
Data Persistence

CS 340

Persistence Strategies

 There are many strategies a program can use for

persisting its in-memory object model

 Approach #1 – Full in-memory object model with bulk updates

 Approach #2 – Full in-memory object model with incremental

updates

 Approach #3 – Partial in-memory object model with

incremental updates

Full in-memory object model with bulk

updates

 Load full object model from disk into memory

 Application features operate on in-memory object model

 Save full object model to disk at appropriate times

(“Save”, application exit, etc.)

 Crash causes data loss

 Full in-memory model and bulk load/save is not feasible

for large data sets

Full in-memory object model with

incremental updates

 Load full object model from disk into memory

 Application features operate on in-memory object model

 Incremental changes to the in-memory object model are

immediately saved to disk

 Full in-memory model and bulk load is not feasible for

large data sets

Partial in-memory model with incremental

updates

 Full object model exists only on disk (not in memory)

 Application dynamically loads a subset of the object

model from disk as needed to perform an operation.

 Incremental changes to the partial in-memory object

model are immediately saved to disk

 The partial in-memory object model is discarded when

the operation is complete

 Scales to large data sets

 Takes work to fetch the data required for each operation

Persistence Technologies

 Persistence Options

 Serialization

 XML

 Custom file format

 Database

 Cloud storage services (Amazon, Microsoft, Google, …)

 Each of these approaches is appropriate in different contexts

 Database advantages

 Easy to use

 Allows incremental updates

 Allows concurrent data sharing by multiple users and programs

 Relational Databases are the most common

Database Management Systems (DBMS)

 Databases are implemented by software systems called

Database Management Systems (DBMS)

 Commonly used Relational DBMS‟s include MySQL, MS

SQL Server, and Oracle

 DBMS‟s store data in files in a way that scales to large

amounts of data and allows data to be accessed efficiently

Programmatic vs. Interactive Database

Access

DB

Program

DB Driver

Management Console

Programs can access a

database through APIs

such as ADO.NET or JDBC.

End users can access a

database through an

interactive management

application that allows

them to query and modify

the database.

DB API

Embedded vs. Client/Server

DB

Program

DB Driver

DB

Program

DB Driver

DB Server

Network

Local File Access

Local File Access

Some DBMS‟s are Embedded only.

Some are Client/Server only.

Some can work in either mode.

DB API DB API

Relational Databases

 Relational databases use the relational data model you learned about in CS
236

 In the object-oriented data model we have classes. Objects are instances
of classes. Objects have attributes. Relationships between objects are
represented as pointers.

 In the relational data model, data is stored in tables consisting of columns
and rows. Each row in a table represents an object. The columns in a row
store the object‟s attributes.

 Each object has a “key”, which is a unique identifier for that object.
Relationships between objects are represented using keys.

 Taken together, all the table definitions in a database make up the “schema”
for the database.

id name email_address

1 „Ann‟ „ann@cs.byu.edu‟

2 „Bob‟ „bob@cs.byu.edu‟

3 „Chris‟ „chris@cs.byu.edu‟

id title author genre

1 „Decision Points‟ „George W. Bush‟ „NonFiction‟

2 „The Work and the Glory‟ „Gerald Lund‟ „HistoricalFiction‟

3 „Dracula‟ „Bram Stoker‟ „Fiction‟

4 „The Holy Bible‟ „The Lord‟ „NonFiction‟

member_id book_id

1 1

1 2

2 2

2 3

3 3

3 4

member

book

reading

Book Club Schema

Book Club Schema

id name parent_id

1 „Top‟ Null

2 „Must Read‟ 1

3 „Must Read (New)‟ 2

4 „Must Read (Old)‟ 2

5 „Must Read (Really Old)‟ 2

6 „Optional‟ 1

7 „Optional (New)‟ 6

8 „Optional (Old)‟ 6

9 „Optional (Really Old)‟ 6

category

category_id book_id

7 1

3 2

8 3

5 4

category_book

next_member_id next_book_id next_category_id

4 5 10

book_club

SQL – Structured Query Language

 Language for performing relational database operations

 Create tables

 Delete tables

 Insert rows

 Update rows

 Delete rows

 Query for matching rows

 Much more …

SQL Data Types

 BIGINT

 BLOB

 CHAR

 CHAR FOR BIT DATA

 CLOB

 DATE

 DECIMAL

 DOUBLE

 DOUBLE PRECISION

 FLOAT

 INTEGER

 LONG VARCHAR

 LONG VARCHAR FOR BIT DATA

 NUMERIC

 REAL

 SMALLINT

 TIME

 TIMESTAMP

 VARCHAR

 VARCHAR FOR BIT DATA

http://db.apache.org/derby/manuals/reference/sqlj126.html
http://db.apache.org/derby/manuals/reference/sqlj127.html
http://db.apache.org/derby/manuals/reference/sqlj128.html
http://db.apache.org/derby/manuals/reference/sqlj129.html
http://db.apache.org/derby/manuals/reference/sqlj130.html
http://db.apache.org/derby/manuals/reference/sqlj131.html
http://db.apache.org/derby/manuals/reference/sqlj132.html
http://db.apache.org/derby/manuals/reference/sqlj133.html
http://db.apache.org/derby/manuals/reference/sqlj134.html
http://db.apache.org/derby/manuals/reference/sqlj135.html
http://db.apache.org/derby/manuals/reference/sqlj136.html
http://db.apache.org/derby/manuals/reference/sqlj137.html
http://db.apache.org/derby/manuals/reference/sqlj138.html
http://db.apache.org/derby/manuals/reference/sqlj139.html
http://db.apache.org/derby/manuals/reference/sqlj140.html
http://db.apache.org/derby/manuals/reference/sqlj141.html
http://db.apache.org/derby/manuals/reference/sqlj142.html
http://db.apache.org/derby/manuals/reference/sqlj143.html
http://db.apache.org/derby/manuals/reference/sqlj144.html
http://db.apache.org/derby/manuals/reference/sqlj145.html

Creating and Deleting Tables

 CREATE TABLE

 Book Club Example

 NULL

 Primary Keys

 DROP TABLE

 Book Club Example

create-table.txt
drop-table.txt

Modeling Object Relationships

 Connections between objects are represented using

foreign keys

 Foreign Key: A column in table T1 stores primary keys of

objects in table T2

 Book Club Examples

 Reading table stores Member and Book keys

 Category table stores parent Category key

 Category_Book table stores Category and Book keys

create-table.txt

Modeling Object Relationships

 Types of Object Relationships

 One-to-One

 A Person has one Head; A Head belongs to one Person

 Either table contains a foreign key referencing the other table

 One-to-Many

 A Category has many sub Categories; a Category has one parent
Category

 The “Many” table contains a foreign key referencing the “One” table

 Many-to-Many

 A Member has read many Books; A Book has been read by many
Members

 A Category contains many Books; A Book belongs to many Categories

 Create a “junction table” whose rows contain foreign keys of related
objects

Inserting Data into Tables

 INSERT

 Book Club Example

insert.txt

Queries

SELECT Column, Column, …

FROM Table, Table, …

WHERE Condition

Queries

id title author genre

1 „Decision Points‟ „George W. Bush‟ „NonFiction‟

2 „The Work and the Glory‟ „Gerald Lund‟ „HistoricalFiction‟

3 „Dracula‟ „Bram Stoker‟ „Fiction‟

4 „The Holy Bible‟ „The Lord‟ „NonFiction‟

book

SELECT *

FROM book

id title author genre

1 „Decision Points‟ „George W. Bush‟ „NonFiction‟

2 „The Work and the Glory‟ „Gerald Lund‟ „HistoricalFiction‟

3 „Dracula‟ „Bram Stoker‟ „Fiction‟

4 „The Holy Bible‟ „The Lord‟ „NonFiction‟

result

List all books

Queries

id title author genre

1 „Decision Points‟ „George W. Bush‟ „NonFiction‟

2 „The Work and the Glory‟ „Gerald Lund‟ „HistoricalFiction‟

3 „Dracula‟ „Bram Stoker‟ „Fiction‟

4 „The Holy Bible‟ „The Lord‟ „NonFiction‟

book

SELECT author, title

FROM book

WHERE genre = „NonFiction‟

author title

„George W. Bush‟ „Decision Points‟

„The Lord‟ „The Holy Bible‟

result

List the authors and titles of all non-fiction books

Queries

id name parent_id

1 „Top‟ Null

2 „Must Read‟ 1

3 „Must Read (New)‟ 2

4 „Must Read (Old)‟ 2

5 „Must Read (Really Old)‟ 2

6 „Optional‟ 1

7 „Optional (New)‟ 6

8 „Optional (Old)‟ 6

9 „Optional (Really Old)‟ 6

category

SELECT id, name, parent_id

FROM category

WHERE parent_id = 1

List the sub-categories of category „Top‟

id name parent_id

2 „Must Read‟ 1

6 „Optional‟ 1

result

Queries

SELECT member.name, book.title

FROM member, reading, book

WHERE member.id = reading.member_id AND

 book.id = reading.book_id

List the books read by each member

JOIN

member.

id

member.

name

member.

email_address

reading.

member_id

reading.

book_id

book.

id

book.

title

book.

author

book.

genre

1 „Ann‟ „ann@cs.byu.edu‟ 1 1 1 „Decision

Points‟

„George W.

Bush‟

„NonFiction‟

1 „Ann‟ „ann@cs.byu.edu‟ 1 1 2 „The Work

and the

Glory‟

„Gerald Lund‟ „HistoricalFicti

on‟

1 „Ann‟ „ann@cs.byu.edu‟ 1 1 3 „Dracula‟ „Bram Stoker‟ „Fiction‟

1 „Ann‟ „ann@cs.byu.edu‟ 1 1 4 „The Holy

Bible‟

„The Lord‟ „NonFiction‟

… … … … … … … … …

member X reading X book (3 x 6 x 4 = 72 rows)

name title

„Ann‟ „Decision Points‟

„Ann‟ „The Work and the Glory‟

„Bob‟ „The Work and the Glory‟

„Bob‟ „Dracula‟

„Chris‟ „Dracula‟

„Chris‟ „The Holy Bible‟

result

Queries

SELECT member.name, book.title

FROM member, reading, book

WHERE member.id = reading.member_id AND

 book.id = reading.book_id

List the books read by each member

Updates

UPDATE Table

SET Column = Value, Column = Value, …

WHERE Condition

UPDATE member

SET name = „Chris Jones‟,

 email_address = „chris@gmail.com‟

WHERE id = 3

Change a member‟s information

UPDATE member

SET email_address = „‟

Set all member email addresses to empty

Deletes

DELETE FROM Table

WHERE Condition

DELETE FROM member

WHERE id = 3

Delete a member

DELETE FROM book

Delete all books

DELETE FROM reading

WHERE member_id = 3

Delete all readings for a member

 Database transactions have the ACID properties

 A = Atomic

 Transactions are “all or nothing”. Either all of the operations in a

transaction are performed, or none of them are. No partial execution.

 C = Consistent

 When multiple transactions execute concurrently, the database is kept

in a consistent state.

 Concurrent transactions T1 and T2 are “serialized”. The final effect will

be either T1 followed by T2 or T2 followed by T1.

 I = Isolated

 Concurrent transactions are isolated from each other. Changes made

by a transaction are not visible to other transactions until the

transaction commits.

 D = Durable

 The changes made by a committed transaction are permanent.

Database Transactions

Programmatic Database Access

 Open a database connection

 Start a transaction

 Execute queries and/or updates

 Commit or Rollback the transaction

 Close the database connection

Open a Database Connection / Start a

Transaction

import java.sql.*;

String dbName = "db" + File.separator + "bookclub";

String connectionURL = "jdbc:derby:" + dbName + ";create=false";

Connection connection = null;

try {

 // Open a database connection

 connection = DriverManager.getConnection(connectionURL);

 // Start a transaction

 connection.setAutoCommit(false);

}

catch (SQLException e) {

 // ERROR

}

Execute a Query
PreparedStatement stmt = null;

ResultSet rs = null;

try {

 String sql = "select id, title, author, genre from book";

 stmt = connection.prepareStatement(sql);

 rs = stmt.executeQuery();

 while (rs.next()) {

 int id = rs.getInt(1);

 String title = rs.getString(2);

 String author = rs.getString(3);

 Genre genre = convertGenre(rs.getString(4));

 }

}

catch (SQLException e) {

 // ERROR

}

finally {

 if (rs != null) rs.close();

 if (stmt != null) stmt.close();

}

Execute an Update
PreparedStatement stmt = null;

try {

 String sql = "update book " +

 "set title = ?, author = ?, genre = ? " +

 "where id = ?";

 stmt = connection.prepareStatement(sql);

 stmt.setString(1, book.getTitle());

 stmt.setString(2, book.getAuthor());

 stmt.setString(3, book.getGenre());

 stmt.setInt(4, book.getID());

 if (stmt.executeUpdate() == 1)

 // OK

 else

 // ERROR

}

catch (SQLException e) {

 // ERROR

}

finally {

 if (stmt != null) stmt.close();

}

Commit or Rollback the Transaction / Close

the database connection

try {

 if (ALL DATABASE OPERATIONS SUCCEEDED) {

 connection.commit();

 }

 else {

 connection.rollback();

 }

}

catch (SQLException e) {

 // ERROR

}

finally {

 connection.close();

}

connection = null;

 Problem: Programs often need to use different data

stores over time (or even at the same time). Achieving

this is complicated by the fact that the APIs for different

data stores vary.

Data Access Object Pattern

 Solution: Isolate all code that interacts directly with the data

store in “Data Access Object” (DAO) classes. All data store-

specific code is encapsulated in DAOs. Any part of the

program that needs to access the data store does so through

the DAOs, thus isolating them from the details of the data

store API. This structure makes it possible to support a new

data store by modifying only the DAOs.

Data Access Object Pattern

 Create “Data Transfer Object” (DTO) classes that can be

used to shuttle data back and forth between the DAOs and

other parts of the program.

 Classes in the core model have corresponding DTO classes

 DTOs are “relational” rather than “object-oriented”

 They use keys to link objects rather than pointers

 Pointers have no meaning in a data store, so keys are used instead

 Book Club Example

Data Access Object Pattern

dto.txt
dto.txt

 Create “Data Access Object” classes that provide the

CRUD operations required by the program

 CRUD = Create, Read, Update, Delete

 Book Club Example

Data Access Object Pattern

dao.txt

 TransactionManager

 Sequence Diagram

Book Club Example

tx-manager.txt
book-club-sequence.pdf

 set DERBY_HOME=C:\cs340\inventory-tracker\lib\derby-10.5

 set PATH=%DERBY_HOME%\bin;%PATH%

 ij

 connect ’jdbc:derby:db\inventory;create=false’;

 Run SQL commands

 SELECT * from product;

 run ’createdb.sql’;

 ...

 quit;

Using Derby’s ij console

