
Refactoring (continued)
Source:

"Refactoring: Improving the Design of Existing Code", Martin Fowler

Effective Refactoring

• Knowing what refactorings are available

• Knowing when to apply them

Refactoring Catalog

• Example: Introduce Parameter Object

Knowing When to Refactor

“If it stinks, change it.”
Grandma Beck, discussing child-rearing philosophy

Bad Smells in Code
(Signs that you need to refactor)

• Duplicated code
• Long method
• Large class
• Long parameter list
• Divergent change
• Shotgun surgery
• Feature envy
• Data clumps
• Primitive obsession
• Switch statements
• Parallel inheritance hierarchies

• Lazy class
• Speculative generality
• Temporary field
• Message chains
• Middle man
• Inappropriate intimacy
• Alternative classes with different

interfaces
• Incomplete library class
• Data class
• Refused bequest
• Comments

Duplicated Code

• The same code structure is duplicated in multiple places
– Identical sections of code
– Similar sections of code (e.g., methods with similar structures)

• Hard to maintain, serious design problem

• Same Class => Extract Method
• Sibling Classes => Extract Method, Pull Up Method
• Similar Code In Sibling Classes => Form Template Method
• Unrelated Classes => Extract Class, all classes invoke the new class
• Unrelated Classes => Extract Method in one class, make other classes

call its method

Temporary Field

• A class has one or more fields (i.e., variables) that are not used all the time
• Trying to understand why and when these fields aren't set is confusing

• Example: Some instances have a particular attribute, some don't
– E.g., Employee class with hourlyRate field that is used only for some

employees
• Missing subclass. Use Extract Subclass to push conditional attributes

into appropriate subclasses (e.g., HourlyEmployee)

– E.g., Within a class, rather than passing values between methods through
parameter lists, values are temporarily stored in object variables. These
variables have meaningful values only when a particular method is
running (undesirable)

• Replace Method with Method Object

Long Method
• Long methods are hard to understand and more prone to bugs
• Find parts of the method that naturally go together, and Extract

Method
• Problem: How do the new sub-methods access the parameters and

locals of the original method?
• Store the original method’s parameters and locals in instance variables

so all sub-methods can access them?
– No. This would cause the “Temporary Field” problem (fields that

are not used all of the time)
• Parameters & locals of original method could be passed as parameters

into sub-methods
– Often works, but sometimes leads to long parameter lists on sub-

methods
– Could Introduce Parameter Object to shorten parameter lists

Long Method (cont.)
• If the long method is really long, or if the parameter lists on extracted

sub-methods are too long, you can Replace Method with Method
Object
– Put the original method and all of its extracted sub-methods on a

new class
– Parameters & locals from the original method become instance

variables on the new class, making them available to the extracted
methods without passing parameters

– Instantiate method object when you need to execute the method,
then throw it away

Large Class
• Signs that a class is doing too much and needs further decomposition

– Remove duplication using Extract Method

– If there's still too much code, find groups of related methods and
Extract Class or Extract Subclass

– Doesn't use all of its instance variables all of the time
• Find groups of instance variables that are only used some of

the time, and Extract Subclass or Extract Class

– Replace Method with Method Object

Long Parameter List
• Long parameter lists are hard to understand

• OO programming tends to make parameter lists shorter
– Methods can get the data they need from the host class, or by

calling methods on object parameters

• Refactorings for reducing the number of parameters
– If the method can access a passed-in value in some other way,

don't pass it in (Replace Parameter with Method)
– If several parameters are related, Introduce Parameter Object to

reduce the number of parameters
– If callers extract multiple values from an object so they can be

passed to a method, it might be easier to just pass in the whole
object (Preserve Whole Object)

• Unless you don't want to couple the two classes

Divergent Change

• Divergent types of changes require modifications to the same class
– Class C must be modified when:

• We change to a different data persistence technology
• We change to a different UI implementation
• We change to a different networking protocol

• Indicates the class is not cohesive (performs multiple unrelated
responsibilities)

• Aspects of a system that are unrelated and will evolve independently
should be implemented in different classes (“Separation of Concerns”)

• Identify different areas of responsibility, and Extract Class to move
each different responsibility to a new class

Shotgun Surgery
• Ideally,

– Every design decision or policy is implemented at only one place in the
code

– Changing a design decision or policy requires modifying only one class
(or a small number of classes)

• Example: We decide to move from MS SQL Server to Oracle database
• Example: We change our policy for handling database exceptions

• Shotgun Surgery - Making a particular kind of change requires making lots of
little changes to many different classes

• Indicates a particular responsibility is spread throughout the system, and may
need to be centralized in a single class

• Create one class to perform the responsibilities related to the change
– Use Move Method and Move Field to move functionality to the new class

• Use Aspect-Oriented Programming (AOP)

Feature Envy
• A method on one class makes heavy use of the features on another class

– Good OO design should package data together with the processes that use
the data

• This is a sign that the method is on the wrong class
– Move Method can fix that

• If only part of the method is "envious", use Extract Method to isolate the
envious code, and use Move Method to move it to the other class

• What if the method uses data from several classes?
– Put the method on the class that it's most intimate with
– Use Extract Method to isolate the sections of code that interact heavily

with other classes, and use Move Method to move the new methods where
they belong

Data Clumps

• If multiple data items appear together in lots of places, it's likely that a
class is missing

• Create a new class that encapsulates the data clump
• Consolidate behavior that's related to the data clump on the new class

– Move Method
• Replace all occurrences of the data clump with instances of the new

class
– E.g., simplify parameter lists using Introduce Parameter Object

Primitive Obsession

• Some data items seem so simple that we use primitive data types to
represent them
– String name; String phoneNumber; int payGrade;

• Simple values like this tend to get more complicated over time
– You need logic for parsing them, formatting them, changing them

in controlled ways, etc.
– Because the values are primitives, this logic is placed on other

classes
– This often leads to code duplication and feature envy

• Use Replace Data Value with Object to provide a proper home for this
code

Switch Statements

• Switch statements are a form of duplication
– Each switch hard-codes the list of cases

• Adding a new case requires changing all the switches
• Good OO design replaces switches on type codes with polymorphic

method calls
– Superclass defines a common interface containing dynamically-

bound methods for all behaviors that vary between subclasses
– Most code is written in terms of references to the superclass, and

dynamically-bound method calls replace switch statements
– New subclasses can be added without modifying existing code

• We prefer to not touch code that already works

Switch Statements

• Use Extract Method to isolate switches on type codes
• Use Move Method to move new methods containing switches to the

class containing the type code
• Use Replace Conditional with Polymorphism to get rid of switches

– Set up inheritance hierarchy, and move the code from each switch
case to the appropriate subclass

Parallel Inheritance Hierarchies
• You have two or more isomorphic inheritance hierarchies
• Whenever you add a class to one hierarchy, you also have to add

corresponding classes to the other hierarchies

• Example: You might have inheritance hierarchies for
– Domain objects
– Data access objects
– GUI editors

• Every time you add a new domain class, you also have to create a new
data access class and a new editor class

• Results in duplication and shotgun surgery

Parallel Inheritance Hierarchies
• Solution? Collapse the parallel hierarchies into one hierarchy

• Example: One class represents the domain object, data access object, and GUI
editor
– A new concept can be added by creating only one class
– But, we now have domain stuff, data access stuff, and GUI stuff combined on

a single class
– Is this really an improvement? How does it affect cohesion and layering?

• Often parallel hierarchies allow for better separation of concerns, and should be
used (i.e., lesser of two evils)

• Sometimes it's better to collapse the hierarchies into one
• Code generation tools can help solve this problem. You still have parallel

hierarchies, but only one must be maintained manually
– E.g., Write tools that automatically generate the code for the data access and

editor classes for a domain class

Speculative Generality

• "I think we need the ability to do this kind of thing someday, so let's build in
support for it now"

• Speculating on future needs is a tricky business, so building a lot of
infrastructure for features you may never need is dubious

• Signs of speculative generality:
– Unused classes, methods, parameters
– Complicated inheritance hierarchies that serve no current purpose
– Levels of indirection that serve no current purpose

• Remove speculative generality by applying relevant refactorings
– Remove Parameter, Inline Class, Collapse Hierarchy, Remove Middle

Man, etc.

Message Chains

• obj.getThat().getTheOther().getYetAnother().FinallyDoSomething()

• The client is coupled to the structure of the navigation
– If the intermediate object relationships change, so must the client

• Exposing delegates to clients is poor encapsulation

• Shorten the chain as much as possible
• Use Hide Delegate to hide any remaining delegates

– obj.FinallyDoSomething()

Middle Man
• There are two options for reusing code from another class:

– Inheritance: Inherit from the other class, thus acquiring its functionality
– Composition: Create an instance of the other class and delegate method

calls to it. The delegating class acts as a "middle man"

• Inheritance is easier because any changes made to the superclass are
automatically inherited by the subclass

• Composition allows control over which of the other class' features are exposed
by the client class, but requires work to write the delegating methods

• If a middle man does a lot of simple delegation to another class, consider the
following refactorings
– Remove Middle Man: provide accessor for delegate so that clients can call

it directly (could be harmful to encapsulation)
– Replace Delegation with Inheritance to avoid the work necessary to write

the delegating methods (but all features of the superclass will be exposed)

Inappropriate Intimacy

• Classes know too much about each other

• "Classes should follow strict, puritan rules"

• Hide implementation details behind a minimal public interface

• "Fragile Base Class" problem
– Subclasses depend on internal details of a superclass. Changes to

the superclass break the subclasses
– Internal details should be hidden even from subclasses (private is

better than protected)
– Replace Inheritance with Delegation

Alternative Classes with Different
Interfaces

• Two classes have methods that do similar things, but they use different
naming conventions
– Delete vs. Remove
– Initialize vs. Setup

• People create similar code to handle similar situations, but don't realize
the other code exists (i.e., duplication)

• Use Rename Method, Add Parameter, Remove Parameter, etc. to make
the two sets of methods consistent

• If the classes can be modified to share code, use Extract Class, Extract
Method, etc. to remove duplication

Incomplete Library Class
• A library class lacks some needed functionality, but we can't refactor the class

because we didn't write it, don't have the code, etc.

• Introduce Local Extension
– Make a subclass of the library class that has the additional functionality
– If the library class can't be subclassed (i.e., it's "final"), or you don't

control creation of the objects, you'll have to use a wrapper instead of a
subclass

• If your language supports it, write an “extension method” to extend the library
class without subclassing or wrapping it (C# and Objective-C support this)

• Introduce Foreign Method
– Create a method on the client class with an instance of the library class as

the first argument
• private static Date nextDay(Date arg) { … }

– Works if only a few methods need to be added

Data Class

• A class containing only fields and possibly getters/setters for those fields
– a.k.a. "structure" or "dumb data holder"

• Data classes are often manipulated in too much detail by other classes
– Feature envy is common when data classes are used

• Use Encapsulate Field to encapsulate public fields
• Use Encapsulate Collection to encapsulate collection fields
• Use Remove Setting Method to protect read-only fields
• Look at what other classes are doing with the data class, and use Move Method

to reduce feature envy
• If you can't move entire methods, use Extract Method first to isolate the

envious code, and then move it to the data class using Move Method

Lazy Class
• Effective OO design often leads to lots of classes

– But, each class costs money to understand and maintain
• A good design has enough classes to fully decompose the system into cohesive

units, but no more
– Too few classes is bad. So is too many.

• Lazy Class: A class that isn't doing enough to justify it's existence
– Prior functionality has been moved to other classes (Move Field, Move

Method, etc.)
– You had plans for the class that never materialized

• Get rid of lazy classes
– Use Inline Class to move its functionality to another class

• Fold TelephoneNumber class into Employee class?
– Use Collapse Hierarchy to move its functionality to its superclass

• Collapse PartTimeStudent into Student superclass?

Refused Bequest
• A subclass wants to inherit only part of its superclass's functionality
• In order to disable unwanted functionality, the sublass overrides unwanted

methods to throw UnsupportedOperationException or just "do nothing"
• The subclass doesn't fully support the superclass's interface, and so isn't really

a subtype (i.e., subclass objects can't be substituted in place of the superclass)

• Solution 1
– Use Replace Inheritance with Composition to allow reuse without

establishing a subtyping relationship
• Solution 2

– Create a new sibling class and use Push Down Method and Push Down
Field to push all unwanted functionality into the sibling

Comments
• Comments are good, but sometimes they're used as an excuse for

writing bad code

• Before commenting some code, ask if there is a way to write it more
clearly so it doesn't need comments

• If you feel the need to comment a block of code, use Extract Method to
move the code into its own method

• Pick a good name so it's clear what the method does (use Rename
Method until you get it right)

• If a comment makes a statement about the program's state at a
particular point, use Introduce Assertion to replace the comment with
an assertion

	Refactoring (continued)
	Effective Refactoring
	Refactoring Catalog
	Knowing When to Refactor
	Bad Smells in Code�(Signs that you need to refactor)
	Duplicated Code
	Temporary Field
	Long Method
	Long Method (cont.)
	Large Class
	Long Parameter List
	Divergent Change
	Shotgun Surgery
	Feature Envy
	Data Clumps
	Primitive Obsession
	Switch Statements
	Switch Statements
	Parallel Inheritance Hierarchies
	Parallel Inheritance Hierarchies
	Speculative Generality
	Message Chains
	Middle Man
	Inappropriate Intimacy
	Alternative Classes with Different Interfaces
	Incomplete Library Class
	Data Class
	Lazy Class
	Refused Bequest
	Comments

