
Testing Strategies
Sources:

Code Complete, 2nd Ed., Steve McConnell
Software Engineering, 5th Ed., Roger Pressman

Testing Computer Software, 2nd Ed., Cem Kaner, et. Al.

Overall Testing Strategy

System Engineering

Requirements

Design

Construction Unit Testing

Integration Testing

System Testing (Software)

System Testing (Final)

• System Engineering
– The software you're building may be only one part of a much larger

system containing many hardware and software components
– System Engineering deals with engineering the entire system, not just the

software components, and goes beyond the scope of Software Engineering

Unit Testing

• Testing of individual software "units" (i.e., classes, routines)
• White box testing
• Usually done by the engineer who wrote the unit

Unit Testing: Test-Driven Development

• The traditional approach is to write unit test cases after the code is written

• Test-Driven Development is a relatively new approach that encourages writing
unit test cases before the code is written
– Writing test cases first forces you to think about the requirements and

design before writing the code, which leads to a better design

– Since your test cases will fail at first, they help you know when the code is
done (i.e., when the tests work, you're done)

– Writing test cases before the code doesn't take any more effort than
writing them after the code

– Writing test cases first will help you detect and remove bugs sooner

Unit Testing: Using stubs and drivers to
isolate the class under unit test

Driver

Stub
Stub Stub

Class to
Test

Test
cases Results

Unit Testing: What do stubs do?
• Do nothing
• Validate the method inputs
• Validate method call sequence (including parameter values)
• Send a message to a log
• Return a hard-coded answer regardless of the input
• Select an answer from a pool of hard-coded answers

– Cycle through the pool or randomly select one
• Randomly generate an answer
• Prompt the user for the answer
• Simple implementation of the module that is slower, less accurate, or

somehow less capable than the real module
• Pause for awhile to simulate the time taken by the real module
• Generate errors (e.g., throw exceptions) that are hard to produce for real

Unit Testing: What do drivers do?

• Invokes the class with fixed inputs
– If an oracle is available, inputs can be generated rather than fixed

• Compares actual outputs with expected outputs
• Records failure if expected and actual outputs don’t match
• Normally continues to execute even if a test case fails
• Generates report detailing what worked and what didn’t

• Drivers and stubs must be designed together
• Since stubs don’t produce “real” outputs, the expected results in the

driver must take into account the “fake” behavior of the stubs

Integration Testing

• Integration involves combining the individual software units into
larger functional units

• If the units work individually, why wouldn't they work when you put
them together?
– Ask the 2010 Miami Heat

• Example: Interactions between units may be flawed

– Mars Orbiter disaster caused by one module assuming English
units and another assuming Metric units

Integration Testing

• Big-Bang integration
– Entire system is integrated at once
– The system doesn't work, and you don't know why

• Incremental integration

– Add a piece, retest the system, Add a piece, retest the system, …
– If it breaks, you know what caused the problem (i.e., the last piece

you added)

• Integration Testing is testing that's done during integration to ensure
that the system continues to work each time a new piece is added

Top-Down Integration Testing

A

1B 2

C

D 3

Top module is tested with
stubs

Stubs are replaced one at a time,
either breadth-first or depth-first

Tests are run each time new modules
are integrated

Bottom-Up Integration Testing

A

1B 2

C

D E

Modules are integrated in a
bottom-up fashion until the entire
system has been assembled

Tests are run each time new modules
are integrated

Drivers must be developed, but stubs
are not needed

Sandwich Integration

• Combination of top-down and bottom-up integration

• Integrate from the top and from the bottom as it makes sense, and meet
somewhere in the middle

Continuous Integration

• Some projects wait several weeks between integrations
• Between integrations, engineers work on their pieces in relative isolation
• Each integration produces a new "build"
• The system may not build successfully between integrations

• A better approach for many projects is "continuous integration"
• A minimal working system is checked into source control
• Engineers check in new code every time they finish a meaningful unit of work
• Engineers must never break the build, and are responsible for adding new test

cases to exercise the new code
• The system is built and tests are run every night to ensure that all is well
• The system is always integrated and build-able

Unit Testing or Integration Testing?

• Sometimes people who claim to be doing unit testing are actually
doing bottom-up integration testing

• How do you tell the difference?
– Unit testing uses stubs to isolate the module under test from its

dependencies
– Bottom-up integration testing does not (i.e., modules call their

“real” dependencies)

System Testing
• Black box testing to ensure that the product meets all of the specified

requirements

• Performed by independent testing group
– The testing organization should be separate from the development

organization to avoid conflict of interest
– The testing organization creates a “test plan” that details how the product

will be tested

• Development delivers periodic builds of the complete system

• Acceptance test is run on new builds to verify that they're stable enough to test
– If a build fails the acceptance test, it's rejected and no testing resources are

expended on it
– If a build passes the acceptance test, tests are run and bugs are entered into

the bug tracking system

System Testing
• Before shipping a product it's important to get feedback from real customers

• Alpha Testing

– Product not yet feature-complete (some things are missing)
– Give the product to trusted, enthusiastic customers for evaluation
– Could be done at your place or theirs
– Lots of hand-holding by the developers
– Incentives to alpha testers could include influence on product features or

early access to needed features

• Beta Testing
– Product much closer to shipment than with alpha testing
– Product is feature-complete (debugging and tuning still in progress)
– Broader distribution to a less selective group of customers
– Less hand-holding
– Incentives could include cash, free software or customer support, early

access to needed features

System Testing
• When are we done testing?

• "You're never done testing, the burden simply shifts from you to your

customer."

• "You're done testing when you run out of time or you run out of money."

• You're done testing when:
– All "show stopper" bugs have been fixed

– The rate at which new bugs are being found falls below some acceptable

threshold
• If your testing is thorough, the rate at which you're finding new bugs

is correlated to how many bugs still remain

System Testing

• How about this?
– Record the rate at which you're

finding bugs each week
– Once you've got several data

points, fit a curve to the data
that can be used to predict the
date at which the bug rate will
be low enough to ship

– This might be better than
guessing

• Can we predict when we'll be done testing in advance?
– An estimation and scheduling problem

Regression Testing (I)
• Any change to a software product, even a slight one, has the potential to cause

bugs anywhere in the system

• Basically, you have to assume that anything can break at any time

• Regression testing is done on every build to ensure that new code (including
bug fixes) did not break features that used to work

• It's not feasible to re-run all prior tests on every build (especially manual tests)

• The regression test suite is a subset of tests that covers all product areas and

can feasibly be run on every build

• The regression test suite will evolve (i.e., grow larger) over time

Regression Testing (II)
• In addition to having regression tests that cover all functional areas of the

product, you should also have a regression test for every bug that has been fixed

• Whenever a bug is discovered, if you don't already have one, design a test case
that can be used later to verify that the bug has been fixed

• After the bug is fixed, re-run the test case on each new build to ensure that the
bug stays fixed

• Experience has shown that fixed bugs often get “unfixed” later
• Why?

– Source control mistakes (i.e., somebody unintentionally overwrites the bug
fix in the code repository)

– The bug fix was “fragile” (i.e., it barely worked, and some later change
pushes it over the edge)

– The feature in which the bug was found is later redesigned and re-
implemented. The original mistake is repeated, thus reintroducing the bug

Customer Acceptance Testing

• After system testing is complete, the customer might perform a
"customer acceptance test" before signing off on the product

• The customer acceptance test is a suite of tests that will be run by the
customer (or someone they hire) to ensure that the product meets
requirements

	Testing Strategies
	Overall Testing Strategy
	Unit Testing
	Unit Testing: Test-Driven Development
	Unit Testing: Using stubs and drivers to isolate the class under unit test
	Unit Testing: What do stubs do?
	Unit Testing: What do drivers do?
	Integration Testing
	Integration Testing
	Top-Down Integration Testing
	Bottom-Up Integration Testing
	Sandwich Integration
	Continuous Integration
	Unit Testing or Integration Testing?
	System Testing
	System Testing
	System Testing
	System Testing
	Regression Testing (I)
	Regression Testing (II)
	Customer Acceptance Testing

