
Data Persistence

CS 340

Persistence Strategies

 There are many strategies a program can use for

persisting its in-memory object model

 Approach #1 – Full in-memory object model with bulk updates

 Approach #2 – Full in-memory object model with incremental

updates

 Approach #3 – Partial in-memory object model with

incremental updates

Full in-memory object model with bulk

updates

 Load full object model from disk into memory

 Application features operate on in-memory object model

 Save full object model to disk at appropriate times

(“Save”, application exit, etc.)

 Crash causes data loss

 Full in-memory model and bulk load/save is not feasible

for large data sets

Full in-memory object model with

incremental updates

 Load full object model from disk into memory

 Application features operate on in-memory object model

 Incremental changes to the in-memory object model are

immediately saved to disk

 Full in-memory model and bulk load is not feasible for

large data sets

Partial in-memory model with incremental

updates

 Full object model exists only on disk (not in memory)

 Application dynamically loads a subset of the object

model from disk as needed to perform an operation.

 Incremental changes to the partial in-memory object

model are immediately saved to disk

 The partial in-memory object model is discarded when

the operation is complete

 Scales to large data sets

 Takes work to fetch the data required for each operation

Persistence Technologies

 Persistence Options

 Serialization

 XML

 Custom file format

 Database

 Cloud storage services (Amazon, Microsoft, Google, …)

 Each of these approaches is appropriate in different contexts

 Database advantages

 Easy to use

 Allows incremental updates

 Allows concurrent data sharing by multiple users and programs

 Relational Databases are the most common

Database Management Systems (DBMS)

 Databases are implemented by software systems called

Database Management Systems (DBMS)

 Commonly used Relational DBMS’s include MySQL, MS

SQL Server, and Oracle

 DBMS’s store data in files in a way that scales to large

amounts of data and allows data to be accessed efficiently

Programmatic vs. Interactive Database

Access

DB

Program

DB Driver

Management Console

Programs can access a

database through APIs

such as ADO.NET or JDBC.

End users can access a

database through an

interactive management

application that allows

them to query and modify

the database.

DB API

Embedded vs. Client/Server

DB

Program

DB Driver

DB

Program

DB Driver

DB Server

Network

Local File Access

Local File Access

Some DBMS’s are Embedded only.

Some are Client/Server only.

Some can work in either mode.

DB API DB API

Relational Databases

 Relational databases use the relational data model you learned about in CS
236

 In the object-oriented data model we have classes. Objects are instances
of classes. Objects have attributes. Relationships between objects are
represented as pointers.

 In the relational data model, data is stored in tables consisting of columns
and rows. Each row in a table represents an object. The columns in a row
store the object’s attributes.

 Each object has a “key”, which is a unique identifier for that object.
Relationships between objects are represented using keys.

 Taken together, all the table definitions in a database make up the “schema”
for the database.

id name email_address

1 ‘Ann’ ‘ann@cs.byu.edu’

2 ‘Bob’ ‘bob@cs.byu.edu’

3 ‘Chris’ ‘chris@cs.byu.edu’

id title author genre

1 ‘Decision Points’ ‘George W. Bush’ ‘NonFiction’

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’

member_id book_id

1 1

1 2

2 2

2 3

3 3

3 4

member

book

reading

Book Club Schema

Book Club Schema

id name parent_id

1 ‘Top’ Null

2 ‘Must Read’ 1

3 ‘Must Read (New)’ 2

4 ‘Must Read (Old)’ 2

5 ‘Must Read (Really Old)’ 2

6 ‘Optional’ 1

7 ‘Optional (New)’ 6

8 ‘Optional (Old)’ 6

9 ‘Optional (Really Old)’ 6

category

category_id book_id

7 1

3 2

8 3

5 4

category_book

SQL – Structured Query Language

 Language for performing relational database operations

 Create tables

 Delete tables

 Insert rows

 Update rows

 Delete rows

 Query for matching rows

 Much more …

SQL Data Types

 Each column in an SQL table declares the type that column
may contain.

 Character strings

 CHARACTER(n) or CHAR(n) — fixed-width n-character
string, padded with spaces as needed

 CHARACTER VARYING(n) or VARCHAR(n) — variable-width
string with a maximum size of n characters

 NATIONAL CHARACTER(n) or NCHAR(n) — fixed width
string supporting an international character set

 NATIONAL CHARACTER VARYING(n) or NVARCHAR(n) —
variable-width NCHAR string

 Bit strings

 BIT(n) — an array of n bits

 BIT VARYING(n) — an array of up to n bits

SQL Data Types

 Numbers

 INTEGER and SMALLINT

 FLOAT, REAL and DOUBLE PRECISION

 NUMERIC(precision, scale) or DECIMAL(precision, scale)

 Large objects

 BLOB

 CLOB

SQL Data Types

 Date and time

 DATE — for date values (e.g., 2011-05-03)

 TIME — for time values (e.g., 15:51:36). The granularity of
the time value is usually a tick (100 nanoseconds).

 TIME WITH TIME ZONE or TIMETZ — the same
as TIME, but including details about the time zone in
question.

 TIMESTAMP — This is a DATE and a TIME put together
in one variable (e.g., 2011-05-03 15:51:36).

 TIMESTAMP WITH TIME ZONE or TIMESTAMPTZ —
the same as TIMESTAMP, but including details about the
time zone in question.

 SQLite stores all data using the following data types

 INTEGER

 REAL

 TEXT

 BLOB

 SQLite supports the standard SQL data types by mapping

them onto the INTEGER, REAL, TEXT, and BLOB types

SQLite Data Types

Creating and Deleting Tables

 CREATE TABLE

 Book Club Example

 NULL

 Primary Keys

 DROP TABLE

 Book Club Example

create-table.txt
drop-table.txt

Modeling Object Relationships

 Connections between objects are represented using

foreign keys

 Foreign Key: A column in table T1 stores primary keys of

objects in table T2

 Book Club Examples

 Reading table stores Member and Book keys

 Category table stores parent Category key

 Category_Book table stores Category and Book keys

create-table.txt

Modeling Object Relationships

 Types of Object Relationships

 One-to-One

 A Person has one Head; A Head belongs to one Person

 Either table contains a foreign key referencing the other table

 One-to-Many

 A Category has many sub Categories; a Category has one parent
Category

 The “Many” table contains a foreign key referencing the “One” table

 Many-to-Many

 A Member has read many Books; A Book has been read by many
Members

 A Category contains many Books; A Book belongs to many Categories

 Create a “junction table” whose rows contain foreign keys of related
objects

Inserting Data into Tables

 INSERT

 Book Club Example

insert.txt

Queries

SELECT Column, Column, …

FROM Table, Table, …

WHERE Condition

Queries

id title author genre

1 ‘Decision Points’ ‘George W. Bush’ ‘NonFiction’

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’

book

SELECT *

FROM book

id title author genre

1 ‘Decision Points’ ‘George W. Bush’ ‘NonFiction’

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’

result

List all books

Queries

id title author genre

1 ‘Decision Points’ ‘George W. Bush’ ‘NonFiction’

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’

book

SELECT author, title

FROM book

WHERE genre = ‘NonFiction’

author title

‘George W. Bush’ ‘Decision Points’

‘The Lord’ ‘The Holy Bible’

result

List the authors and titles of all non-fiction books

Queries

id name parent_id

1 ‘Top’ Null

2 ‘Must Read’ 1

3 ‘Must Read (New)’ 2

4 ‘Must Read (Old)’ 2

5 ‘Must Read (Really Old)’ 2

6 ‘Optional’ 1

7 ‘Optional (New)’ 6

8 ‘Optional (Old)’ 6

9 ‘Optional (Really Old)’ 6

category

SELECT id, name, parent_id

FROM category

WHERE parent_id = 1

List the sub-categories of category ‘Top’

id name parent_id

2 ‘Must Read’ 1

6 ‘Optional’ 1

result

Queries

SELECT member.name, book.title

FROM member, reading, book

WHERE member.id = reading.member_id AND

 book.id = reading.book_id

List the books read by each member

JOIN

member.

id

member.

name

member.

email_address

reading.

member_id

reading.

book_id

book.

id

book.

title

book.

author

book.

genre

1 ‘Ann’ ‘ann@cs.byu.edu’ 1 1 1 ‘Decision

Points’

‘George W.

Bush’

‘NonFiction’

1 ‘Ann’ ‘ann@cs.byu.edu’ 1 1 2 ‘The Work

and the

Glory’

‘Gerald Lund’ ‘HistoricalFicti

on’

1 ‘Ann’ ‘ann@cs.byu.edu’ 1 1 3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

1 ‘Ann’ ‘ann@cs.byu.edu’ 1 1 4 ‘The Holy

Bible’

‘The Lord’ ‘NonFiction’

… … … … … … … … …

member X reading X book (3 x 6 x 4 = 72 rows)

name title

‘Ann’ ‘Decision Points’

‘Ann’ ‘The Work and the Glory’

‘Bob’ ‘The Work and the Glory’

‘Bob’ ‘Dracula’

‘Chris’ ‘Dracula’

‘Chris’ ‘The Holy Bible’

result

Queries

SELECT member.name, book.title

FROM member, reading, book

WHERE member.id = reading.member_id AND

 book.id = reading.book_id

List the books read by each member

Updates

UPDATE Table

SET Column = Value, Column = Value, …

WHERE Condition

UPDATE member

SET name = ‘Chris Jones’,

 email_address = ‘chris@gmail.com’

WHERE id = 3

Change a member’s information

UPDATE member

SET email_address = ‘’

Set all member email addresses to empty

Deletes

DELETE FROM Table

WHERE Condition

DELETE FROM member

WHERE id = 3

Delete a member

DELETE FROM book

Delete all books

DELETE FROM reading

WHERE member_id = 3

Delete all readings for a member

 Database transactions have the ACID properties

 A = Atomic

 Transactions are “all or nothing”. Either all of the operations in a

transaction are performed, or none of them are. No partial execution.

 C = Consistent

 When multiple transactions execute concurrently, the database is kept

in a consistent state.

 Concurrent transactions T1 and T2 are “serialized”. The final effect will

be either T1 followed by T2 or T2 followed by T1.

 I = Isolated

 Concurrent transactions are isolated from each other. Changes made

by a transaction are not visible to other transactions until the

transaction commits.

 D = Durable

 The changes made by a committed transaction are permanent.

Database Transactions

 By default, each SQL statement is executed in a

transaction by itself

 Transactions are most useful when they consist of multiple

SQL statements, since you want to make sure that either

all of them or none of them succeed

 For a multi-statement transaction,

 BEGIN TRANSACTION;

 SQL statement 1;

 SQL statement 2;

 …

 COMMIT TRANSACTION; or ROLLBACK TRANSACTION;

Database Transactions

Programmatic Database Access -

 accessing a database from Java

 Load database driver

 Open a database connection

 Start a transaction

 Execute queries and/or updates

 Commit or Rollback the transaction

 Close the database connection

 Retrieving auto-increment ids

Load Database Driver

import java.sql.*;

try {

 final String driver = "org.sqlite.JDBC";

 Class.forName(driver);

}

catch(ClassNotFoundException e) {

 // ERROR! Could not load database driver

}

Open a Database Connection / Start a

Transaction

import java.sql.*;

String dbName = "db" + File.separator + "bookclub.sqlite";

String connectionURL = "jdbc:sqlite:" + dbName;

Connection connection = null;

try {

 // Open a database connection

 connection = DriverManager.getConnection(connectionURL);

 // Start a transaction

 connection.setAutoCommit(false);

}

catch (SQLException e) {

 // ERROR

}

Execute a Query
PreparedStatement stmt = null;

ResultSet rs = null;

try {

 String sql = "select id, title, author, genre from book";

 stmt = connection.prepareStatement(sql);

 rs = stmt.executeQuery();

 while (rs.next()) {

 int id = rs.getInt(1);

 String title = rs.getString(2);

 String author = rs.getString(3);

 Genre genre = convertGenre(rs.getString(4));

 }

}

catch (SQLException e) {

 // ERROR

}

finally {

 if (rs != null) rs.close();

 if (stmt != null) stmt.close();

}

Execute an Update
PreparedStatement stmt = null;

try {

 String sql = "update book " +

 "set title = ?, author = ?, genre = ? " +

 "where id = ?";

 stmt = connection.prepareStatement(sql);

 stmt.setString(1, book.getTitle());

 stmt.setString(2, book.getAuthor());

 stmt.setString(3, book.getGenre());

 stmt.setInt(4, book.getID());

 if (stmt.executeUpdate() == 1)

 // OK

 else

 // ERROR

}

catch (SQLException e) {

 // ERROR

}

finally {

 if (stmt != null) stmt.close();

}

Commit or Rollback the Transaction / Close

the database connection

try {

 if (ALL DATABASE OPERATIONS SUCCEEDED) {

 connection.commit();

 }

 else {

 connection.rollback();

 }

}

catch (SQLException e) {

 // ERROR

}

finally {

 connection.close();

}

connection = null;

Retrieving Auto-increment IDs
PreparedStatement stmt = null;

Statement keyStmt = null;

ResultSet keyRS = null;

try {

 String sql = "insert into book (title, author, genre) values (?, ?, ?)";

 stmt = connection.prepareStatement(sql);

 stmt.setString(1, book.getTitle());

 stmt.setString(2, book.getAuthor());

 stmt.setString(3, book.getGenre());

 if (stmt.executeUpdate() == 1) {

 keyStmt = connection.createStatement();

 keyRS = keyStmt.executeQuery("select last_insert_rowid()");

 keyRS.next();

 int id = keyRS.getInt(1); // ID of the new book

 book.setID(id);

 }

 else

 // ERROR

}

catch (SQLException e) {

 // ERROR

}

finally {

 if (stmt != null) stmt.close();

 if (keyRS != null) keyRS.close();

 if (keyStmt != null) keyStmt.close();

}

 Problem: Programs often need to use different data

stores over time (or even at the same time). Achieving

this is complicated by the fact that the APIs for different

data stores vary.

Data Access Object Pattern

 Solution: Isolate all code that interacts directly with the data

store in “Data Access Object” (DAO) classes. All data store-

specific code is encapsulated in DAOs. Any part of the

program that needs to access the data store does so through

the DAOs, thus isolating them from the details of the data

store API. This structure makes it possible to support a new

data store by modifying only the DAOs.

Data Access Object Pattern

 Create “Data Transfer Object” (DTO) classes that can be

used to shuttle data back and forth between the DAOs and

other parts of the program.

 Classes in the core model have corresponding DTO classes

 DTOs are “relational” rather than “object-oriented”

 They use keys to link objects rather than pointers

 Pointers have no meaning in a data store, so keys are used instead

 Book Club Example

Data Access Object Pattern

dto.txt
dto.txt

 Create “Data Access Object” classes that provide the

CRUD operations required by the program

 CRUD = Create, Read, Update, Delete

 Book Club Example

Data Access Object Pattern

dao.txt

 TransactionManager

 Sequence Diagram

Book Club Example

tx-manager.txt
book-club-sequence.pdf

Setting Up SQLite in Eclipse

 Use SQLite – already installed on the linux machines

 Download one of the following two SQLite JDBC drivers

 sqlitejdbc-v056.jar

 sqlite-jdbc-3.7.2.jar

 Store it wherever you like

http://students.cs.byu.edu/~cs340ta/fall2012/woodfield/projects/phase1/sqlitejdbc-v056.jar
http://students.cs.byu.edu/~cs340ta/fall2012/woodfield/projects/phase1/sqlitejdbc-v056.jar
http://students.cs.byu.edu/~cs340ta/fall2012/woodfield/projects/phase1/sqlitejdbc-v056.jar
http://students.cs.byu.edu/~cs240ta/fall2012/powerpoints/code/database/sqlite-jdbc-3.7.2.jar
http://students.cs.byu.edu/~cs240ta/fall2012/powerpoints/code/database/sqlite-jdbc-3.7.2.jar
http://students.cs.byu.edu/~cs240ta/fall2012/powerpoints/code/database/sqlite-jdbc-3.7.2.jar
http://students.cs.byu.edu/~cs240ta/fall2012/powerpoints/code/database/sqlite-jdbc-3.7.2.jar
http://students.cs.byu.edu/~cs240ta/fall2012/powerpoints/code/database/sqlite-jdbc-3.7.2.jar

At Least Two Methods to Get it Working

 Both basically put the jar you just downloaded in the

build path for your project.

 Technique 1:Right click on your project icon in the

Package Explorer. In the menu select Build Path and then

Add External Archives. Use the folder explorer that appears

to find the jar file you downloaded and select “open” and

it will be made part of your program’s build path.

At Least Two Methods to Get it Working

 Technique 2:

 Select Run at the top of the page.

 Select Run Configurations… about 5 lines down.

 Select the Classpath tab in the row of tabs underneath the

name of your main routine.

 In the Classpath window select User Entries

 Select Add External Jars… from the right column

 Now navigate to the folder where you stored your sqlite jdbc

jar file

 Select the jar file

 Hit the Open button

 Then select Apply button

Installing SQLite3 on Linux

 Linux

 Download the source file from (usually the second file listed)

http://www.sqlite.org/download.html

 tar –xzvf the downloaded file

 cd to the new folder

 ./configure

 make

 make install

http://www.sqlite.org/download.html

Installing SQLite3 on a Mac

 On a recent OS you don’t have to, it is already there

Installing SQLite3 on Windows

 Download the first two zip files from the section labeled

Precompiled Binaries for Windows.

 Unzip them and place the three resulting files in

C:\WINDOWS\system32 (or any directory on you PATH.

 Alternative: I created a new directory called SQLite in

C:\Program Files (x86) and placed the three files in that

location. I then extended the PATH variable to search that

location

http://sqlite.org/download.html

Adding the SQLite Manager to Firefox

 You can manage an SQLite database using the command line

and text-based SQLite commands, but, it is easier to the

SQLite Manager extension you can get for Firefox.

 First, start Firefox

 Then go to

 https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

 and hit the green “Add to Firefox” button and install

 the extension.

 After it is installed you can click on the “SQLite Manager”

under the Tools tab at the very top.

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

51

Object/RDBMS

 How do we map the following Class Model to an RDBMS

InterestBearingAccount

rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount

checkFee_ double

Owner

name_ : String
taxId_ : String

Account

id_ : String
balance_ : double

owner_

1 *

52

Storing the Objects as Blobs

void save() throws SQLException, Exception {

 PreparedStatement pstatement = null;

 try {

 pstatement = connection_.prepareStatement("insert into accounts(id, data) values (?, ?)");

 for(int i=0; i<accounts_.length; i++) {

 pstatement.setString(1,accounts_[i].getId());

 try {

 File file = File.createTempFile("tmp","dat");

 ObjectOutputStream ostream = new ObjectOutputStream(new FileOutputStream(file));

 ostream.writeObject(accounts_[i]);

 ostream.close();

 FileInputStream istream = new FileInputStream(file);

 pstatement.setBinaryStream(2, istream, (int)file.length());

 //pstatement.setObject(2,accounts_[i]);

 pstatement.execute();

 pstatement.clearParameters();

 }

 }

 finally { if (pstatement != null) pstatement.close(); }

 }

53

Restoring Objects from Blobs

void restore() throws SQLException, Exception {

 Statement statement = null;

 ResultSet rs = null;

 try {

 statement = connection_.createStatement();

 rs = statement.executeQuery("select id, data from accounts";);

 Vector accounts = new Vector();

 while (rs.next()) {

 String accountNo = rs.getString(1);

 ObjectInputStream istream = new ObjectInputStream(rs.getBinaryStream(2));

 Account account = (Account) istream.readObject();

 //Account account = (Account) rs.getObject(2);

 accounts.add(account);

 accounts_ = new Account[accounts.size()]; accounts.toArray(accounts_);

 }

 finally {

 if (rs != null) rs.close(); if (statement != null) statement.close();

 }

}

54

Using Blobs

 Pros
 Good encapsulation of object properties

 Cons
 Example still allows for accidental object duplication

 Slows database performance
 can segment object into multiple tables and make use of lazy

instantiation

 Serialization brittle in the face of software changes/extended
time
 better use as a cache

 possible use of XML or other stable marshalling forms

55

Horizontal Partitioning

 Each concrete class is mapped to a table

InterestBearingAccount

rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount

checkFee_ double

Owner

name_ : String
taxId_ : String

Account

id_ : String
balance_ : double

owner_

1 *

OwnerTable

name taxId

InterestBearingAccountTable

id balance ownerId rate termDays

CheckingAccountTable

id balance ownerId checkFee

56

Vertical Partitioning

 Each class is mapped to a table

InterestBearingAccount

rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount

checkFee_ double

Owner

name_ : String
taxId_ : String

Account

id_ : String
balance_ : double

owner_

1 *

AccountTable

id balance ownerId

OwnerTable

name taxId

InterestBearingAccountTable

id rate termDays

CheckingAccount

id checkFee

57

Unification

 Each sub-class is mapped to the same table

InterestBearingAccount

rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount

checkFee_ double

Owner

name_ : String
taxId_ : String

Account

id_ : String
balance_ : double

owner_

1 *

AccountTable

id acctType balance ownerId rate termDays checkFee

OwnerTable

name taxId

58

RDBMS Mapping

 Horizontal Partitioning

 entire object within one table

 only one table required to activate
object

 no unnecessary fields in the table

 must search over multiple tables
for common properties

 Vertical Partitioning

 object spread across different
tables

 must join several tables to activate
object

 Vertical Partitioning (cont.)

 no unnecessary fields in each table

 only need to search over parent
tables for common properties

 Unification

 entire object within one table

 only one table required to activate
object

 unnecessary fields in the table

 all sub-types will be located in a
search of the common table

