
Review – CS 340 Midterm – Winter 2017 – Dr. Rodham
 UML Class Diagrams

o Classes (name, attributes, operations)

o Associations between classes

 Association names

 Role names

 Multiplicity constraints

 Whole/Part associations that use Aggregation or Composition

o Generalization/Specialization

o Notes

 Design Principles

o Study “DesignPrinciplesReview” slides on the web site

 Decomposition, Abstraction, Avoid Primitive Obsession, Naming, Cohesion /

Single Responsibility Principle, Isolated Change Principle, Orthogonality,

Minimize Dependencies, Law of Demeter, Separate Interface and

Implementation, Information hiding, Algorithm & Data Structure Selection,

Duplication Elimination

o Program to abstractions (interfaces), not concretions (classes)

o Error reporting (methods that can fail should report errors using exceptions or result

objects, not just silently fail)

o Effective encapsulation of data within a class

 Study Phone Book example in “DataEncapsulation.txt” on the web site

 Protect data from direct manipulation by code outside the class

 Provide methods that clients of the class need to do their job (add, update,

delete, iterate, query, etc.)

 Create internal indexes to optimize method performance

 Enforce data integrity, reject invalid operations

 Provide “Can Do?” methods that clients can use to check pre-conditions, and

the user interface can use to enable/disable UI components

 Design Patterns

o Singleton

o Command

o Proxy

o Façade

o Observer

 Design by Contract

o Method pre and post conditions

 Who is responsible for guaranteeing pre and post conditions?

o Class invariants

o What happens if a method’s pre-conditions are violated?

o What does it mean if pre-conditions are met, but post-conditions are not?

o What should a method do if pre-conditions are met, but post-conditions cannot be?

 Software Architecture

o Definition

o Layers

o Dependency Inversion (program to interfaces, and the caller defines the interface

through which the method call is made)

o Model-View-Controller / Model-View-Presenter

 Be able to explain/diagram in detail how MVC and MVP work

 Be able to explain the difference between MVC and MVP

 Principles of Quality Assurance & Software Testing

o Understand the ideas presented in the “IntroToTesting” slides on the web site

o Validation & Verification (what do these words mean in the QA context?)

 Black Box Testing

o Equivalence Partitioning. What is it? Be able to apply EP to design a set of test cases for

a module.

o Boundary Value Analysis. What is it? Be able to apply BVA to design a set of test cases

for a module.

o Other types of black box testing: Comparison testing, Performance testing, Stress

testing, etc. found in “BlackBoxTesting” slides on the web site

 White Box Testing

o Line, Branch, and Complete Condition coverage. Know what they are, how they are

different from each other.

o Loop Testing

o Relational Condition Testing

o Be able to apply these techniques to a piece of code to design a set of test cases for it

 Testing Strategies

o Unit testing

 Test-driven Development

 What kinds of things can stubs/mocks do in a unit test scenario?

o Integration testing

o System Testing

 Alpha & Beta testing

o Regression testing. What is it? Why is it necessary? How do you design a regression

test suite?

