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s object-oriented techniques steadily gain ground in the world of software 
development. users and prospective users of these techniques are clam- 
oring more and more loudly for a “methodology” of object-oriented 

software construction - or at least for some methodological guidelines. This 
article presents such guidelines, whose main goal is to help improve the reliability 
of software systems. Reliability is here defined as the combination of correctness 
and robustness or. more prosaically, as the absence of bugs. 

Everyone developing software systems. or just using them, knows how pressing 
this question of reliability is in the current state of software engineering. Yet the 
rapidly growing literature on object-oriented analysis, design, and programming 
includes remarkably few contributions on how to make object-oriented software 
more reliable. This is surprising and regrettable, since at least three reasons justify 
devoting particular attention to reliability in the context of object-oriented devel- 
opment: 

l The cornerstone of object-oriented technology is reuse. For reusable compo- 
nents, which may be used in thousands of different applications, the potential 
consequences of incorrect behavior are even more serious than for application- 
specific developments. 

l Proponents of object-oriented methods make strong claims about their bene- 
ficial effect on software quality. Reliabi!ity is certainly a central component of 
any reasonable definition of quality as applied to software. 

*The object-oriented approach, based on the theory of abstract data types, 
provides a particularly appropriate framework for discussing and enforcing 
reliability. 

The pragmatic techniques presented in this article, while certainly not providing 
infallible ways to guarantee reliability, may help considerably toward this goal. 
They rely on the theory of design by contract. which underlies the design of the 
Eiffel analysis, design, and programming language’ and of the supporting libraries, 
from which a number of examples will be drawn. 

The contributions of the work reported below include 

l a coherent set of nwthodological principles helping to produce correct and 
robust software; 

l a systematic approach to the delicate problem of how to deal with abnormal 
cases. leading to a simple and powerful exception-handling mechanism; and 



*a better understanding of inherit- 
ance and of the associated techniques 
(redeclaration, polymorphism, and 
dynamic binding) through the no- 
tion of subcontract, allowing a sys- 
tematic approach to using these pow- 
erful but sometimes dangerous 
mechanisms. 

Most of the concepts presented here 
have appeared elsewhere. They were 
previewed in the book Object-Oriented 
Software Construction’; and a more com- 
plete exposition was presented in a re- 
cent book chapter,’ from which this ar- 
ticle has been adapted. More profoundly, 
this work finds its root in earlier work 
on systematic program development”.i 
and abstract data types. h-X This article 
focuses on the central ideas, introduc- 
ing them concisely for direct applica- 
tion by developers. 

Defensive programming 
revisited 

Software engineering and program- 
ming methodology textbooks that dis- 
cuss reliability often emphasize the tech- 
nique known as defensive programming, 
which directs developers to protect ev- 
ery software module against the slings 
and arrows of outrageous fortune. In 
particular, this encourages programmers 
to include as many checks as possible, 
even if they are redundant with checks 
made by callers. Include them anyway, 
the advice goes; if they do not help. at 
least they will not harm. 

This approach suggests that routines 
should be as general as possible. A par- 
tial routine (one that works only if the 
caller ensures certain restrictive condi- 
tions at the time of the call) is consid- 
ered dangerous because it might pro- 
duce unwanted consequences if a caller 
does not abide by the rules. 

This technique, however, often de- 
feats its own purposes. Adding possibly 
redundant code “just in case” only con- 
tributes to the software’s complexity - 
the single worst obstacle to software 
quality in general. and to reliability in 
particular. The result of such blind check- 
ing is simply to introduce more soft- 
ware. hence more sources of things that 
could go wrong at execution time, hence 
the need for more checks, and so on ad 
infinitum. Such blind and often redun- 
dant checking causes much of the com- 

plexity and unwieldiness that often char- 
acterizes software. 

Obtaining and guaranteeing reliabil- 
ity requires a more systematic approach. 
In particular, software elements should 
be considered as implementations meant 
to satisfy well-understood specifications, 
not as arbitrary executable texts. This is 
where the contract theory comes in. 

The notion of contract 
Assume you are writing some pro- 

gram unit implementing a task to be 
performed at runtime. Unless the task 
is trivial, it involves a number of sub- 
tasks. For example, it might appear as 

my-task is 
d0 

subtask, ; 
subtask? ; 

subtask,, ; 
end 

a form that suffices for this discussion. 
although in many cases the control struc- 
ture linking the various subtasks is less 
simple than the mere sequencing shown 
here. 

For each of these subtasks, you may 
either write the corresponding solution 
in line as part of the body of my-task, or 
rely on a call to another unit. The deci- 
sion is a typical design trade-off: Too 
much calling causes fragmentation of 
the software text: too little results in 
overcomplex individual units. 

Assume you decide to use a routine 
call for one of the subtasks. This is sim- 
ilar to the situation encountered in ev- 
eryday life when you decide to contract 
out for a certain (human) task rather 
than doing it yourself. For example. if 
you are in Paris and want an urgent 

Table 1. Example contract. 

letter or package delivered to another 
Paris address, you may decide to deliver 
it yourself, or you may contract out the 
task to a courier service. 

Two major properties characterize 
human contracts involving two parties: 

*Each party expects some benefits 
from the contract and is prepared to 
incur some obligations to obtain them. 

*These benefits and obligations are 
documented in a contract document. 

Table 1 shows an imaginary roster of 
obligations and benefits for the courier 
service of the example. 

A contract document protects both 
sides: 

l It protects the client by specifying 
how much should be done: The client is 
entitled to receive a certain result. 

l It protects the contractor by speci- 
fying how little is acceptable: The con- 
tractor must not be liable for failing to 
carry out tasks outside of the specified 
scope. 

As evidenced by this example, what is 
an obligation for one party is usually a 
benefit for the other. 

This example also suggests a some- 
what more subtle observation, which is 
important in the following discussion 
(and in studying the application of these 
ideas to concurrent computation). If the 
contract is exhaustive, every “obliga- 
tion” entry also in a certain sense de- 
scribes a “benefit” by stating that the 
constraints given are the only relevant 
ones. For example, the obligation entry 
for the client indicates that a client who 
satisfies all the constraints listed is enti- 
tled to the benefits shown in the next 
entry. This is the No Hidden Clauses 
rule: With a fully spelled out contract 
between honest parties, no requirement 

Party Obligations Benefits 

Client Provide letter or package of no Get package delivered to 
more than 5 kgs. each dimension recipient in four hours or 
no more than 2 meters. less. 
Pay 100 francs. 

Supplier Deliver package to recipient 
in four hours or less. 

No need to deal with 
deliveries too big, too 
heavy, or unpaid. 
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other than the contract’s offi- 
cial obligations may be im- 
posed on the client as acondi- 
tion for obtaining the 
contract’s official benefits. 

The No Hidden Clauses 
principle does not prevent us 
from including references. 
implicit or explicit, to rules 
not physically part of the con- 

routine-name (argument declarations) is 
-- Header comment 

require 
Precondition 

do 
Routine body, ie. instructions 

eusare 
Postcondition 

end 

tract. For example, general Figure 1. A routine equipped with assertions. 
rules such as the relevant laws 
and common business prac- 
tices are implicitly considered 
to be part of every contract of 
a certain kind. even if not ex- 
plicitly repeated in the text of 
each contract. They apply to 
both client and supplier and 
will lead below to the notion 
of class invariant. 

put-child (new: NODE) is 
-- Add new to the children of current node 

require 
new /= Void 

do 
. . . Insertion algorithm . . . 

ensure 
new.parent = Current; 
child-count = old child-count + 1 

end -- put-child 
Assertions: 

This is the contract en- 
forced by put-child on any 
potential caller. It contains 
the most important informa- 
tion that can be given about 
the routine: what each party 
in the contract must guaran- 
tee for a correct call, and what 
each party is entitled to in 
return. Because this informa- 
tion is so crucial to the con- 
struction of reliable systems 
using such routines, it should 
be a formal part of the rou- 
tine’s text (see Figure 2). 

A few more details about 
the rules of object-oriented 
programming as embodied in 
Eiffel should help make this 
example completely clear: 

l A reference such as new 
is either void (not attached 
to any object) or attached to 

Contracting for Figure 2. Assertions for child insertion routine. 

software - 

It is not difficult to see how the pre- 
ceding ideas apply to software construc- 
tion. If the execution of a certain task 
relies on a routine call to handle one of 
its subtasks, it is necessary to specify the 
relationship between the client (the call- 
er) and the supplier (the called routine) 
as precisely as possible. The mecha- 
nisms for expressing such conditions 
are called assertions. Some assertions. 
called preconditions and postconditions. 
apply to individual routines. Others, the 
class invariants, constrain all the rou- 
tines of a given class and will be dis- 
cussed later. 

It is important to include the precon- 
ditions and postconditions as part of 
routine declarations (see Figure 1). 

In this Eiffel notation, the Require 
and Ensure clauses (as well as the head- 
er comment) are optional. They intro- 
duce assertions-respectively the pre- 
condition and the postcondition. Each 

Table 2. The put-child contract. 

assertion is a list of Boolean expres- 
sions, separated by semicolons: here a 
semicolon is equivalent to a Boolean 
“and” but allows individual identifica- 
tion of the assertion clauses. 

The precondition expresses require- 
ments that any call must satisfy if it is to 
be correct; the postcondition expresses 
properties that are ensured in return by 
the execution of the call. 

A missing precondition clause is equiv- 
alent to the clause Require True, and a 
missing postcondition to the clause En- 
sure True. The assertion True is the 
least committing of all possible asser- 
tions. Any possible state of the compu- 
tation will satisfy it. 

Consider, for example. in a class TREE 
describing tree nodes. a routineput-child 
for adding a new child to a tree node 
Currmr. The child is accessible through 
a reference, which must be attached to 
an existing node object. Table 2 infor- 
mally expresses the contract. 

an object: In the first case, it 
equals the value Void. Here 
the precondition expresses 

that the reference new must not be void, 
as stated informally by the correspond- 
ing entry in Table 2. 

l In accordance with Eiffel’s object- 
oriented principles, the routine will ap- 
pear in the text of a class describing 
trees, or tree nodes. This is why it does 
not need an argument representing the 
node to which the routine will add the 
reference new as a child; all routines of 
the class are relative to a typical tree 
node. the “current instance” of the class. 
In a specific call such as some- 
node.put-child (x), the value before the 
period, here some-node, serves as the 
current instance. 

*In the text of the class, the pre- 
defined name Current serves, if neces- 
sary, to refer to the current instance. 
Here it is used in the postcondition. 

*The notation Old child-count, ap- 
pearing in the postcondition ofput-child, 
denotes the value of child-count as cap- 
tured on entry to a particular call. In 

Party 

Client 

Supplier 

Obligations 

Use as argument a reference, say new. to an 
existing node object. 

Insert new node as required. 

Benefits 

Get updated tree where the Current node has 
one more child than before; new now has 
Current as its parent. 

No need to do anything if the argument is not 
attached to an object. 
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other words, the second clause of though practically significant, 
the postcondition expresses that comes only after achieving that 
the routine must increase 
child-countby one. The construct Another way of expressing this 
Old may appear only in a routine 
postcondition. 

~~ more fundamental goal. 

observation is to notice that as- 
sertions do not describe special 

Figure 3. Handling a special case. but expected cases that call for 

The role of 
special treatment. In other words, 
the above assertions are not a 

assertions assertions are monitored at runtime, way to describe (for example) the han- 
depending on programmer wishes. But dling of void arguments to put-child. If 
this is not a crucial question at this point. we wanted to treat void arguments as an 

You may well be wondering what The prime goal of this discussion is to acceptable (although special) case, we 
happens if one of these conditions fails find ways of writing reliable software ~ would handle it not through assertions 
to be satisfied during execution. This systems that work. The question of what but through standard conditional con- 
question will be answered by whether happens when they do not work, al- trol structures (see Figure 3). 

Further sources 
One of the two primary sources of inspiration for this work 

is the research on program proving and systematic program 
construction pioneered by Floyd,’ Hoare, and Dijkstra.3 
Other well-known work on the application of proof methods 
to software construction includes contributions by Gries’ 
and Mills.5 The other major influence is the theory of ab- 
stract data types (see references in the body of the article). 

The use of assertions in an object-oriented language and 
the approach to inheritance presented here (based on the 
notion of subcontracting) appear original to Eiffel. The ex- 
ception-handling model and its implementation are also 
among Eiffel’s contributions. These mechanisms, and the 
reasoning that led to them, are discussed in detail in refer- 
ences 1 and 2 of the main bibliography at the end of the ar- 
ticle. 

The rescue clause notion was actually derived from a cor- 
responding formal notion of surrogate function, also called 
doppelgtinger, which appeared in the specification method 
and language M,‘s a direct successor to Abriaf’s origin&l 2 
Ianguage.*4 Like 2 and unlike Eiffel, M was a formal specffi- 
cation language, not an executable language. Functions in 
an M specification may be partial. A surrogate is associated 
with a partial function and serves as a backup for arguments 
that do not belong to that function’s domain. 
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Assertions (here the pre- 
condition) are something else: 
ways to describe the condi- 
tions on which software ele- 
ments will work, and the con- 

invariant 
ular the design of the librar- 
ies, suggests that the system- 

left /= Void ierpriss (lefiqareni = Curreni); 
right I= Void int@ies (righyareni = Current) 

atic use of a demanding style 
can be quite successful. In this 

. approach, every routine con- 
ditions they will achieve in Figure 4. An invariant for binary trees. 

- return. By putting the condi- 
tion rrew /= Void in the pre- 
condition, we make it part of the rou- 
tine’s specification; the last form shown 
(with the If) would mean that we have 
changed that specification, broadening 
it to include the special case new = Void 
as acceptable. 

As a consequence. any runtime viola- 
tion of an assertion is not a special case 
but always the manifestation of a soft- 
ware bug. To be precise: 

checking blindly, as with defensive pro- 
gramming, you can use clearly defined 
contracts that assign the responsibility 
for each consistency condition to one of 
the parties. If the contract is precise and 
explicit, there is no need for redundant 
checks. 

centrates on doing a well-de- 
fined job so as to do it well, 
rather than attempting to 

handle every imaginable case. Client 
programmers do not expect miracles. 
As long as the conditions on the use of 
a routine make sense, and the routine’s 
documentation states these conditions 
(the contract) explicitly, the program- 
mers will be able to use the routine 
properly by observing their part of the 
deal. 

l A precondition violation indicates 
a bug in the client (caller). The caller 
did not observe the conditions imposed 
on correct calls. 

One objection to this style is that it 
seems to force every client to make the 
same checks, corresponding to the pre- 
condition, and thus results in unneces- 
sary and damaging repetitions. But this 
argument is not justified: 

l A postcondition violation is a bug in 
the supplier (routine). The routine failed 
to deliver on its promises. 

The stronger the precondition, the 
heavier the burden on the client. and 
the easier for the supplier. The matter 
of who should deal with abnormal val- 
ues is essentially a pragmatic decision 
about division of labor: The best solu- 
tion is the one that achieves the simplest 
architecture. If every routine and caller 
checked for every possible call error, 
routines would never perform any use- 
ful work. 

In Table 2, the bottom-right entry is 
particularly noteworthy. If the precon- 
dition is not satisfied, the routine is not 
bound to do anything, like a mail deliv- 
ery company given a parcel that does 
not meet the specification. This means 
that the routine body should not be of 
the form mentioned above: 

In many existing programs, one can 
hardly find the islands of useful pro- 
cessing in oceans of error-checking code. 
In the absence of assertions, defensive 
programming may be the only reason- 
able approach. But with techniques for 
defining precisely each party’s respon- 
sibility, as provided by assertions, such 
redundancy (so harmful to the consis- 
tency and simplicity of the structure) is 
not needed. 

l The presence of a preconditionp in 
a routine r does not necessarily mean 
that every call must test for p, as in 

Observations on 
software contracts 

if x.p then 
x.r 

else 
. . . Special Treatment .,. 

end 

Who should check? 

What the precondition means is that the 
client must guarantee property p; this is 
not the same as testingfor thiscondition 
before each call. If the context of the 
call implies p, then there is no need for 
such a test. A typical scheme is 

if new = Void then The rejection of defensive program- 
ming means that the client and supplier 
are not both held responsible for a con- 
sistency condition. Either the condition 
is part of the precondition and must be 
guaranteed by the client, or it is not 
stated in the precondition and must be 
handled by the supplier. 

x.s; x.r 
. . . 

else where the postcondition of s implies p. 

end 

Using such a construction would de- 
feat the purpose of having a precondi- 
tion (Require clause). This is an abso- 
lute rule: Either you have the condition 
in the Require, or you have it in an If 
instruction in the body of the routine, 
but never in both. 

This principle is the exact opposite of 
the idea of defensive programming, since 
it directs programmers to avoid redun- 
dant tests. Such an approach is possible 
and fruitful because the use of asser- 
tions encourages writing software to spell 
out theconsistencyconditions that could 
go wrong at runtime. Then instead of 

Which of these two solutions should 
be chosen? There is no absolute rule; 
several styles of writing routines are 
possible, ranging from “demanding” 
ones where the precondition is strong 
(putting the responsibility on clients) to 
“tolerant” ones where it is weak (in- 
creasing the routine’s burden). Choos- 
ing between them is to a certain extent 
a matter of personal preference; again, 
the key criterion is to maximize the 
overall simplicity of the architecture. 

*Assume that many clients will in- 
deed need to check for the precondi- 
tion. Then what matters is the “Special 
Treatment.” It is either the same for all 
calls or specific to each call. If it is the 
same, causing undue repetition in vari- 
ous clients, this is simply the sign of a 
poor class interface design, using an 
overly demanding contract for r. The 
contract should be renegotiated and 
made broader (more tolerant) to in- 
clude the standard Special Treatment 
as part of the routine’s specification. 

The experience with Eiffel, in partic- 

l If, however, the Special Treatment 
is different for various clients, then the 
need for each client to perform its own 
individual test for p is intrinsic and not 

44 COMPUTER 



a consequence of the design method 
suggested here. These tests would have 
to be included anyway. 

The last case corresponds to the fre- 
quent situation in which a supplier sim- 
ply lacks the proper context to handle 
abnormal cases. For example, it is im- 
possible for a general-purpose STACK 
module to know what to do when re- 
quested to pop an element from an empty 
stack. Only the client - a module from 
a compiler or other system that uses 
stacks - has the needed information. 

Class invariants Figure 5. The invariant in an object’s 
life cycle. 

Routine preconditions and postcon- 
ditions may be used in non-object-ori- 
ented approaches, although they fit par- 
ticularly well with the object-oriented 
method. Invariants, the next major use 
of assertions, are inconceivable outside 
of the object-oriented approach. 

necessary here; they have been added 
for clarity.) 

The optional class invariant clause 
appears at the end of a class text: 

class BINARY-TREE [q feature 
A class invariant is a property that 

applies to all instances of the class, tran- 
scending particular routines. For exam- 
ple, the invariant of a class describing 
nodes of a binary tree could be of the 
form shown in Figure 4, stating that the 
parent of both the left and right chil- 
dren of a node, if these children exist, is 
the node itself. (The Implies operator 
denotes implication. Eiffel operator pre- 
cedence rules make the parentheses un- 

. . . Attribute and routine 
declarations 

invariant 
. . As shown above 

end-class TABLE 

Two properties 
invariant: 

characterize a class 

l The invariant must be satisfied after The invariant corresponds to what 

On the assertion language 
This article includes many examples of typical asser- 

tions. But what exactly is permissible in an assertion? 
Eiffel assertions are Boolean expressions, with a few ex- 

tensions such as the old notation. Since the whole power 
of Boolean expressions is available, they may include 
function calls. Because the full power of the language is 
available to write these functions, the conditions they ex- 
press can be quite sophisticated. For example, the invari- 
ant of a class ACYCLIC-GRAPH may contain a clause of 
the form 

not cyciic 

where cydic is a Boolean-valued function that determines 
whether a graph contains any cycles by using the appro- 
priate graph algorithm. 

In some cases, one might want to use quantified expres- 
sions of the form “For all x of type T, p (x) holds” or “There 
exists x of type 7, such that p (x) holds,” where p is a cer- 
tain Boolean property. Such expressions are not available 
in Eiffel. It is possible, however, to express the corre- 
sponding properties by using the same technique: calls to 
functions that rely on loops to emulate the quantifiers. 

Although some thought has been given to extend the 
language to include a full-fledged formal specification lan- 

the creation of every instance of the 
class (every binary tree in this exam- 
ple). This means that every creation 
procedure of the class must yield an 
object satisfying the invariant. (A class 
may have one or more creation proce- 
dures, which serve to initialize objects. 
The creation procedure to be called in 
any given case is specified in the cre- 
ation instruction.) 

l The invariant must be preserved by 
every exported routine of the class (that 
is to say, every routine available to cli- 
ents). Any such routine must guarantee 
that the invariant is satisfied on exit if it 
was satisfied on entry. 

In effect. then, the invariant is added 
to the precondition and postcondition 
of every exported routine of the class. 
But the invariant characterizes the class 
as a whole rather than its individual 
routines. 

Figure 5 illustrates these requirements 
by picturing the life cycle of any object 
as a sequence of transitions between 
“observable” states. Observable states, 
shown asshaded rectangles, are the states 
that immediately follow object creation, 
and any states subsequently reached 
after the execution of an exported rou- 
tine of the object’s generating class. The 
invariant is the consistency constraint 
on observable states. (It is not necessar- 
ily satisfied in between these states.) 

guage, with first-order predicate calculus, the need for 
such an extension does not seem crucial. In Efffef, intend- 
ed as a vehicle for industrial software development rather 
than just for research, the use of function calls in asser- 
tions seems to provide an acceptable trade-off between 
different design goals: reliability, the ability to generate ef- 
ficient code, and overall simplicity of the language. 

In fact, first-order predicate calculus would not neces- 
sarily be sufficient. Many practically important properties, 
such as the requirement that a graph be noncyclic, would 
require higher order calculus. 

The use of functions - that is to say, computations - 
is not without its dangers. In software, a function is a case 
of a routine: it prescribes certain actions. This makes soft- 
ware functions imperative, whereas mathematical func- 
tions are said to be applicative. The major difference is 
that software functions can produce side effects (change 
the state of the computation). lntroducfng functions into 
assertions lets the imperative fox back into the applicative 
chicken coop. 

In practice, this means that any function used in asser- 
tions must be of unimpeachable quality, avoiding any 
change to the current state and any operation that oould 
result in abnormal situations. 



-- Add new to the children of current node 
reqaire 

new I= Void 
ensure 

newgarent = Current; 
child-count = old child-count + 1 

put-child (new: NODE) 

Figure 6. The short form of a routine. 

was called “general conditions” in the 
initial discussion of contracts: laws or 
regulations that apply to all contracts of 
a certain category. often through a clause 
of the form “all provisions of the XX 
code shall apply to this contract.” 

Documenting a 
software contract 

For the contract theory to work prop- 
erly and lead to correct systems, client 
programmers must be provided with a 
proper description of the interface prop- 
erties of a class and its routines - the 
contracts. 

Here assertions can play a key role. 
since they help express the purpose of a 
software element such as a routine with- 
out reference to its implementation. 

The short command of the Eiffel en- 
vironment serves to document a class 
by extracting interface information. In 
this approach. software documentation 
is not treated as a product to be devel- 
oped and maintained separately from 
the actual code: instead, it is the more 
abstract part of that code and can be 
extracted by computer tools. 

The short command retains only the 
exported features of a class and. for an 
exported routine, drops the routine body 
and any other implementation-related 
details. However. pre- and postcondi- 
tions are kept. (So is the header com- 
ment if present.) For example, Figure 6 
shows what the short command yields 
for the plct routine. It expresses simply 
and concisely the purpose of the rou- 
tine. without reference to a particular 
implementation. 

All documentation on the details of 
Eiffel classes (for example, the class 
specifications in the book on the basic 
libraries’) is produced automatically in 
this fashion. For classes that inherit from 
others, the short command must be com- 
bined with another tool.flar. which flat- 
tens out the class hierarchy by including 
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inherited features at the same level as 
“immediate” ones (those declared in 
the class itself). 

Monitoring assertions 

What happens if. during execution. a 
system violates one of its own asser- 
tions? 

In the development environment. the 
answer depends on a compilation op- 
tion. For each class. you may choose 
from various levels of assertion moni- 
toring: no assertion checking. precondi- 
tions only (the default). preconditions 
and postconditions. all of the above plus 
class invariants. or all assertions. (The 
difference between the last two follows 
from the existence of other assertions. 
such as loop in\ ariants. not covered in 
the present discussion.) 

For a class compiled under the “no 
assertion monitoring” option. assertions 
have no effect on system execution. The 
subsequent options cause evaluation of 
assertions at various stages: routine en- 
try for preconditions, routine exit for 
postconditions. and both steps for in- 
variants. 

Under the monitoring options, the 
effect of an assertion violation is to raise 
an exception. The possible responses to 
an exception are discussed later. 

Why monitor? 

As noted, assertion violations are not 
special (but expected) cases; they result 
from bugs. The main application of run- 
time assertion monitoring. then, is de- 
bugging. Turning assertion checking on 
(at any of the levels previously listed) 
makes it possible to detect mistakes. 

When writing software. developers 
make many assumptions about the prop- 
erties that will hold at various stages of 
the software’s execution, especially rou- 
tine entry and return. In the usual ap- 
proaches tosoftwareconstruction. these 

assumptions remain informal and im- 
plicit. Here the assertion mechanism 
enables developers to express them ex- 
plicitly. Assertion monitoring, then, is a 
way to call the developer’s bluff by check- 
ing what the software does against what 
its author thinks it does. This yields a 
productive approach to debugging, test- 
ing. and quality assurance, in which the 
search for errors is not blind but based 
on consistency conditions provided by 
the developers themselves. 

Particularly interesting here is the use 
of precorzditions in library classes. In 
the general approach to software con- 
struction suggested by the Eiffel meth- 
od, developers build successive “clus- 
ters” of classes in a bottom-up order. 
from more general (reusable) to more 
specific (application-dependent). This 
is the “cluster model” of the software 
life cycle.“’ Deciding to release a library 
cluster 1 for general use normally im- 
plies a reasonable degree of confidence 
in its quality - the belief that no bugs 
remain in 1. So it may be unnecessary to 
monitor the postconditions of routines 
in the classes of 1. But the classes of an 
application cluster that is a client of I 
(see Figure 7) may stilt be “young” and 
contain bugs: such bugs may show up as 
erroneous arguments in calls to rou- 
tines of the classes of 1. Monitoring pre- 
conditions for classes of I helped to find 
them. This is one of the reasons why 
precondition checking is the default 
compilation option. 

Introducing inheritance 

One of the consequences of the con- 
tract theory is a better understanding 
and control of the fundamental object- 
oriented notion of inheritance and of 
the key associated techniques: redecla- 
ration, polymorphism, and dynamic 
binding. 

Through inheritance. you can define 
newclasses bycombiningpreviousones. 
A class that inherits from another has 
all the features (routines and attributes) 
defined in that class, plus its own. But it 
is not required to retain the exact form 
of inherited features: It may redeclare 
them to change their specification. their 
implementation, or both. This flexibili- 
ty of the inheritance mechanism is cen- 
tral to the power of the object-oriented 
method. 

For example. a binary tree class could 
provide a default representation and 
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the corresponding implementations for 
search and insertion operations. A de- 
scendant of that class may provide a 
representation that is specifically adapt- 
ed to certain cases (such as almost full 
binary trees) and redeclare the routines 
accordingly. 

Such a form of redeclaration is called 
a redefinition. It assumes that the inher- 
ited routine already had an implemen- 
tation. The other form of redeclaration, 
called effecting, applies to features for 
which the inherited version, known as a 
deferred (or abstract) feature, had no 
implementation. but only a specifica- 
tion. The effecting then provides an im- 
plementation (making the feature ef- 
fective, the reverse of deferred). The 
subsequent discussion applies to both 
forms of redeclaration, although for sim- 
plicity it concentrates on redefinition. 

Redeclaration takes its full power 
thanks to polymorphism and dynamic 
binding. Polymorphism is type adapta- 
tion controlled by inheritance. More 
concretely, this means that if you have b 
of type BINARY-TREE and sb of type 
SPECIAL-BINARY-TREE, the latter 
class a descendant of the former, then 
the assignment 

b:=sb 

is permitted, allowing b to become at- 
tached at runtime to instances of 
SPECIAL-BINARY-TREE, of a more 
specialized form than the declaration of 
b specifies. Of course, this is only possi- 
ble if the inheritance relation holds be- 
tween the two classes as indicated. 

What happens then for a call of the 
form 

t.insrrt (v) 

which applies procedure insert, with 
argument v, to the object attached to t? 
Dynamic binding means that such a call 
always uses the appropriate version of 
the procedure - the original one if the 
object to which t is attached is an in- 
stance of BINARY-TREE, the rede- 
fined version if it is an instance of 
SPECIAL-BINARY-TREE. The re- 
verse policy, static binding (using the 
declaration of b to make the choice), 
would be an absurdity: deliberately 
choosing the wrong version of an oper- 
ation. 

The combination of inheritance, re- 
declaration, polymorphism, and dynamic 
binding yields much of the power and 
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Figure 7. Library cluster and applica- 
tion cluster. 

flexibility that result from the use of the 
object-oriented approach.: Yet these 
techniques may also raise concerns of 
possible misuse: What is to prevent a 
redeclaration from producing an effect 
that is incompatible with the semantics 
of the original version -fooling clients 
in a particularly bad way, especially in 
the context of dynamic binding? Noth- 

ing, of course. No design technique is 
immune to misuse. But at least it is pos- 
sible to help serious designers use the 
technique properly; here the contract 
theory provides the proper perspective. 

What redeclaration and dynamic bind- 
ing mean is the ability to subcontract a 
task; preventing misuse then means guar- 
anteeing that subcontractors honor the 
prime contractor’s promises in the orig- 
inal contract. 

Consider the situation described by 
Figure 8. A exports a routine r to its 
clients. (For simplicity, we ignore any 
arguments to r.) A client X executes a 
call 

u.r 

where u is declared of type A. Now B, a 

The concurrency issue 
The theory of design by contract raises important questions regarding the 

application of object-oriented ideas to concurrent computation. In discussing 
contracts, this article mentions that clients may view the precondition of a 
routine not just as an obligation but also in part as a benefit, since the con- 
tract implicitly indicates that a call satisfying the precondition will be serviced 
correctly. This is the No Hidden Clause rule. For example, if the insertion 
routine put for a BOUNDED-QUEUE class has the precondition 

not full 

to state that an insertion operation requires a queue that is not full, then a 
protected call of the form 

q: BOUNDED-QUEUE [l-J; 
XT; 
. . . 
if not q.full then 
end q.put (4 

will succeed, since the client executing this call has taken the trouble to 
check the.precondition explicitly. 

In parallel computation, however, things are not so nice. The bounded 
queue in this example may be used as a bounded buffer, accessible to sev- 
eral processors. The processor in charge of the client, which will carry out 
the above instructions, and the prodessor in charg& of q, which will carry out 
the execution of put, could be different processors. Then, even if the test for 
q.full yields false, between the time the client executes this test and the time 
it executes the call q.put (x), quite a few events may have occurred. For ex- 
ample, another client may have made the queue full by executing its own 
call to put. 

In other words, a different semantic interpretation may be necessary for 
preconditions in the context of parallel computation. This observation serves 
as the starting point for some of the current work on models for concurrent 
object-oriented programming.1,2 
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descendant of A, redeclares r. Through 
polymorphism, u may well become at- 
tached to an instance of B rather than 
A. Note that often there is no way to 
know this from the text of X alone; for 
example, the call just shown could be in 
a routine of X beginning with 

some-routine (u: A) is . . . 

where the polymorphism only results 
from a call of the form 

zsome-routine (v) 

for which the actual argument v is of 
type B. If this last call is in a class other 
than X, the author of X does not even 
know that u may become attached to an 
instance of B. In fact, he may not even 
know about the existence of a class B. 

But then the danger is clear. To ascer- 
tain the properties of the call u.r, the 
author of X can only look at the con- 
tract for r in A. Yet, because of dynamic 
binding, A may subcontract the execu- 
tion of r to B, and it is B’s contract that 
will be applied. 

How do you avoid “fooling” X in the 
process? There are two ways B could 
violate its prime contractor’s promises: 

l B could make the precondition stron- 
ger, raising the risk that some calls that 
are correct from x’s viewpoint (they 
satisfy the original client obligations) 
will not be handled properly. 

l B could make the postcondition 
weaker, returning a result less favor- 
able than what has been promised to X. 

None of this, then, is permitted. But 
the reverse changes are of course legit- 
imate. A redeclaration may weaken the 
original’s precondition or it may 
strengthen the postcondition. Changes 
of either kind mean that the subcon- 
tractor does a better job than the origi- 
nal contractor-which there is no rea- 
son to prohibit. 

These rules illuminate some of the 
fundamental properties of inheritance, 
redeclaration, polymorphism, and dy- 
namic binding. Redeclaration. for all 
the power it brings to software develop- 
ment. is not a way to turn a routine into 
somethingcompletelydifferent.Thenew 
version must remain compatible with 
the original specification. although it 
may improve on it. The noted rules ex- 
press this precisely. 

These rules must be enforced by the 

48 

Figure 8. Redefinition of a routine un- 
der contract. 

language. Eiffel uses a simple conven- 
tion. In a redeclaration, it is not permit- 
ted to use the forms require... and en- 
sure.... The absence of a precondition or 
postcondition clause means that the re- 
declared version retains the original 
version’s assertion. Since this is the most 
frequent situation, the class author is 
not required to write anything special in 
this case. A class author who does want 
to adapt the assertion will use either or 
both of the forms 

require else 
new_pre 

ensure then 
new-post 

which yield the following as 
condition and postcondition: 

new pre- 

newgre or else originalgrecondition 

newgost and then 
original_postcondition 

where Or Else and And Then are the 
noncommutative versions of the “or” 
and “and” operators (evaluating their 
second argument only if necessary). In 
this way. the new precondition is guar- 
anteed to be weaker than or equal to the 
originals, and the new postcondition is 
guaranteed to be stronger than or equal 
to the originals. 

Invariants and 
dynamic binding 

In addition to the rules on precondi- 
tions and postconditions, another con- 
straint ties assertions with inheritance: 
Invariants are always passed on to de- 
scendants. 

This is a direct result of the view that 
inheritance is (among other things) clas- 
sification. If we want to consider every 
instance of a class B as being also an 
instance of R’s ancestors. we must ac- 

cept that consistency constraints on a 
parent A also apply to instances of B. 

For example, if the invariant for a 
class TREE, describing tree nodes, in- 
cludes the clause 

child.parent = Current 

expressing that the parent of a node’s 
currently active child is the node itself, 
this clause will automatically apply to 
instances of a class BINARY-TREE, 
which inherits from TREE. As a result, 
the language specification defines “the 
invariant of a class” as the assertion 
obtained by concatenating the asser- 
tion in the invariant clause of the class 
to the invariants of all parents (obtained 
recursively under this definition).’ 

As a result, the invariant of a class is 
always stronger than or equal to the 
invariants of each of its parents. 

These rules lead to a better under- 
standing of why static binding would be, 
as previously stated, such a disaster. 
Assume again the declaration and call 

u: A: 
. 

u.r 

where a descendant B of A redefines r. 
Call rA and r,,, the two implementations. 
Then r, must preserve INV,, the invari- 
ant of A, and rg must preserve INV,, the 
invariant of B, which is stronger than or 
equal to INV,. 

There is, of course, no requirement 
that ra preserve INV,. In fact, class A 
may have been written long before B, 
and the author of A does not need to 
know anything about eventual descen- 
dants of this class. 

If LL dynamically becomes attached to 
an instance of B, dynamic binding re- 
quires the execution of rH for this call. 
Static binding would trigger ra. Since 
this version of the routine is not re- 
quired to preserve INV,, the result would 
yield a catastrophic situation: an object 
of type B that does not satisfy the con- 
sistency constraint-the invariant -of 
its own class. In such cases, any attempt 
at understanding software texts or rea- 
soning about their runtime behavior 
becomes futile. 

A simple example will make the situ- 
ation more concrete. Assume a class 
ACCOUNT describing bank accounts, 
with the attributes shown in Figure Ya 
and a procedure to record a new deposit 
shown in Figure 9b. 
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With this version of the class, 
ohtainlng an account’s current 
balance requires a computation 
expressed by a function. Figure 
10 shows how the balance func- 
tion could appear, assuming the 
appropriate functionsum in class 
TRANSACTION-LIST. 

In a descendant class AC- 
COUNTl, it may be a better 
space-time trade-off to store the 
current balance with every ac- 
count object. This can be 
achieved by redefining the func- 
tion balance into an attribute (a 
process that is indeed supported 
by the language). Naturally, this 
attribute must be consistent with 
the others; this is expressed by 
the invariant of ACCOUNTI, 
shown in Figure 11. 

For this to work, however, B 
must redefine any routine of A 
that modified deposits or with- 
drawals; the redefined version 
must also modify the balance 
field of the object accordingly, 
so as to maintain the invariant. 
This is the case, for example, 
with procedure record-deposit. 

Now assume that we have the 
declaration and call 

a: ACCOUNT, 

a.record-deposit (1~000~000) 

initial-deposit: INTEGER; 
deposits, withdrawals; TRANS&CT~~N~L~~T 

(8) 

record-deposit (d: INTEGER) b 
do 

Figure 9. Features of a Bank Account class. 

balance: INTEGER is balance: INTEGER is 
-- cun’ent -- cun’ent 

de de 
bu&mce := bu&mce := 

end -- balance end -- balance 

FigurelO. Computing the balance. 

invariant 
balance = initial-deposit + dqmitssum 

- withd~~ls~~ 

Figure 11. Invariant of the Account class. 

fails to define precisely what an abnor- 
mal case is. Then exception handling 
often becomes a kind of generalized, 
interroutine “goto” mechanism, with no 

If in a certain execution, a happens to 
be attached to an object of type AC- 
COUNT1 at the time of the call, static 
binding would mean applying the orig- 
inal, A CC0 UNT version of record- de- 
posit - which fails to update the bal- 
ance field. The result would be an 
inconsistent ACCOUNT1 object and 
certain disaster. 

Dealing with abnormal 
situations 

The Design by Contract theory has 
one more immediate application to the 
practice of reliable software develop- 
ment: exception handling. 

Exceptions-abnormal cases-have 
been the target of much study: and sev- 
eral programming languages, notably 
Ada, PLiI, and CLU, offer exception- 
handling mechanisms. Much of this work 
is disappointing, however, because it 
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clear guidelines for proper use. 
To understand the issue better, I per- 

formed a study (reported elsewhere’) 
of Ada and CLU textbooks, looking for 
examples of exception handling and 
methodological principles. The results 
were disappointing, as the books showed 
many examples of triggering exceptions 
but few of how to handle them. Further- 
more, some of the latter were hair-rais- 
ing. For example, one textbook pro- 
posed an example of a square root 
routine which, when confronted with a 
negative argument, triggers an excep- 
tion. The exception handler prints a 
message and then simply returns to the 
caller without notifying the caller that 
something wrong has occurred - fool- 
ing the caller, as it were, into believing 
that everything is going according to 
plan. Since a typical use for square roots 
in a typical Ada program is a missile 
trajectory computation, it is easy to fore- 
see the probable consequences. 

Beyond the bad taste of such individ- 

ual examples, one may fault the 
design of the exception mecha- 
nism itself for failing to encour- 
age, or even to define, a proper 
discipline for handling abnor- 
mal cases. 

The contract theory provides 
a good starting point for a more 
rational solution. If a routine is 
seen not just as some “piece of 
code” but as the implementa- 
tion of a certain specification - 
the contract - it is possible to 
define a notion of failure. Fail- 
ure occurs when an execution of 
a routine cannot fulfill the rou- 
tine’s contract. Possible reasons 
for a failure include a hardware 
malfunction, a bug in the imple- 
mentation, or some external 
unexpected event. 

“Failure” is here the basiccon- 
cept. “Exception” is a derived 
notion. An exception occurs 
when a certain strategy for ful- 
filling a routine’s contract has 
not succeeded. This is not a fail- 
ure, at least not yet, because the 
routine may have an alternative 
strategy. 

The most obvious example of 
exception is the failure of a called 
routine: r’s strategy for fulfilling 

its contract involved a call to s; the call 
failed; clearly, this is an exception for r. 
Another example, previously men- 
tioned, is a runtime assertion violation, 
if assertions are monitored. It is also 
convenient to treat as exceptions the 
signals sent by the operating system or 
thehardware:arithmeticoverflow,mem- 
ory exhaustion, and the like. They in- 
deed correspond to failures of calls to 
basic facilities (arithmetic operations, 
memory allocation). 

Equipped with this notion of failure 
and exception, we can define a coherent 
response to an exception. The excep- 
tion occurs because the strategy used to 
achieve the routine’s contract did not 
work. Only three possible responses then 
make sense: 

(1) Perhaps an alternative strategy is 
available. We have lost a battle, but we 
have not lost the war. In this case the 
routine should put the objects back into 
a consistent state and make another 
attempt, using the new strategy. This is 
called resumption. 

(2) Perhaps, however, we have lost 
the war altogether. No new strategy is 



get&egerfom-user: INTEGER is 
-- Read an integer (allow user up to five attempts) 

local 
failures: INTEGER 

do 
Result := getint 

failures := failures + 1; 

iE failures < 5 then 
message (“Znput must be an integer. Please enter again: “); 
retry 

end -- getintegerfrom-user 

Figure 12. Reading an integer with an unsafe primitive. 

available. Then the routine should put 
back the objects in a consistent state, 
give up on the contract, and report fail- 
ure to the caller. This is called orga- 
nized panic. 

(3) A  rare but possible third case is 
the false alarm. This may occur only for 
operating-system or hardware signals. 
On some multiwindowing systems, for 
example, a process receives a signal 
(transformed by the runtime into an 
exception) when its window is resized. 
In most cases, the process should be 
able to continue its execution, possibly 
after taking some corrective actions 
(such as registering the new window 
dimensions for use by editors and other 
tools). 

The description of both resumption 
and organized panic mentions putting 
back the objects “in a consistent state.” 
This is essential if further executions 
(after an eventual resumption) will use 
the objects again. The notion of consis- 
tent state should be clear from the pre- 
ceding discussion: Any exception han- 
dling, whether for resumption or for 
organized panic, should restore the in- 
variant. 

A disciplined 
except&m-handling 
mechanism 

It is not hard to devise an exception 
mechanism that directly supports the 
preceding method for handling abnor- 
mal cases. 
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To specify how a routine should be- 
have after an exception, the author of 
an Eiffel routine may include a “res- 
cue” clause, which expresses the al- 
ternate behavior of the routine (and is 
similar to clauses that occur in human 
contracts, to allow for exceptional, un- 
planned circumstances). When a rou- 
tine includes a rescue clause, any 
exception occurring during the rou- 
tine’s execution interrupts the execu- 
tion of the body (the Do clause) and 
starts execution of the rescue clause. 
The clause contains zero or more in- 
structions, one of which may be a Retry. 
The execution terminates in either of 
two ways: 

l If the rescue clause terminates with- 
out executing a Retry, the routine fails. 
It reports failure to its caller by trigger- 
ing a new exception. This is the orga- 
nized panic case. 

l If the rescue clause executes a Re- 
try, the body of the routine (Do clause) 
is executed again. 

As an example, here is a solution to a 
problem found in many Ada textbooks: 
Using a function getint, which reads an 
integer, prompt a user to enter an inte- 
ger value; if the input is not an integer, 
ask again, unless the user cannot pro- 
vide an integer after five attempts, in 
which case a failure occurs. It is as- 
sumed that getint is an external routine, 
perhaps written in C or assembly lan- 
guage, and we have no control over it. It 
triggers an exception when applied to 
input that is not an integer; the routine 
should catch that exception and prompt 

the user again. Figure 12 shows a solu- 
tion. 

The first five times the interactive 
user enters a wrong input, the routine 
starts again, thanks to the Retry. This is 
the direct implementation of resump- 
tion. 

The local entity failures serves to 
record the number of failed calls to 
getint. Like any integer local entity, it is 
automatically initialized to zero on rou- 
tine call. (The Eiffel language defini- 
tion’ specifies simple initialization val- 
ues for every possible type.) 

In this example, only one type of ex- 
ception is possible. In some cases, the 
rescue clause might need to discrimi- 
nate between possible types of excep- 
tions and handle them differently. This 
is made possible through simple fea- 
tures of the kernel library class EX- 
CEPTIONS, although it isn’t necessary 
to look at the (straightforward) details 
here. This class also provides mecha- 
nisms for handling the false alarm case 
by specifying that for certain signals 
execution may be allowed to resume. 

What happens after five successive 
failures of getint? The rescue clause ter- 
minates without executing a Retry and 
the routine execution fails (organized 
panic). The key rule in this case is that 
the caller of get-integer will get an ex- 
ception, which it will have to handle by 
using the same policy, choosing between 
organized panic, resumption, and false 
alarm. 

In a typical system, only a handful of 
routines have an explicit rescue clause. 
What if an exception occurs during the 
execution of a routine that has no such 
clause? The rule is simple: An absent 
clause is considered equivalent to an 
implicit clause of the form 

rescue 
default-rescue 

where default-rescue is a general-pur- 
pose procedure that, in its basic form, 
does nothing. Then an exception simply 
starts the rescue clause, which, execut- 
ing the empty default-rescue, causes fail- 
ure of the routine; this triggers the res- 
cue clause, explicit or implicit. If 
exceptions are passed in this manner all 
the way back to the “root object” that 
started the execution, that execution 
halts after printing an exception history 
table that clearly documents the se- 
quence of recorded abnormal events. 
But, of course, some routine in the call 

COMPUTER 



chain may have a rescue clause. even 
one containing a Retry that will attempt 
a resumption. 

Why, define the default behavior as a 
call to default-rescttc rather than just as 
an empty rescue clause? The reason 
comes from the methodological discus- 
sion. In the case of organized panic. it is 
essential to restore the invariant before 
conceding defeat and surrendering. A 
null action would not achieve this for a 
class with a nontrivial invariant. 

The solution is provided once again 
by the coalesced forces of inheritance 
and assertions. Procedure d&ult- res- 
clre. in its default null form. appears as 
a procedure of the general-purpose class 
ANY. This library class, as defined by 
the language rules,’ is automatically an 
ancestor of all possible developer-de- 
fined classes. So it is the responsibility 
of designers of a class C. if they are 
concerned about possible exceptions 
occurring in routines that do not have 
specific rescue clauses. to redefine 
default-rescue so that it will ensure the 
class invariant of C. 

Often, oneof thecreation procedures 
may serve as a redefinition of tlrfatrlt~ 
rescue. since creation procedures are 
also required to ensure the invariant. 

This illuminates the difference be- 
tween the body (the Do clause) and the 
rescue clause: 

l The body must implement the con- 
tract, or ensure the postcondition. For 
consistency. it must also abide by the 
general law of the land-preserve the 
invariant. Its job is made a bit easier by 
the assumption that the invariant will 
hold initially, guaranteeing that the rou- 
tine will find objects in a consistent state. 

*In contrast, the rescue clause may 
not make any such assumption: it has no 
precondition, since an exception may 
occur at any time. Its reward is a less- 
demanding task. All that it is required 
to do on exit is to restore the invariant. 
Ensuring the postcondition - the con- 
tract - is not its job. 

A useful analogy is the contrast 
between the grandeur and ser- 
vitude of two equally respect- 

able professions -cook and fire fight- 
er. A cook may assume that the restau- 
rant is not burning (satisfies the 
invariant) when the workday begins. If 
the restaurant is indeed nonburning. 
the cook must prepare meals (ensure 

Status of Eiffel 
The definition of the Eiffel lan- 

guage, used as the vehicle for 
this article, is in the public do- 
main. The language evolution is 
under the control of an organiza- 
tion of users and developers of 
Eiffel technology: the Nonprofit 
International Consortium for Eiffel 
(NICE). Membership in NICE is 
open to any interested organiza- 
tion. The address is PO Box 
6884, Stinta Barbara, CA 93160. 

the postcondition). It is also a part of 
the cook’s contract. although perhaps 
an implicit one, to avoid setting the 
restaurant on fire in the process (to 
maintain the invariant). 

When the fire fighter is called for 
help, in contrast, the state of the restau- 
rant is not guaranteed. It may be burn- 
ing or (in the case of a wrong alert) not 
burning. But then the fire fighter’s only 
duty is to return the restaurant to a 
nonburning state. Serving meals to the 
assembled customers is not part of the 
fire fighter’s ,job description. n 
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