
Review – CS 340 Midterm – Winter 2017 – Dr. Rodham
 UML Class Diagrams

o Classes (name, attributes, operations)

o Associations between classes

 Association names

 Role names

 Multiplicity constraints

 Whole/Part associations that use Aggregation or Composition

o Generalization/Specialization

o Notes

 Design Principles

o Study “DesignPrinciplesReview” slides on the web site

 Decomposition, Abstraction, Avoid Primitive Obsession, Naming, Cohesion /

Single Responsibility Principle, Isolated Change Principle, Orthogonality,

Minimize Dependencies, Law of Demeter, Separate Interface and

Implementation, Information hiding, Algorithm & Data Structure Selection,

Duplication Elimination

o Program to abstractions (interfaces), not concretions (classes)

o Error reporting (methods that can fail should report errors using exceptions or result

objects, not just silently fail)

o Effective encapsulation of data within a class

 Study Phone Book example in “DataEncapsulation.txt” on the web site

 Protect data from direct manipulation by code outside the class

 Provide methods that clients of the class need to do their job (add, update,

delete, iterate, query, etc.)

 Create internal indexes to optimize method performance

 Enforce data integrity, reject invalid operations

 Provide “Can Do?” methods that clients can use to check pre-conditions, and

the user interface can use to enable/disable UI components

 Design Patterns

o Singleton

o Command

o Proxy

o Façade

o Observer

 Design by Contract

o Method pre and post conditions

 Who is responsible for guaranteeing pre and post conditions?

o Class invariants

o What happens if a method’s pre-conditions are violated?

o What does it mean if pre-conditions are met, but post-conditions are not?

o What should a method do if pre-conditions are met, but post-conditions cannot be?

 Software Architecture

o Definition

o Layers

o Dependency Inversion (program to interfaces, and the caller defines the interface

through which the method call is made)

o Model-View-Controller / Model-View-Presenter

 Be able to explain/diagram in detail how MVC and MVP work

 Be able to explain the difference between MVC and MVP

 Principles of Quality Assurance & Software Testing

o Understand the ideas presented in the “IntroToTesting” slides on the web site

o Validation & Verification (what do these words mean in the QA context?)

 Black Box Testing

o Equivalence Partitioning. What is it? Be able to apply EP to design a set of test cases for

a module.

o Boundary Value Analysis. What is it? Be able to apply BVA to design a set of test cases

for a module.

o Other types of black box testing: Comparison testing, Performance testing, Stress

testing, etc. found in “BlackBoxTesting” slides on the web site

 White Box Testing

o Line, Branch, and Complete Condition coverage. Know what they are, how they are

different from each other.

o Loop Testing

o Relational Condition Testing

o Be able to apply these techniques to a piece of code to design a set of test cases for it

 Testing Strategies

o Unit testing

 Test-driven Development

 What kinds of things can stubs/mocks do in a unit test scenario?

o Integration testing

o System Testing

 Alpha & Beta testing

o Regression testing. What is it? Why is it necessary? How do you design a regression

test suite?

