s

ir

of
in

o

or
ar

e

is
ad
is

18

ce

2a

ve
ae

[1Y,

ot

p
1e

o AT LT

Layers

Example

31

The Layers architectural pattern helps to structure applications that
can be decomposed into groups of subtasks in which each group of
subtasks is at a particular level of abstraction.

Networking protocols are probably the best-known example of layered
architectures. Such a protocol consists of a set of rules and con-
ventions that describe how computer programs communicate across
machine boundaries. The format, contents, and meaning of all
messages are defined. All scenarios are described in detail, usually by
giving sequence charts. The protocol specifies agreements at a variety
of abstraction levels, ranging from the details of bit transmission to
high-level application logic. Therefore designers use several sub-
protocols and arrange them in layers. Each layer deals with a specific
aspect of communication and uses the services of the next lower
layer. The International Standardization Organization (ISO) defined
the following architectural model, the OSI 7-Layer Model [Tan92]:

Application Layer 7 Provides miscellaneous protocols
| for common activities

Presentation Layer 6 Structures information
I and attaches semantics

Session Layer 5 Provides dialog control and
I synchronization facilities

Transport Layer 4 Breaks messages into packets
] and guarantees delivery

Network Layer 3 Selects a route
T from sender to receiver
Data Link Layer 2 Detects and corrects errors
1 in bit sequences

Physical Layer 1 Transmits bits: velocity,
bit-code, connection, etc.

32

Context

Problem

Architectural Patterns

A layered approach is considered better practice than implementing
the protocol as a monolithic block, since implementing conceptually-
different issues separately reaps several benefits, for example aiding
development by teams and supporting incremental coding and
testing. Using semi-independent parts also enables the easier ex-
change of individual parts at a later date. Better implementation
technologies such as new languages or algorithms can be in-
corporated by simply rewriting a delimited section of code.

While OSl is an important reference model, TCP/IP, also known as the
‘Internet protocol suite’, is the prevalent networking protocol. We use
TCP/IP to illustrate another important reason for layering: the reuse
of individual layers in different contexts. TCP for example can be used
‘as is’ by diverse distributed applications such as telnet or ftp.

A large system that requires decomposition.

Imagine that you are designing a system whose dominant
characteristic is a mix of low- and high-level issues, where high-level
operations rely on the lower-level ones. Some parts of the system
handle low-level issues such as hardware traps, sensor input,
reading bits from a file or electrical signals from a wire. At the other
end of the spectrum there may be user-visible functionality such as
the interface of a multi-user ‘dungeon’ game or high-level policies
such as telephone billing tariffs. A typical pattern of communication
flow consists of requests moving from high to low level, and answers
to requests, incoming data or notification about events traveling in
the opposite direction.

Such systems often also require some horizontal structuring that is
orthogonal to their vertical subdivision. This is the case where several
operations are on the same level of abstraction but are largely in-
dependent of each other. You can see examples of this where the word
‘and’ occurs in the diagram illustrating the OSI 7-layer model.

The system specification provided to you describes the high-level
tasks to some extent, and specifies the target platform. Portability to
other platforms is desired. Several external boundaries of the system
are specified a priori, such as a functional interface to which your
system must adhere. The mapping of high-level tasks onto the plat-
form is not straightforward, mostly because they are too complex to
be implemented directly using services provided by the platform.

ns

1g

ag
1d

m
n-

he
se
se
ed

nt
vel
>m
ut,
1er
as
ies
on
ars

in

. is
ral
in-
rd

wvel
rto
em
ur
at-
cto

Layers

33

In such a case you need to balance the following forces:

Late source code changes should not ripple through the system.
They should be confined to one component and not affect others.

Interfaces should be stable, and may even be prescribed by a stan-
dards body.

Parts of the system should be exchangeable. Components should
be able to be replaced by alternative implementations without
affecting the rest of the system. A low-level platform may be given
but may be subject to change in the future. While such funda-
mental changes usually require code changes and recompilation,
reconfiguration of the system can also be done at run-time using
an administration interface. Adjusting cache or buffer sizes are
examples of such a change. An extreme form of exchangeability
might be a client component dynamically switching to a different
implementation of a service that may not have been available at
start-up. Design for change in general is a major facilitator of
graceful system evolution.

It may be necessary to build other systems at a later date with the
same low-level issues as the system you are currently designing.

Similar responsibilities should be grouped to help understand-
ability and maintainability. Each component should be coherent—
if one component implements divergent issues its integrity may be
lost. Grouping and coherence are conflicting at times.

There is no ‘standard’ component granularity.
Complex components need further decomposition.

Crossing component boundaries may impede performance, for
example when a substantial amount of data must be transferred
over several boundaries, or where there are many boundaries to
Cross.

The system will be built by a team of programmers, and work has
to be subdivided along clear boundaries—a requirement that is
often overlooked at the architectural design stage.

34

Solution

Structure

Architectural Patterns

From a high-level viewpoint the solution is extremely simple.
Structure your system into an appropriate number of layers and
place them on top of each other. Start at the lowest level of
abstraction—call it Layer 1. This is the base of your system. Work
your way up the abstraction ladder by putting Layer J on top of Layer
J-1 until you reach the top level of functionality—call it Layer N.

Note that this does not prescribe the order in which to actually design
layers, it just gives a conceptual view. It also does not prescribe
whether an individual Layer J should be a complex subsystem that
needs further decomposition, or whether it should just translate
requests from Layer J+1 to requests to Layer J-1 and make little
contribution of its own. It is however essential that within an in-

dividual layer all constituent components work at the same level of
abstraction.

Most of the services that Layer J provides are composed of services
provided by Layer J-1. In other words, the services of each layer
implement a strategy for combining the services of the layer below in
a meaningful way. In addition, Layer J's services may depend on other
services in Layer J.

An individual layer can be described by the following CRC card:

Class Collaborator
Layer J ¢ Layer J-1

Responsibility
* Provides services
used by Layer J+1.

* Delegates subtasks
to Layer J-1.

The main structural characteristic of the Layers pattern is that the
services of Layer J are only used by Layer J+1—there are no further
direct dependencies between layers. This structure can be compared

‘ns Layers 35

le. with a stack, or even an onion. Each individual layer shields all lower
nd layers from direct access by higher layers.

uses
rk Client Layer N highest level of abstraction
yE€r I

Layer N-1
£gn n

ibe ’
1at i
ate I
‘tle ‘

Layer 1 lowest level of abstraction

- of Examining individual layers in more detail may reveal that they are

‘ complex entities consisting of different components. In the following

ces figure, each layer consists of three components. In the middle layer
yer two components interact. Components in different layers call each
rin other directly—other designs shield each layer by incorporating a
her unified interface. In such a design, Component_2.1 no longer calls

Component_1.1 directly, but calls a Layer 1 interface object that
forwards the request instead. In the Implementation section, we
discuss the advantages and disadvantages of direct addressing.

Component_3.1 Component_3.2 Component_3.3

R T R
Component 2.1 | Component_2.2 Component_2.3

her
red

Component_1.1 Component_1.2

Component_1.3

36

Dynamics

Architectural Patterns

The following scenarios are archetypes for the dynamic behavior of
layered applications. This does not mean that you will encounter
every scenario in every architecture. In simple layered architectures
you will only see the first scenario, but most layered applications
involve Scenarios I and II. Due to space limitations we do not give
object message sequence charts in this pattern.

Scenario I is probably the best-known one. A client issues a request
to Layer N. Since Layer N cannot carry out the request on its own, it
calls the next Layer N-1 for supporting subtasks. Layer N-1 provides
these, in the process sending further requests to Layer N-2, and so
on until Layer 1 is reached. Here, the lowest-level services are finally
performed. If necessary, replies to the different requests are passed
back up from Layer 1 to Layer 2, from Layer 2 to Layer 3, and so on
until the final reply arrives at Layer N. The example code in the
Implementation section illustrates this.

A characteristic of such top-down communication is that Layer J
often translates a single request from Layer J+1 into several requests
to Layer J-1. This is due to the fact that Layer J is on a higher level of
abstraction than Layer J-1 and has to map a high-level service onto
more primitive ones.

Scenario II illustrates bottom-up communication—a chain of actions
starts at Layer 1, for example when a device driver detects input. The
driver translates the input into an internal format and reports it to
Layer 2, which starts interpreting it, and so on. In this way data
moves up through the layers until it arrives at the highest layer. While
top-down information and control flow are often described as
‘requests’, bottom-up calls can be termed ‘notifications’.

As mentioned in Scenario I, one top-down request often fans out to
several requests in lower layers. In contrast, several bottom-up noti-
fications may either be condensed into a single notification higher in
the structure, or remain in a 1:1 relationship.

Scenario III describes the situation where requests only travel
through a subset of the layers. A top-level request may only go to the
next lower level N-1 if this level can satisfy the request. An example

of this is where level N-1 acts as a cache, and a request from level N

can be satisfied without being sent all the way down to Layer 1 and
from here to a remote server. Note that such caching layers maintain

erns

r of
nter
res
ions
give

aest
n, it
ides
1 so
1ally
ssed
> on
the

er J
ests
el of
mto

ions
The
it to
data
Thile
| as

it to
aoti-
2r in

-avel
) the
nple
el N

and
1tain

Layers

37

state information, while layers that only forward requests are often
stateless. Stateless layers usually have the advantage of being
simpler to program, particularly with respect to re-entrancy.

Scenario IV describes a situation similar to Scenario IIl. An event is
detected in Layer 1, but stops at Layer 3 instead of traveling all the
way up to Layer N. In a communication protocol, for example, a re-
send request may arrive from an impatient client who requested data
some time ago. In the meantime the server has already sent the
answer, and the answer and the re-send request cross. In this case,
Layer 3 of the server side may notice this and intercept the re-send
request without further action.

Scenario V involves two stacks of N layers communicating with each
other. This scenario is well-known from communication protocols
where the stacks are known as ‘protocol stacks’. In the following
diagram, Layer N of the left stack issues a request. The request moves
down through the layers until it reaches Layer 1, is sent to Layer 1 of
the right stack, and there moves up through the layers of the right
stack. The response to the request follows the reverse path until it
arrives at Layer N of the left stack.

Layer N Layer N
| [
Layer N-1 Layer N-1
l I
l I
Layer 1 Layer 1

l |

For more details about protocol stacks, see the Example Resolved
section, where we discuss several communication protocol issues
using TCP/IP as an example.

