
Refactoring (continued)
Source: 

"Refactoring: Improving the Design of Existing Code", Martin Fowler



Effective Refactoring

• Knowing what refactorings are available

• Knowing when to apply them



Refactoring Catalog

• Example: Introduce Parameter Object



Knowing When to Refactor

“If it stinks, change it.”
Grandma Beck, discussing child-rearing philosophy



Bad Smells in Code
(Signs that you need to refactor)

• Duplicated code
• Long method
• Large class
• Long parameter list
• Divergent change
• Shotgun surgery
• Feature envy
• Data clumps
• Primitive obsession
• Switch statements
• Parallel inheritance hierarchies

• Lazy class
• Speculative generality
• Temporary field
• Message chains
• Middle man
• Inappropriate intimacy
• Alternative classes with different 

interfaces
• Incomplete library class
• Data class
• Refused bequest
• Comments



Duplicated Code

• The same code structure is duplicated in multiple places
– Identical sections of code
– Similar sections of code (e.g., methods with similar structures)

• Hard to maintain, serious design problem

• Same Class => Extract Method
• Sibling Classes => Extract Method, Pull Up Method
• Similar Code In Sibling Classes => Form Template Method
• Unrelated Classes => Extract Class, all classes invoke the new class
• Unrelated Classes => Extract Method in one class, make other classes 

call its method



Temporary Field

• A class has one or more fields (i.e., variables) that are not used all the time
• Trying to understand why and when these fields aren't set is confusing

• Example: Some instances have a particular attribute, some don't
– E.g., Employee class with hourlyRate field that is used only for some 

employees
• Missing subclass.  Use Extract Subclass to push conditional attributes 

into appropriate subclasses (e.g., HourlyEmployee)

– E.g., Within a class, rather than passing values between methods through 
parameter lists, values are temporarily stored in object variables.  These 
variables have meaningful values only when a particular method is 
running (undesirable)

• Replace Method with Method Object



Long Method
• Long methods are hard to understand and more prone to bugs
• Find parts of the method that naturally go together, and Extract 

Method
• Problem: How do the new sub-methods access the parameters and 

locals of the original method?
• Store the original method’s parameters and locals in instance variables 

so all sub-methods can access them?
– No.  This would cause the “Temporary Field” problem (fields that 

are not used all of the time)
• Parameters & locals of original method could be passed as parameters 

into sub-methods
– Often works, but sometimes leads to long parameter lists on sub-

methods
– Could Introduce Parameter Object to shorten parameter lists



Long Method (cont.)
• If the long method is really long, or if the parameter lists on extracted 

sub-methods are too long, you can Replace Method with Method 
Object
– Put the original method and all of its extracted sub-methods on a 

new class
– Parameters & locals from the original method become instance 

variables on the new class, making them available to the extracted 
methods without passing parameters

– Instantiate method object when you need to execute the method, 
then throw it away



Large Class
• Signs that a class is doing too much and needs further decomposition

– Remove duplication using Extract Method

– If there's still too much code, find groups of related methods  and 
Extract Class or Extract Subclass

– Doesn't use all of its instance variables all of the time
• Find groups of instance variables that are only used some of 

the time, and Extract Subclass or Extract Class

– Replace Method with Method Object 



Long Parameter List
• Long parameter lists are hard to understand

• OO programming tends to make parameter lists shorter
– Methods can get the data they need from the host class, or by 

calling methods on object parameters

• Refactorings for reducing the number of parameters
– If the method can access a passed-in value in some other way, 

don't pass it in (Replace Parameter with Method)
– If several parameters are related, Introduce Parameter Object to 

reduce the number of parameters
– If callers extract multiple values from an object so they can be 

passed to a method, it might be easier to just pass in the whole 
object (Preserve Whole Object)

• Unless you don't want to couple the two classes 



Divergent Change

• Divergent types of changes require modifications to the same class
– Class C must be modified when:

• We change to a different data persistence technology
• We change to a different UI implementation
• We change to a different networking protocol

• Indicates the class is not cohesive (performs multiple unrelated 
responsibilities)

• Aspects of a system that are unrelated and will evolve independently 
should be implemented in different classes (“Separation of Concerns”)

• Identify different areas of responsibility, and Extract Class to move 
each different responsibility to a new class



Shotgun Surgery
• Ideally,

– Every design decision or policy is implemented at only one place in the 
code

– Changing a design decision or policy requires modifying only one class 
(or a small number of classes)

• Example: We decide to move from MS SQL Server to Oracle database
• Example: We change our policy for handling database exceptions

• Shotgun Surgery - Making a particular kind of change requires making lots of 
little changes to many different classes

• Indicates a particular responsibility is spread throughout the system, and may 
need to be centralized in a single class

• Create one class to perform the responsibilities related to the change
– Use Move Method and Move Field to move functionality to the new class

• Use Aspect-Oriented Programming (AOP)



Feature Envy
• A method on one class makes heavy use of the features on another class

– Good OO design should package data together with the processes that use 
the data

• This is a sign that the method is on the wrong class
– Move Method can fix that

• If only part of the method is "envious", use Extract Method to isolate the 
envious code, and use Move Method to move it to the other class

• What if the method uses data from several classes?
– Put the method on the class that it's most intimate with
– Use Extract Method to isolate the sections of code that interact heavily 

with other classes, and use Move Method to move the new methods where 
they belong



Data Clumps

• If multiple data items appear together in lots of places, it's likely that a 
class is missing

• Create a new class that encapsulates the data clump
• Consolidate behavior that's related to the data clump on the new class

– Move Method
• Replace all occurrences of the data clump with instances of the new 

class
– E.g., simplify parameter lists using Introduce Parameter Object



Primitive Obsession

• Some data items seem so simple that we use primitive data types to 
represent them
– String name;  String phoneNumber;  int payGrade;

• Simple values like this tend to get more complicated over time
– You need logic for parsing them, formatting them, changing them 

in controlled ways, etc.
– Because the values are primitives, this logic is placed on other 

classes
– This often leads to code duplication and feature envy

• Use Replace Data Value with Object to provide a proper home for this 
code



Switch Statements

• Switch statements are a form of duplication
– Each switch hard-codes the list of cases

• Adding a new case requires changing all the switches
• Good OO design replaces switches on type codes with polymorphic 

method calls
– Superclass defines a common interface containing dynamically-

bound methods for all behaviors that vary between subclasses
– Most code is written in terms of references to the superclass, and 

dynamically-bound method calls replace switch statements
– New subclasses can be added without modifying existing code

• We prefer to not touch code that already works



Switch Statements

• Use Extract Method to isolate switches on type codes
• Use Move Method to move new methods containing switches to the 

class containing the type code
• Use Replace Conditional with Polymorphism to get rid of switches

– Set up inheritance hierarchy, and move the code from each switch 
case to the appropriate subclass



Parallel Inheritance Hierarchies
• You have two or more isomorphic inheritance hierarchies
• Whenever you add a class to one hierarchy, you also have to add 

corresponding classes to the other hierarchies

• Example: You might have inheritance hierarchies for
– Domain objects
– Data access objects
– GUI editors

• Every time you add a new domain class, you also have to create a new 
data access class and a new editor class

• Results in duplication and shotgun surgery



Parallel Inheritance Hierarchies
• Solution?  Collapse the parallel hierarchies into one hierarchy

• Example: One class represents the domain object, data access object, and GUI 
editor
– A new concept can be added by creating only one class
– But, we now have domain stuff, data access stuff, and GUI stuff combined on 

a single class
– Is this really an improvement?  How does it affect cohesion and layering?

• Often parallel hierarchies allow for better separation of concerns, and should be 
used (i.e., lesser of two evils)

• Sometimes it's better to collapse the hierarchies into one
• Code generation tools can help solve this problem.  You still have parallel 

hierarchies, but only one must be maintained manually
– E.g., Write tools that automatically generate the code for the data access and 

editor classes for a domain class



Speculative Generality

• "I think we need the ability to do this kind of thing someday, so let's build in 
support for it now"

• Speculating on future needs is a tricky business, so building a lot of 
infrastructure for features you may never need is dubious

• Signs of speculative generality:
– Unused classes, methods, parameters
– Complicated inheritance hierarchies that serve no current purpose
– Levels of indirection that serve no current purpose

• Remove speculative generality by applying relevant refactorings
– Remove Parameter, Inline Class, Collapse Hierarchy,  Remove Middle 

Man, etc.



Message Chains

• obj.getThat().getTheOther().getYetAnother().FinallyDoSomething()

• The client is coupled to the structure of the navigation
– If the intermediate object relationships change, so must the client

• Exposing delegates to clients is poor encapsulation

• Shorten the chain as much as possible
• Use Hide Delegate to hide any remaining delegates

– obj.FinallyDoSomething()



Middle Man
• There are two options for reusing code from another class:

– Inheritance: Inherit from the other class, thus acquiring its functionality
– Composition: Create an instance of the other class and delegate method 

calls to it.  The delegating class acts as a "middle man"

• Inheritance is easier because any changes made to the superclass are 
automatically inherited by the subclass

• Composition allows control over which of the other class' features are exposed 
by the client class, but requires work to write the delegating methods

• If a middle man does a lot of simple delegation to another class, consider the 
following refactorings
– Remove Middle Man: provide accessor for delegate so that clients can call 

it directly (could be harmful to encapsulation)
– Replace Delegation with Inheritance to avoid the work necessary to write 

the delegating methods (but all features of the superclass will be exposed)



Inappropriate Intimacy

• Classes know too much about each other

• "Classes should follow strict, puritan rules"

• Hide implementation details behind a minimal public interface

• "Fragile Base Class" problem
– Subclasses depend on internal details of a superclass.  Changes to 

the superclass break the subclasses
– Internal details should be hidden even from subclasses (private is 

better than protected)
– Replace Inheritance with Delegation



Alternative Classes with Different 
Interfaces

• Two classes have methods that do similar things, but they use different 
naming conventions
– Delete vs. Remove
– Initialize vs. Setup

• People create similar code to handle similar situations, but don't realize 
the other code exists (i.e., duplication)

• Use Rename Method, Add Parameter, Remove Parameter, etc. to make 
the two sets of methods consistent

• If the classes can be modified to share code, use Extract Class, Extract 
Method, etc. to remove duplication



Incomplete Library Class
• A library class lacks some needed functionality, but we can't refactor the class 

because we didn't write it, don't have the code, etc.

• Introduce Local Extension
– Make a subclass of the library class that has the additional functionality
– If the library class can't be subclassed (i.e., it's "final"), or you don't 

control creation of the objects, you'll have to use a wrapper instead of a 
subclass

• If your language supports it, write an “extension method” to extend the library 
class without subclassing or wrapping it (C# and Objective-C support this)

• Introduce Foreign Method
– Create a method on the client class with an instance of the library class as 

the first argument
• private static Date nextDay(Date arg) { … }

– Works if only a few methods need to be added



Data Class

• A class containing only fields and possibly getters/setters for those fields
– a.k.a. "structure" or "dumb data holder"

• Data classes are often manipulated in too much detail by other classes
– Feature envy is common when data classes are used

• Use Encapsulate Field to encapsulate public fields
• Use Encapsulate Collection to encapsulate collection fields
• Use Remove Setting Method to protect read-only fields
• Look at what other classes are doing with the data class, and use Move Method 

to reduce feature envy
• If you can't move entire methods, use Extract Method first to isolate the 

envious code, and then move it to the data class using Move Method



Lazy Class
• Effective OO design often leads to lots of classes

– But, each class costs money to understand and maintain
• A good design has enough classes to fully decompose the system into cohesive 

units, but no more
– Too few classes is bad.  So is too many.

• Lazy Class: A class that isn't doing enough to justify it's existence
– Prior functionality has been moved to other classes (Move Field, Move 

Method, etc.)
– You had plans for the class that never materialized

• Get rid of lazy classes
– Use Inline Class to move its functionality to another class

• Fold TelephoneNumber class into Employee class?
– Use Collapse Hierarchy to move its functionality to its superclass

• Collapse PartTimeStudent into Student superclass?



Refused Bequest
• A subclass wants to inherit only part of its superclass's functionality
• In order to disable unwanted functionality, the sublass overrides unwanted 

methods to throw UnsupportedOperationException or just "do nothing"
• The subclass doesn't fully support the superclass's interface, and so isn't really 

a subtype (i.e., subclass objects can't be substituted in place of the superclass)

• Solution 1
– Use Replace Inheritance with Composition to allow reuse without 

establishing a subtyping relationship
• Solution 2

– Create a new sibling class and use Push Down Method and Push Down 
Field to push all unwanted functionality into the sibling



Comments
• Comments are good, but sometimes they're used as an excuse for 

writing bad code

• Before commenting some code, ask if there is a way to write it more 
clearly so it doesn't need comments

• If you feel the need to comment a block of code, use Extract Method to 
move the code into its own method

• Pick a good name so it's clear what the method does (use Rename 
Method until you get it right)

• If a comment makes a statement about the program's state at a 
particular point, use Introduce Assertion to replace the comment with 
an assertion
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