the functionality of an application, you must modify menus to
access these new functions. A customer may call for a specific user
interface adaptation, or a system may need to be ported to another
platform with a different ‘look and feel’ standard. Even upgrading to
a new release of your windowing system can imply code changes. The
user interface platform of long-lived systems thus represents a
moving target.

Different users place conflicting requirements on the user interface.
A typist enters information into forms via the keyboard. A manager
wants to use the same system mainly by clicking icons and buttons.
Consequently, support for several user interface paradigms should be
easily incorporated.

Building a system with the required flexibility is expensive and error-
prone if the user interface is tightly interwoven with the functional
core. This can result in the need to develop and maintain several
substantially different software systems, one for each user interface
implementation. Ensuing changes spread over many modules. The
following forces influence the solution:

« The same information is presented differently in different windows,
for example, in a bar or pie chart.

« The display and behavior of the application must reflect data
manipulations immediately. .

 Changes to the user interface should be easy, and even possible at
run-time.

 Supporting different ‘look and feel standards or porting the user
interface should not affect code in the core of the application.

Model-View-Controller (MVC) was first introduced in the Smalltalk-80
programming environment [KP88]. MVC divides an interactive
application into the three areas: processing, output, and input.

The model component encapsulates core data and functionality. The

model is independent of specific output representations or input
behavior.

Moc¢

ms

‘ou
ito
ser
1er

ce.
ger
as.
be

or-
1al
ral
ce

Vs,

ita

at

ive

ut

Model-View-Controller 127

Structure

View components display information to the user. A view obtains the
data from the model. There can be multiple views of the model.

Each view has an associated controller component. Controllers receive
input, usually as events that encode mouse movement, activation of
mouse buttons, or keyboard input. Events are translated to service
requests for the model or the view. The user interacts with the system
solely through controllers.

The separation of the model from view and controller components
allows multiple views of the same model. If the user changes the
model via the controller of one view, all other views dependent on this
data should reflect the changes. The model therefore notifies all views
whenever its data changes. The views in turn retrieve new data from
the model and update the displayed information. This change-
propagation mechanism is described in the Publisher-Subscriber
pattern (339).

The model component contains the functional core of the application.
It encapsulates the appropriate data, and exports procedures that
perform application-specific processing. Controllers call these proce-
dures on behalf of the user. The model also provides functions to
access its data that are used by view components to acquire the data
to be displayed.

The change-propagation mechanism maintains a registry of the
dependent components within the model. All views and also selected
controllers register their need. to be informed about changes. Changes
to the state of the model trigger the change-propagation mechanism.
The change-propagation mechanism is the only link between the
model and the views and controllers.

Class Collaborators

Model * View
; * Controll
Responsibility ontrotier
* Provides functional
core of the
application.

* Registers
dependent views
and controllers.

* Notifies dependent
components about
data changes.

128

Architectural Patterns

View components present information to the user. Different views
present the information of the model in different ways. Each view
defines an update procedure that is activated by the change-
propagation mechanism. When the update procedure is called, a view
retrieves the current data values to be displayed from the model, and
puts them on the screen.

During initialization all views are associated with the model, and
register with the change-propagation mechanism. Each view creates
a suitable controller. There is a one-to-one relationship between views
and controllers. Views often offer functionality that allows controllers
to manipulate the display. This is useful for user-triggered operations
that do not affect the model, such as scrolling.

The controller components accept user input as events. How these
events are delivered to a controller depends on the user interface plat-
form. For simplicity, let us assume that each controller implements
an event-handling procedure that is called for each relevant event.
Events are translated into requests for the model or the associated
view.

If the behavior of a controller depends on the state of the model, the
controller registers itself with the change-propagation mechanism
and implements an update procedure. For example, this is necessary
when a change to the model enables or disables a menu entry.

Class Collaborators Class Collaborators
View * Controller Controller * View
* Model * Model
Responsibility Responsibility
* Creates and initial- * Accepts user input
izes its associated as events.
controller, * Translates events
* Displays to service requests

information to the

for the model or

user. display requests for
* Implements the the view.
update procedure. * Implements the

* Retrieves data from
the model.

update procedure,
if required.

rns

ews
riew
18€-
iew
and

ese
lat-
nts
ant.
ted

lsm

Model-View-Controller . 129

An object-oriented implementation of MVC would define a separate
class for each component. In a C++ implementation, view and
controller classes share a common parent that defines the update
interface. This is shown in the following diagram. In Smalltalk, the
class Object defines methods for both sides of the change-
propagation mechanism. A separate class Observer is not needed.

'r Observer

Fipdate

call update
Model A
coreData I
setOfObservers
View

attach(Observer) attach

detach(Observer) getData | myModel

notify myController

etData initialize(Model create -

Eervice makeCox(ltrollel2 manipulate Controller
activate display myModel
cisplay myView

attach | initialize(Model, View)
call service | handleEvent

update

w In our example system the model holds the cumulative votes for
each political party and allows views to retrieve vote numbers. It
further exports data manipulation procedures to the controllers.

We define several views: a bar chart, a pie chart and a table. The chart
views use controllers that do not affect the model, whereas the table
view connects to a controller used for data entry. a

You can also use the MVC pattern to build a framework for interactive
applications, as within the Smalltalk-80 environment [KP88]. Such a
framework offers prefabricated view and controller subclasses for
frequently-used user interface elements such as menus, buttons, or
lists. To instantiate the framework for an application, you can
combine existing user interface elements hierarchically using the
Composite pattern [GHJV95].

130

Architectural Patterns

Dynamics The following scenarios depict the dynamic behavior of MVC. For
simplicity only one view-controller pair is shown in the diagrams.

Scenario I shows how user input that results in changes to the model
triggers the change-propagation mechanism:

The controller accepts user input in its event-handling procedure,
interprets the event, and activates a service procedure of the
model.

The model performs the requested service. This results in a change
to its internal data.

The model notifies all views and controllers registered with the
change-propagation mechanism of the change by calling their
update procedures.

Each view requests the changed data from the model and re-
displays itself on the screen.

Each registered controller retrieves data from the model to enable
or disable certain user functions. For example, enabling the menu
entry for saving data can be a consequence of modifications to the
data of the model. ’

The original controller regains control and returns from its event-
handling procedure.

Controller Model View

handleEvent

|

service

notify

b

update

display
getData I:_j

[

update

getData

A

b
—

Mo«

rms

del

re,
‘he

18e

eir

re-

ble

Model-View-Controller 131

Scenario II shows how the MVC triad is initialized. This code is usu-
ally located outside of the model, views and controllers, for example
in a main program. The view and controller initialization occurs sim-
ilarly for each view opened for the model. The following steps occur:

main program

The model instance is created, which then initializes its internal
data structures.

A view object is created. This takes a reference to the model as a
parameter for its initialization.

The view subscribes to the change-propagation mechanism of the
model by calling the attach procedure.

The view continues initialization by creating its controller. It passes
references both to the model and to itself to the controller’s
initialization procedure.

The controller also subscribes to the change-propagation
mechanism by calling the attach procedure.

After initialization, the application begins to process events.

Y

Model
|———————
View
-} I
Model initialize
E attach | View - makeController
] Controller
P

]

Model, View|nitialize

I:E] attach | Controller

Y

A

startEventProcessing

[

