
Copyright © 1999 by Klaus Marquardt. Permission is granted for use with PLoP conference series. 1

Patterns for Plug-Ins

Abstract
This pattern collection helps to define, implement and package Plug-Ins specific to a configurable application.
Central patterns are the Plug-In and the Mutual Contract between Plug-In and the application. Organisational
patterns accompanying the separate products complement and support the technical flexibility. In the last section,
issues of creating and sharing objects used on both sides are treated.

Introduction
Software customers demand a high amount of adaptability and extensibility. Who would buy an
Internet browser that can not be extended - to visualise images and movies of newly emerging,
powerful standard format? Who would equip a laboratory with an automation system that can10
not be extended - to communicate with the chemical analysers of the next generation, or the
current ones from the concurrent manufacturer?

The areas for extensible software applications are many. And beyond mere adaptability users
demand comfort. Extensions must fit seamlessly into the existing system, providing full
functionality and exhibiting the most recent look and feel. Browsers that open a document hide
the new-ness of its format; graphical load lists for the new chemical analyser look like described
in its user manual.

The increasing demand for functionality not only leads to large software systems that require a
strict dependency oriented decomposition and management. The users really expect todays
products to support and integrate tomorrows technology - to lengthen the product life time and20
raise return on investment. While this expectation matches fine with promises of object oriented
techniques, building these products and product lines requires more than virtual functions.

In the past, software engineers have tried to rely on existing standards and define missing ones.
The emerging „component based development“ shows that these standards lack completeness.
Most standards on network protocols are fundamental to the importance and success of software
today, more network standards are under construction. But the standards that try more than
connecting, that define an application layer with a domain specific „semantic context“, live in
niche markets and are often considered insufficient.

So what is missing? There are often specifics to be covered. No application domain is
sufficiently covered by the above approaches; the most important reason for this being that no30
domain is really closed. Avoiding the shortcomings of standard - this is what the patterns here
deal with.

The patterns are presented in three sections. The first section, „The Application and its Plug-In“,
defines what a Plug-In is, and focuses on what the application developers and architects have to
care for to define the Plug-In. Section two, „Organisational Issues“, shows Application and Plug-
Ins can be developed together, how the projects must be separated or may interfere. Section
three, „Creation and Factories“, helps with technical details of classes and objects that are used
by both the application and the Plug-Ins.

The patterns usage is illustrated by the fictitious ARGUS example. The security system ARGUS

monitors a building for violation of access rights, temperature limits, and possibly many others.40
All violations are reported to a workstation both visibly and audibly, depending on their priority.
Additionally, a town central OLYMP can connect to a large number of individual security
systems, and observe all violations of all connected buildings.

Klaus Marquardt
c/o Dräger Medizintechnik GmbH, D-23542 Lübeck, Germany

Email: klaus.marquardt@draeger.com

2

Section I: The Application and its Plug-In

Pattern 1: Plug-In

Context

An application that is required to be highly adaptable, or be extensible to support future
functionality or modules.

Problem

How can functionality be added late? How can the functionality be increased after shipping?

Forces

• At shipping time of the application, not all functional components are known or available

• The application must not presume that a particular Plug-In is available10

• Early delivery increases market share and profit

• Kind of additional functionality is well known

• Specifically added functionality can not be foreseen

• Which functionality is dynamically added when, is determined at run time and can hardly
be foreseen

• A technology evolves, the application will be used in unforeseen ways

• Shipping is expensive

• Application is not affected by additional functionality

Solution

 Factor out functionality, and place it in a separate component that is activated at run time. This20

component is called a Plug-In. The application defines functionality that it does not provide
itself, but must be added by Plug-Ins. The application is shipped with a well defined interface for
Plug-Ins.

 A Plug-In consists of executable code that the application loads dynamically at run time. Each
Plug-In complies with the defined interface. The application does neither depend on a Plug-In
internals, nor on the presence of a particular Plug-In.

 To identify functions that can be placed into a Plug-In, look out for open points in the application
requirements. Frequently, a specific kind of extensibility is required, or implied by „…“ phrases.
Multiple subclasses of key abstraction are also candidates, if your analysis shows that extending
the system would add another subclass.30

Consequences

J Functionality can be developed and added after shipping the application

J Application with factored functionality can be shipped earlier than full functional
application

J Occasionally, an application with defined Plug-Ins can be shipped whilst a full functional
application could never be shipped at all

3

J Application is not updated when adding functionality, and is not affected by a Plug-In.

K Each Plug-In must be shipped separately, but can also be sold separately.

L The kind of extensibility must be foreseen, as the interface for Plug-Ins must be defined
in advance

Implementation

 Clearly separate between physical design (execution) and logical design (basic and added
functionality). Physical design is up to the application, that decides when which Plug-In is
activated in which process; for Plug-In internals, often a resource budget is defined as part of the
interface. The application also defines the outline of the logical design, but internals of the
subclass and its helpers are completely up to the Plug-In.10

 Plug-In can be implemented as DLL or run time library, or as active object (e.g. Active-X). The
application decides about the activation time and conditions; in this respect a Plug-In is no
application on its own. Nevertheless a Plug-In may start and use helper applications when useful.

 When the functionality of the Plug-In is central for the user, the application serves as a starter
and integrator for Plug-Ins. It must then be shipped with at least one Plug-In.

 Variants1: Some applications do not make any sense without at least one active Plug-In. Some
applications define more than one Plug-In interface, and expect different kinds of Plug-Ins
simultaneously. Some applications allow only one active Plug-In at a time, others support an
(almost) arbitrary number of different Plug-Ins of the same kind in parallel. Some applications
even allow multiple Plug-In instances of identical type in parallel.20

Example

 The Olymp central can connect to a variety of different observation system. The specific, mostly
proprietary transmission protocols are factored into Plug-Ins. This way the Olymp application is
prepared to connect to a variety of different systems from different vendors. Each Plug-In is
activated according to a schedule (when the corresponding local monitor becomes inactive).

Known Uses

 The OpenCard standard defines the Plug-In interface that the Plug-Ins, Java Code on the
OpenCard that is physically plugged into the system, comply with. Activation of the Plug-In is
implicitly done at Plug-In time.

 The Windows OS family has factored out the screen saver functionality, which must be provided30
by a separate Plug-In. Windows is shipped with a variety of different Plug-Ins; the user can
select one of them to be activated.

 ProductL has separated the analyser handling know-how and code into Plug-Ins. The user selects
the kind and amount of analysers in the laboratory, and a corresponding number of the
appropriate Plug-Ins is activated.

 ProductW has separated the sensor and actor handling know-how and code into Plug-Ins. By
physically attaching a sensor package, the appropriate Plug-In is selected and activated.

 Netscape (like other browsers) factors out viewing functionality to support a variety of text and
graphics formats.

1 Introduction into terminology:
„Plug-In kind“ - different Plug-Ins are of one kind when they conform to the same predefined interface. Analogous
to a base class.
„Plug-In type“ - the Plug-In code denotes the type. Analogous to a derived class.
„Plug-In instance“ - a currently active Plug-In. Analogous to a class instance.

4

Related Patterns

 Plug-In Context: A single Plug-In is often not shippable on its own, but needs a (sometimes
large) context of accompanying files.

 Framework Application: The application is often implemented as Framework Application to
enable a larger amount of reuse, and increase the time in market.

Pattern 2: Framework Application

Context

 An application has factored out some functionality that is now implemented by Plug-Ins. Plug-
Ins implement a specific functionality that requires usage of the application, like subclasses or
specific parameterised instances of common application domain classes.10

Problem

 How can a Plug-In create and use application domain objects?

Forces

• The application knows and defines the domain

• time to market (for application)

• The Plug-In knows which domain objects it needs to employ, subclass, or instance

• The Plug-In must be as independent as possible from the Application, including internal
implementation issues (may include even the operating system)

Solution

 The application offers a framework. This is a black box framework offering no insights in the20

application, but defining opportunities for subclassing and parameterisation. Only part of the
application is a framework. Other parts control loading and activating the Plug-Ins, or deal with
completely unrelated stuff. Each interface for a Plug-In kind corresponds to a set of related „hot
spots“.

Consequences

J Plug-Ins are easy to integrate with the application

J All Plug-Ins conform to the same interface

J Plug-Ins can be reused by other application that offer the same framework, allowing an
option for Product Lines or Product Families

J Plug-Ins do not depend on application implementation - in extreme cases (OS hidden)30
allowing the application to be portable without the Plug-Ins even knowing about that

K Different Plug-Ins can hardly know each other, integration with cross-references requires
special measures

L Development effort of application increases significantly, depending on the size of the
framework part

Implementation

 Reference books and articles on frameworks. (Pree, Johnson)

5

 Parameterisation instead of subclassing: Is especially useful when Plug-In subclasses would have
to use internal application services. Common example is persistence, which would require the
Plug-In to change the database scheme. See section 3. (and reference to Component definition of
Szyperski)

Example

 OLYMP delivers a large number of application objects, that the Plug-Ins for specific local
observation systems use. Some can be parameterised (like Room, Alarm, Sensor), others are
intended for subclassing (like PlugIn, CommunicationChannel).

Known Uses

 ProductL, ProductW10

Related Patterns

 See the factory and object creation patterns below

Pattern 3: Mutual Contract

Context

 (Framework) Application and Plug-In projects are established, Plug-In purpose defined.

Problem

 How does the application define the Plug-In interface?

Forces

• Stay independent of each others internals

• Replace, remove or activate any Plug-In at run time20

• Application uses and addresses the Plug-In

• Plug-In needs access to key classes and services of the application

• The application may need to be portable

Solution

 Publish the interface the Plug-In is expected to fulfill, and the interface offered to it.

 The Plug-In uses not only system services, but application services as well. Also the expected
Plug-In functionality requires a custom interface. Figure 1 shows the major components, and
their dependencies.

 Plug-In Definition is the interface the framework requires from the Plug-In (Required Interface,
UK). The Plug-In is modeled as one or several abstract classes, together with their respective30

abstract factories or factory methods.

6

 Plug-In adds specific knowledge to the
application. It offers a factory or method
that returns classes conforming to the
expected interface. The internal
implementation is hidden, and the visible
class can serve as a Facade (GJHV, 185) to
it. The Plug-In may use services of the
application, and must use the domain
objects the framework provides.

 Framework Interface defines the services10
and domain objects of the framework
(Offered Interface, UK). Their
implementation is hidden from the Plug-In
by abstract factories.

 Implementation provides a process for
execution, implements the framework
services and domain objects, invokes the
Framework Interface component, and
activates the Plug-In by calling the factory
and giving references to the framework20
objects.

 All clients to the Plug-In can only access it through the Plug-In Definition component and
interface, and the Plug-In can only access those instances and services published by the
Framework Interface.

 Are there foundations that the application is build upon, that can seriously be considered stable?
If portability is not an issue, these are candidates to become part of the published Framework
Interface. Class libraries are a perfect start to check.

Consequences

J Plug-In has access to application classes and services

J Clear dependency structure30

J Internals of Application and Plug-In are invisible from the outside

J Plug-Ins can be added and removed at any time

L The application is bound to offered classes and services

Implementation

 Keep track of the physical state of the Plug-In (loaded, active, inactive, unloaded) and make that
become part of the Plug-In Definition. The Plug-In must have the opportunity to react on each
transition. It is also useful for performance tuning (see Advent pattern, KM).

Example

 Olymp offers base classes, and services like error log and alarm handler. It requires that Plug-Ins
implement a subclass of LocalSystem, and overload virtual functions like check() and report().40

Known Uses

 ProductL, ProductW

Plug-In

Fram eworkApplication

Plug-In
Def in ition

Implementation

Framework
Interf ace

 Figure 1: Major packages of a framework using a Plug-In.

7

Pattern 4: Essential Plug-In Functionality

Context

 Application and Plug-In are in place.

Problem

 Which is the user visible commonality of all Plug-Ins (of a kind)?

Forces

• All Plug-In types are different, and require different access

• Plug-Ins are developed independent of each other, by independent parties

• Steering different Plug-In types in the same direction is difficult, expensive, tedious

• Application and user need a common entry point10

Solution

 Define a number of expected functionality, classes, or objects, and make them a mandatory part
of the Mutual Contract. Take whatever means to enforce this mandatory part technically.

 Expected functionality from application side is the loading and activating procedure (see above).

 Expected functionality from user side is a top-level configuration dialog at a defined navigation
place. Depending on the application, a large number of additional dialogs and controls may also
be expected common functionality.

Consequences

J Users can treat different Plug-Ins identical, enabling seamless integration

J Technical entry points are broadened and allow for convenient and easy to understand20
interfaces

K Application must have steering influence on Plug-In development

L A mutual contract can not be sufficient for a common look and feel. Additional style
guides are required

L Only parts of this mandatory contract can be technically enforced

Example

All local observation systems that plug in the OLYMP central, need to provide a dialog with
communication settings.

Known Uses

ProductL, ProductW, screen saver30

Related Patterns

 Loaded Factory: Defines the purpose of specific requested instances.

 Mutual Contract: The expected functionality should become explicit part of the mutual contract.
It is an implicit part of it anyway.

8

Pattern 5: Cooperating Plug-Ins
 Alias: Plug-Ins Span Multiple Layers

Context

 An application has defined Plug-In interfaces. Seamless integration requires specific additions
beyond the Plug-In’s model extension, like specific view and control, and possibly data
exchange.

Problem

How can functional additions span multiple layers?

Forces

• The functional Plug-In interface should be concise and complete10

• Specific data requires specific interpretation and specific view

Solution

 Define a distinct Plug-In interface for each distinct area. Provide a common identifier so that the
application can activate the appropriate counterpart.

 This allows for extension specific data and classes added to the model. This data can only be
added by an extension specific Plug-In, and be viewed by another extension-specific Plug-In.
The application cares for the data exchange and processing in between, and ensures that the
corresponding Plug-In gets in control on the viewing side. Each extension consists of one Plug-
In type of each predefined Plug-In kind.

 Configurable application domain objects need a reference to the extension identifier. The20
application must also ensure that distinct extensions come with distinct identifiers. The extension
must ensure that no version conflicts between different Plug-Ins occur.

 Avoid addressing all extension functionality through one interface - it would look like a swiss
army knife. Separate into consistent domains (and employ further standard file formats, see
Minestrone).

Consequences

J Each Plug-In interface is limited to one technical domain, and can be functionally
closed

J Extension specific data can be passed through all system layers

K An extra level of packaging must be introduced30

L Domain objects must identify to which extension they belong

L Integration between different Plug-In types of different extensions becomes impossible

Example

One of the local observation systems cares for the size of the rooms in which the smoke detectors
are placed, and determines an event priority from this. To support this, the Room class must be
subclassed, and this subclass must be fed and read by appropriate code knowing of this subclass.

Known Uses

ProductL, ProductW, Völter

9

Related Patterns

Minestrone: Defines the extension. Different parts of an extension are packed and shipped
together.

Pattern 6: Plug-In Package
 Alias: Suppengemüse2, Minestrone, Plug-In Component

Context

 Functionality is factored out, Plug-In interfaces are defined. Shipping a Plug-In as a stand alone
extension component requires consideration of installation, localisation, …

Problem

 How to extend a Plug-In to turn it into a shippable component?10

 Something is missing. Shipping requires installation. What about internationalisation? What
about tiny little neat things like icons?

Forces

• Interface stability is critical to product lifetime

• Market demands short delivery cycles

• Custom interfaces require a learning curve

• Product acceptance begins with the installation procedure

Solution

 Define and ship the functional extension as a package consisting of many files of many different
types. The central Plug-In is packed together with related executables, Plug-Ins, resource files,20

and „little helpers“. Application requests resources and „little helpers“ in standard formats.

 To determine which files and file kinds to pack, start by identifying the functions throughout the
life cycle, that the functional extension is expected to fulfil. Then try to find technical interfaces
for these functions. Prefer technical standards of a long (expected) lifetime, and define custom
Plug-In interfaces where necessary.

 Typical aspects of life cycle support include:

• Installation program

• Plug-In (or a number of Cooperating Plug-Ins)

• Help text files (one per language)

• Resource files (one per language)30

• „Little Helpers“: Icons, sounds, movies, …

 „Little helpers“: Whenever features are loosely coupled to the application domain, the
application should avoid addressing them through customised Plug-In interfaces (and thus keep
the custom interfaces minimal), but decide for a standard format to provide the feature. The
Plug-In package must include the required files.

 2 Suppengemüse (English „Vegetables for a soup“), a bundle of celery, carrot, and leek. This German term reflects a
consumers expectation: different things, bundled together for a common purpose.

10

Consequences

J Inherent cohesion of related Plug-Ins is maintained

J User experiences comfort and convenience

J Solution partly relies on existing standards, increasing the interface stability

J Application is open fur future use - the number of offered standard interfaces to future
extension packages can be enhanced.

J Package parts can be developed in parallel, and by a wider range of developers

K The extension component becomes broad instead on complex, still requiring
development effort and logistics

L Additional policy for versioning of the complete shipped package is required10

L Parts of the interfaces are not controlled by the application

Example

When observed buildings are connected to the town central OLYMP, it is helpful when each
audible and visible violation announcement allows for immediate recognition of the affected
building. Thus, a specific sound, delivered in an additional WAV file, and an icon of the particular
building, delivered in an additional ICO file, become part of the driver software for each building.

Known Uses

Like most complex applications, Microsoft Word consists of many different files and file kinds:
Executables, help files, converters, dictionaries, registry entry file, document templates, and
many more. An extension for a specific country also comes as a collection of files, like help file,20
menu file, dictionary file, hyphenation rules file, thesaurus file, and grammar file.

ProductL, ProductW

Related Patterns

Cooperating Plug-Ins: Minestrone is especially useful for them.

11

Section II: Organisational Issues

Pattern 1: Plug-Ins are Projects

Context

An application has defined interfaces for Plug-Ins. The market is demanding highly customised
solutions

Problem

How can the application be adapted to fulfil single customers wishes?

Forces

• Customisation is expensive and costs time

• Code reuse can shorten this time10

Solution

Implement customisation as Plug-In project. The complete application is the reused code, and
the Plug-In is specifically developed for a particular customer, not to serve as a off-the-shelf
product.

 This is a greatest advantage of the Plug-In approach: A high amount of customisation becomes
possible, where off-the-shelf application products can fulfil very specific needs for a reasonable
price.

Consequences

J Off-the-shelf application is highly adaptive

J Customisation is highly cost effective20

L Custom solution can not be reused for similar problems

Known Uses

 Integration of networks and databases in technical domains, with corporative information
systems.

Related Patterns

Yellow Code: can help to find even more options for code reuse

Plug-Ins are Products: more appropriate in other markets

Pattern 2: Plug-Ins are Products

Context

An application has defined interfaces for Plug-Ins. The market is demanding a high amount of30
available extensions.

Problem

How can a large number of Plug-Ins be developed and distributed?

12

Forces

• Developing Plug-Ins is expensive

• Shipping is expensive

• Applications are shipped in different versions

• Most customers demand similar extensions

Solution

Develop the Plug-Ins as sellable products. Identify the products with the highest potential, and
ship the corresponding Plug-In as a separate product for users of the application.

Consequences

J Software can be sold very effectively10

J Market share of the application increases with Plug-In availability

L Stability and completeness of application interfaces is critical

Implementation

Determining the highest market potential varies vastly with the domain. It is different for the
internet browser world (watch out for emerging file formats) than for the scientific laboratory
(build relations to large analyser manufactures, to learn about the installed base and receive
technical drafts of future products).

Known Uses

 Screen saver. Popular also for video games: Flight Simulator, SimCity, Adventures can be
extended by plugging in additional environments („worlds“).20

Pattern 3: Plug-In as Customer

Context

 Framework and Plug-In build a mutual dependent system that only together are useful to the end
user. Specific Plug-Ins are developed for a specific framework, and not usable in other contexts.
Technically, the framework does not rely on a specific client Plug-In, and both sides are
decoupled so that changes do not migrate. But both side’s success is closely coupled.

Problem

 How should the relations between the different development teams be organised?

Forces

 Frameworks must live for long times, and for this be supported by a large number of Plug-Ins.30

 A Plug-In developer needs support to ensure his return on investment.

Solution

 The framework supplier treats the development teams of Specific Plug-Ins as its customers. The
framework delivers to the Plug-In developers, supplies technical and marketing support, and
troubleshooting in a hot line manner.

 The framework recognises that it does not deliver to end users, and tries to advertise and
convince other development teams to start a joint effort.

13

Consequences

J Lifetime of the framework is increased

J Plug-In developer receive serious support decreasing their investment

Known Uses

 Database vendors do parts of this job. Their products are not visible to end users, but their
market share and success depends on the number and quality of applications developed with
their engine. And most of them have managed to be highly visible, so that application developers
can do advertising based on the „good name“ of the underlying database product.

Pattern 4: Template Code

Context10

 Employing a framework or application that is hard to understand. A successful framework needs
lots of users to provide their specific services in the framework context.

Problem

 How do you provide knowledge to your users?

Forces

• Frameworks must live for long times, and for this be supported by a large number of Plug-
Ins.

• A Plug-In developer needs support to shorten his learning curve.

• Framework’s team time spend on support should be minimal.

Solution20

 Provide reuse on learning curve. Give sample code that can partly serve as production code, and
that covers most technical and at least a few basic application areas of the framework.

 This code is usually developed either way while testing the framework.

Consequences

 Users receive a frame for development, which is far more that a framework for the application
domain. Framework’s development time is used twice: both for own testing effort, and for
customer support.

Known Uses

 Very common

Related Patterns30

 Specific Plug-In: Serving developers of Plug-Ins.

 Loaded Factory: The Template Code explains the loading and factoring mechanisms. Especially
useful when factoring deviates from standards or common industry (like COM)

14

Pattern 5: Yellow Code

Context

Application and various Plug-Ins are developed and shipped. The number of new Plug-In
development projects increases, and most of the different Plug-In types have some functionality
in common.

Problem

How can you enable software reuse between isolated projects?

Forces

• Common functionality comes cheaper if code would be reused

• Reusable software would influence code ownership10

• Different Plug-In projects are not coupled, and should not be

Solution

The application provides a collection of useful code from different Plug-Ins. Each Plug-In may
decide to add its code to these „yellow pages“ of code, which would not cause the application to
take the ownership of this code, but to include it in its pool of useful software. This pool is part
of the „development kit“ for Plug-In development, and may be frequently updated. All newly
developed Plug-Ins may use this reservoir.

Consequences

J Another support aspect of the application for new Plug-Ins, increasing the number of
available Plug-Ins - and thus the application’s market success20

J Decoupled projects have a way of gaining a mutual profit

J Code ownership is clear and remains stable

K The application is not extended by classes that do not belong to its „core business“

L Requires a cooperative culture of Plug-In developers

L Application has to spend effort in maintaining and distributing the reuse pool

Example

OLYMP offers some frrequently used classes for WAN communication to a local observation
system.

Known Uses

 ProductL, ProductW30

15

Section III: Creation and Factories
 Identifying the Plug-In, bringing it to life (activation), and creating all the objects that
application and Plug-In exchange or use in common.

Pattern 1: Passive Registration
 Also: Registry of Plug-Ins

Context

Application has defined Plug-In interfaces. Plug-Ins are available. User decides during run time
which Plug-In to activate.

Problem

 How are the Plug-Ins known to the application?10

Forces

• User interaction becomes tedious for standard workflows

• Automatic installation requires development effort

• Startup time of the application and of a Plug-In should be minimal

• Application does not need to know about available Plug-Ins before activating one

• Plug-In registration does not demand information from the application

Solution

The application defines a place where it looks for available Plug-Ins. Each Plug-In installs itself
there.

The simplest solution allows the application to scan a directory for a specific filename extension.20
For more convenient packaging, each Minestrone (Plug-In Package) may create a directory on its
own.

Consequences

J Plug-In installation is very simple, and can be done with standard tools and batches

J User interaction is not required during installation

J Plug-Ins can be installed at any time

J Plug-In installation can be initiated remotely, enabling network computers

J Application startup time does not depend on available Plug-Ins

L Version conflicts may appear, requiring a resolution policy

Known Uses30

 Windows screensaver

Pattern 2: Active Registration
 Alias: Feature Registration

16

Context

Application and Plug-Ins are available. Application decides due to external events which Plug-In
it has to activate. Domain class instances are bound to a particular Plug-In type.

Problem

 How are the Plug-Ins known to the application?

Forces

• Application decides due to external events, which Plug-In must be activated

• Plug-In availability must be known before activation (e.g. one of a set of Cooperating
Plug-Ins)

• Automatic installation requires development effort10

• Startup time of a Plug-In must be minimal

Solution

Plug-Ins register their existence, features and properties at the application during registration.
The application provides interfaces that are available to installation programs.

Consequences

J Activation of a Plug-In requires no user interaction

J Activation time of Plug-Ins can be optimized

J Plug-Ins of correct type are certainly available when required

L Plug-In needs to be packaged with at least an installation program

L Plug-In installation requires the application (or some of its tools) to be active20

Implementation

To minimise the activation time of Plug-Ins, see the Advent pattern (KM) to shift loads to more
appropriate situations.

Example

The OLYMP town central knows in advance which local systems have to be connected when.
This schedule can only be build when the Plug-Ins for the respective local security systems
register themselves.

Known Uses

ProductL, ProductW

Related Patterns30

Passive Registration: shows a much simpler way of registration, that is feasible if the
requirements ever allow for it.

Mutual Contract: The application must include the installation services in the published
interfaces.

Minestrone: Active Registration requires additional files to be shipped together with the Plug-In.

17

Pattern 3: Factories on Both Sides

Context

Plug-In and Application share a Mutual Contract.

Problem

How can the participants be isolated from each others implementation internals?

Forces

• Isolation is a major design goal, e.g. for portability reasons

• Performance at the Plug-In interface is not an issue

• Indirections and firewalls cause development effort

Solution10

 Both the application and the Plug-In access each others classes through factories.

 Place factories for classes that are completely known within framework, on the framework side.
This makes client code less dependent, and helps to hide implementation details (like the
selected database product). Plug-In creates the objects by parameterisation of the Framework
Application classes. This implies that the Plug-In decides about time of instantiation, though the
application may indicate that the Plug-In should do so “now“.

 Place factories for classes that only the Plug-In can know, on the Plug-In side. Framework
Application decides when these are used. Factories on Plug-In side are usually “Pluggable
Factories“ providing objects of a predefined purpose. Often the Plug-In factory is asked only for
objects that the Plug-In previously has defined as “supported“ or “available“.20

Consequences

J Application and Plug-In can define a Mutual Contract free of implementation details

J A high amount of independent development is possible

K Object creation costs slightly more performance

L Both sides spend implementation effort for firewalls

L The performance overhead becomes significant for small, very frequently created
objects

Implementation

Typical example for the factory on Plug-In side is the PlugIn class itself, through which the
application addresses all Plug-Ins uniformly. Also the essential features are created through30
factories.

Known Uses

ProductL, ProductW.

Related Patterns

Parameterized Object Creation: is the natural counterpart for the application side factory.

Loaded Factory: describes details of the factory on Plug-In side.

18

Pattern 4: Parameterized Object Creation

Context

Application and Plug-In in place and active. Plug-In needs specific instances of the predefined
application domain classes. These domain classes are provided by the application via a factory.

Problem

How can the Plug-In easily create specific subclasses of application domain classes?

Forces

• Plug-In specific subclasses of base classes the application factors are difficult to
implement

• Most domain objects can only be created with specific Plug-In knowledge10

Solution

The application defines constructors where all relevant domain knowledge can be passed as
arguments. The Plug-In creates domain objects with construction arguments.

 Example: Alarm. Use this when the semantics are closed, and the Plug-In decides about the
time of creation, i.e. its involvement is essential.

Consequences

J Creating specific instances is very convenient

J Factory mechanisms can be employed where necessary

L Subclassing is not supported

Variant20

 Objects need not be created by the Plug-In. The application can also create the domain objects
based on properties the Plug-In provides. Use this when involvement of the Plug-In is minimal,
and can be satisfied by a simple registration. The Plug-In does not even have to be active then.
Most appropriate when multiple instances of the same Plug-In type can be present
simultaneously. But not necessary - these objects can also be created at installation time.

 Example: Rack and LoadList for analyser.

Known Uses

ProductL, ProductW. Both use the pattern, ProductL also the variant.

Related Patterns

Pattern 5: Subclasses Through Aggregation30

Context

Application and Plug-In in place and active. Plug-In needs specific subclasses of the predefined
application domain classes. These domain classes are provided by the application via a factory.

Problem

How can the Plug-In create specific subclasses?

19

Forces

• Plug-In specific subclasses of base classes the application factors are difficult to
implement

• Plug-In specific subclasses can not use internal application services, like persistence

• Predefined application classes are hardly sufficient for a complete domain model

Solution

 The Framework Application provides attachable classes, that each domain class instance can
aggregate. The Plug-In defines subclasses and implements them in terms of a parameterized
base class with specifically aggregated attachable class instances.

 Variant: Framework Application adds additional members to the domain classes, that have no10
defined semantic meaning. Each Plug-In may use them for individual interpretation.

 Both approaches only work with Cooperating Plug-Ins, so ensure that application visible data is
created, changed, and presented with identical semantic interpretation. Integration of data from
different Plug-Ins is limited to the semantics known to the application.

Consequences

J Subclassing becomes possible without breaking the applications integrity

L Development on Plug-In side is high

L Integrating objects from different Plug-In types becomes hard, depending on the
amount and depth of subclasses

Implementation20

 Resist the temptation to broaden the Framework Application interface so that a Plug-In may
define own derived classes. Considering persistence, such a broad interface would include access
to DDL (“create table“ command). This can cause serious side effects between different Plug-In
types, and takes away all tuning options from the application. Further development and
improvement of the application is extremely difficult with broad interfaces.

 In some respect, this would be trying to get across the limitation that components do not have
persistence (Szyperski). Plug-Ins have commonalities with components here.

Example

A local observation system may want to add the property volume to the domain class Room, to
double check for the created alarm’s priority.30

Known Uses

ProductW

Related Patterns

 Essential Interfaces. Factories on Both Sides

Pattern 6: Loaded Factory

Context

 An application deploys Plug-Ins. These must be added or removed at runtime.

20

Problem

 How can an application load and unload plugged-in components? How can the Plug-In provide
specifically the objects the application needs to employ?

Forces

• The application requires the Specific Plug-In component to provide specified services.

• Implementation of services is entirely up to the added component.

• Standard component activation techniques are not available or insufficient

• Needs to deliver instanced objects to abstract classes. Parameters passed to identify the
instance.

Solution10

 Ask the Specific Plug-In for an instance of a predefined Abstract Factory. Use operating system
or environment facilities to load the Specific Plug-In into memory, ask it for the factory, and
continue by using that factory instance to provide specific instances. Extend the Abstract Factory
definitions to provide both subclass instances, and objects for a particular purpose.

 This solution ensures that the contract is fulfilled by the plugged component with respect to the
class interface, while the implicit extensions to the Mutual Contract (the Essential Interfaces) can
be expressed in terms of a defined purpose for the requested instance.

 Besides DLL or RTL loading (under NT and Solaris respectively), also active objects could be
employed. This requires an additional translation layer on the Framework side, because each
instance requested from the factory matches to a component definition, so that each call to a20
member function must be translated. In these cases it is more efficient to resize the Plug-In
interface, and ask for specific instances directly. The original Plug-In becomes a Plug-In
collection then, which can be packaged in terms of Minestrone.

Consequences

Implementation

 Variants: runtime (completely pluggable) and startup time (previously linked in).

 Runtime variant includes somehow getting the loading signal and a name. This name is used to
identify the (DLL, whatever) and ask it for its factory. Startup variant scans all linked
components during initialisation, and asks them for their factories.30

 Variants are identical afterwards. The framework decides which objects are needed, and requests
them from the loaded factory. The loaded factory may decide whether it creates an instance of a
specialised subclass, or whether a parametrised class instance can do the job.

 Special: the loaded Plug-In (or in larger context, the installation program of the Minestrone) may
announce special Plugged-In objects beyond the instances the framework requires as mandatory.
These are then also delivered by the loaded factory.

Known Uses

 Especially in embedded areas where expensive off-the-shelf mechanisms can not be used,
because of price or environment.

21

Conclusion
What have we gained? - A technique to separate custom parts from applications, that allows as
well for a high amount of customization as for future extensions.

What is still missing? - Depending on the answer, this could be the start of a pattern language for
application framework development. Some things will be adaptable from [BEP], others are
specific here.

Relation Plug-In to highly reusable applications: For very long, applications have been used in
larger context. Development shells employ editor, compiler, and linker, their major value being
to configure which applications to call. The applications are perfectly stand-alone (I like to call
them Reusable Application), and are not Plug-Ins (that can live only in the context of their10
application).

Relation Framework Application to framework: The difference between application and
framework with respect to Plug-Ins is diminishing. A framework defines the abstract classes and
the collaboration structure (Ralph Johnson). The Framework Application does just that, but then
adds the flow of execution, i.e. processes, and tasks. Applications provide major functionality on
their own, where frameworks need Plug-Ins to be of any use. Frameworks come to „life“ when a
semantic Application employs them; Plug-Ins come to life when the application activates them.

Relation Plug-In to Component Based Development: There is a focus on Component Based
Development. Plug-Ins are similar in a lot of respects. They are pluggable, cover arbitrary
functionality, and allow for larger amounts of code reuse than other, purely OO based20
techniques. Other aspects are different. Pluggability is limited to a specific Framework
Application. They are not freely pluggable, but limited to their domain and application. While
this approach is narrower than CBD, the range of applicability is broader. Plug-Ins even appear
in embedded systems, where today’s Components are mostly limited to distributed enterprise
models. Nevertheless, the cross section is visible. When Component Based Development further
succeeds, the mechanisms available for Plug-Ins will become more convenient, and the border
between a Component Based Application and a Plug-In Based Application will be very thin.
Main difference is then in the proprietarity.

Where do we go from here? - One future task is a pattern collection for Product Lines. Some
preconditions are given here, but a Framework Application and a number of Plug-Ins do not30
make a product line. A successful product line implies reusable Framework Application while
keeping the interface to Plug-Ins stable.

Acknowledgements
I would like to thank my current and former colleagues for the successful and exciting work.
These pattern are late results of our shared experience. Special thanks to Jens Coldewey for
introducing patterns to me, to Neil Harrison whose careful shepherding lead the sheep safely
towards the EuroPLoP conference, and to John Vlissides for.

References
GHJV Gamma, Helm, Johnson, Vlissides: Design Patterns, Addison-Wesley 1994

JL John Lakos: Designing Large Scale C++ Applications, Addison-Wesley 199640

KM Klaus Marquardt: Patterns for Software Packaging, Installation, and Activation. In:
Proceedings of EuroPLoP 1998

NW James Noble, Charles Weir: Proceedings of the Memory Preservation Society. In:
Proceedings of EuroPLoP 1998

22

UK Ullrich Köthe: Design Patterns for Independent Building Blocks. In: Proceedings of
EuroPLoP 1998

BEP Kyle Brown, Philip Eskelin, Nat Pryce: Component Design Patterns. Work under
construction in Wiki Wiki Web (http://c2.com/wiki?ComponentDesignPatterns)

