
Refactoring:
Improving the Design

of Existing Code

Martin Fowler

© Martin Fowler, 1997

fowler@acm.org
www.martinfowler.com

www.thoughtworks.com

Definitions of Refactoring
» Loose Usage

– Reorganize a program
» As a noun

– a change made to the internal structure of some
software to make it easier to understand and
cheaper to modify, without changing the observable
behavior of that software

» As a verb
– the activity of restructuring software by applying a

series of refactorings without changing the
observable behavior of that software.

The Two Hats

Adding Function

» Add new capabilities to the
system

» Add new tests
» Get the test working

Refactoring

Does not add any new
features
Does not add tests (but may
change some)
Restructure the code to
remove redundancy

Swap frequently between the hats, but
only wear one at a time

Why Refactor
» To improve the software design

– combats “bit rot”
– makes the program easier to change

» To make the software easier to understand
– write for people, not the compiler
– understand unfamiliar code

» To help find bugs
– refactor while debugging to clarify the code

» To program faster
– refactoring leads to good design
– good design lets you program faster

When should you
refactor?

» To add new functionality
– refactor existing code until you understand it
– refactor the design to make it easy to add

» To find bugs
– refactor to understand the code

» For code reviews
– immediate effect of code review
– allows for higher level suggestions

Don’t set aside time for refactoring, include it in
your normal activities

Three strikes and you
refactor

» The first time you do something, you just
do it. The second time you do something
similar, you wince at the duplication, but
you do the duplication thing anyway. The
third time you do something similar, you
refactor.

When should you NOT
refactor?

» When the system should be redesigned
from scratch

» When you're close to a release deadline

Refactoring and Performance

» Refactoring leads to lots of small
methods, and therefore more indirection

» Doesn't all this indirection slow the
program down?

» Yes, but only temporarily

» A well- factored program is easier to
optimize

Refactoring and Performance

The best way to optimize performance
is to first write a well factored
program, then optimize it.

The best way to optimize performance
is to first write a well factored
program, then optimize it.

Most of a program’s time is taken in a small
part of the code
Profile a running program to find these “hot
spots”

You won’t be able to find them by eye
Optimize the hot spots, and measure the
improvement

McConnell Steve, Code Complete: A Practical Handbook of Software
Construction,

Microsoft Press, 1993

Problems with Refactoring
» We don’t know what they all are yet
» Database Migration

– Insulate persistent database structure from
your objects

» Published Interfaces
– Publish only when you need to
– Don’t publish within a development team

» Without working tests
– Don’t bother

Design Decisions
» Planned design

– Consider current needs and possible future
needs

– Design to minimize change with future needs
– Patch code if unforeseen need appears

» Evolutionary design
– Consider current needs and possible future

needs
– Trade off cost of current flexibility versus cost of

later refactoring
– Refactor as changes appear

martinfowler.com/articles/designDead.html

Design Decisions

» One benefit of objects is that they make
software easier to change.

» Refactoring allows you to improve the
design after the code is written

» Up front design is still important, but not
so critical

	Refactoring: Improving the Design of Existing Code
	Definitions of Refactoring
	The Two Hats
	Why Refactor
	When should you refactor?
	Three strikes and you refactor
	When should you NOT refactor?
	Refactoring and Performance
	Refactoring and Performance
	Problems with Refactoring
	Design Decisions
	Design Decisions

