
Testing Strategies 
Sources:  

Code Complete, 2nd Ed., Steve McConnell 
Software Engineering, 5th Ed., Roger Pressman 

Testing Computer Software, 2nd Ed., Cem Kaner, et. Al. 
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• System Engineering 
– The software you're building may be only one part of a much larger 

system containing many hardware and software components 
– System Engineering deals with engineering the entire system, not just the 

software components, and goes beyond the scope of Software Engineering 
  



Unit Testing 

• Testing of individual software "units" (i.e., classes, routines) 
• White box testing 
• Usually done by the engineer who wrote the unit 

 
 



Unit Testing: Test-Driven Development 

• The traditional approach is to write unit test cases after the code is written 
 

• Test-Driven Development is a relatively new approach that encourages writing 
unit test cases before the code is written 
– Writing test cases first forces you to think about the requirements and 

design before writing the code, which leads to a better design 
 

– Since your test cases will fail at first, they help you know when the code is 
done (i.e., when the tests work, you're done) 
 

– Writing test cases before the code doesn't take any more effort than 
writing them after the code 
 

– Writing test cases first will help you detect and remove bugs sooner 



Unit Testing: Using stubs and drivers to 
isolate the class under unit test 
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Unit Testing: What do stubs do? 
• Do nothing 
• Validate the method inputs 
• Validate method call sequence (including parameter values) 
• Send a message to a log 
• Return a hard-coded answer regardless of the input 
• Select an answer from a pool of hard-coded answers 

– Cycle through the pool or randomly select one 
• Randomly generate an answer 
• Prompt the user for the answer 
• Simple implementation of the module that is slower, less accurate, or 

somehow less capable than the real module 
• Pause for awhile to simulate the time taken by the real module 
• Generate errors (e.g., throw exceptions) that are hard to produce for real 



Unit Testing: What do drivers do? 

• Invokes the class with fixed inputs 
– If an oracle is available, inputs can be generated rather than fixed 

• Compares actual outputs with expected outputs 
• Records failure if expected and actual outputs don’t match 
• Normally continues to execute even if a test case fails 
• Generates report detailing what worked and what didn’t 

 
• Drivers and stubs must be designed together 
• Since stubs don’t produce “real” outputs, the expected results in the 

driver must take into account the “fake” behavior of the stubs 



Integration Testing 

• Integration involves combining the individual software units into 
larger functional units 
 

• If the units work individually, why wouldn't they work when you put 
them together? 
– Ask the 2010 Miami Heat 

 
• Example: Interactions between units may be flawed 

– Mars Orbiter disaster caused by one module assuming English 
units and another assuming Metric units 
 



Integration Testing 

• Big-Bang integration 
– Entire system is integrated at once 
– The system doesn't work, and you don't know why 

 
• Incremental integration 

– Add a piece, retest the system, Add a piece, retest the system, … 
– If it breaks, you know what caused the problem (i.e., the last piece 

you added) 
 

• Integration Testing is testing that's done during integration to ensure 
that the system continues to work each time a new piece is added 
 



Top-Down Integration Testing 
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Top module is tested with 
stubs 

Stubs are replaced one at a time, 
either breadth-first or depth-first 

Tests are run each time new modules 
are integrated 



Bottom-Up Integration Testing 
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Modules are integrated in a 
bottom-up fashion until the entire 
system has been assembled 

Tests are run each time new modules 
are integrated 

Drivers must be developed, but stubs 
are not needed 



Sandwich Integration 

• Combination of top-down and bottom-up integration 
 

• Integrate from the top and from the bottom as it makes sense, and meet 
somewhere in the middle 
 



Continuous Integration 

• Some projects wait several weeks between integrations 
• Between integrations, engineers work on their pieces in relative isolation 
• Each integration produces a new "build" 
• The system may not build successfully between integrations 

 
• A better approach for many projects is "continuous integration" 
• A minimal working system is checked into source control 
• Engineers check in new code every time they finish a meaningful unit of work 
• Engineers must never break the build, and are responsible for adding new test 

cases to exercise the new code 
• The system is built and tests are run every night to ensure that all is well 
• The system is always integrated and build-able 

 
 
 



Unit Testing or Integration Testing? 

• Sometimes people who claim to be doing unit testing are actually 
doing bottom-up integration testing 
 

• How do you tell the difference? 
– Unit testing uses stubs to isolate the module under test from its 

dependencies 
– Bottom-up integration testing does not (i.e., modules call their 

“real” dependencies) 
 



System Testing 
• Black box testing to ensure that the product meets all of the specified 

requirements 
 

• Performed by independent testing group 
– The testing organization should be separate from the development 

organization to avoid conflict of interest 
– The testing organization creates a “test plan” that details how the product 

will be tested 
 

• Development delivers periodic builds of the complete system 
 

• Acceptance test is run on new builds to verify that they're stable enough to test  
– If a build fails the acceptance test, it's rejected and no testing resources are 

expended on it 
– If a build passes the acceptance test, tests are run and bugs are entered into 

the bug tracking system 
 
 



System Testing 
• Before shipping a product it's important to get feedback from real customers 

 
• Alpha Testing 

– Product not yet feature-complete (some things are missing) 
– Give the product to trusted, enthusiastic customers for evaluation 
– Could be done at your place or theirs 
– Lots of hand-holding by the developers 
– Incentives to alpha testers could include influence on product features or 

early access to needed features 
 

• Beta Testing 
– Product much closer to shipment than with alpha testing 
– Product is feature-complete (debugging and tuning still in progress) 
– Broader distribution to a less selective group of customers 
– Less hand-holding 
– Incentives could include cash, free software or customer support, early 

access to needed features 
 



System Testing 
• When are we done testing? 

 
• "You're never done testing, the burden simply shifts from you to your 

customer." 
 

• "You're done testing when you run out of time or you run out of money." 
 

• You're done testing when: 
– All "show stopper" bugs have been fixed 

 
– The rate at which new bugs are being found falls below some acceptable 

threshold 
• If your testing is thorough, the rate at which you're finding new bugs 

is correlated to how many bugs still remain 



System Testing 

• How about this? 
– Record the rate at which you're 

finding bugs each week 
– Once you've got several data 

points, fit a curve to the data 
that can be used to predict the 
date at which the bug rate will 
be low enough to ship 

– This might be better than 
guessing 

 
 

• Can we predict when we'll be done testing in advance? 
– An estimation and scheduling problem 



Regression Testing (I) 
• Any change to a software product, even a slight one, has the potential to cause 

bugs anywhere in the system 
 

• Basically, you have to assume that anything can break at any time 
 

• Regression testing is done on every build to ensure that new code (including 
bug fixes) did not break features that used to work 

 
• It's not feasible to re-run all prior tests on every build (especially manual tests) 

 
• The regression test suite is a subset of tests that covers all product areas and 

can feasibly be run on every build 
 

• The regression test suite will evolve (i.e., grow larger) over time 
 



Regression Testing (II) 
• In addition to having regression tests that cover all functional areas of the 

product, you should also have a regression test for every bug that has been fixed 
 

• Whenever a bug is discovered, if you don't already have one, design a test case 
that can be used later to verify that the bug has been fixed 
 

• After the bug is fixed, re-run the test case on each new build to ensure that the 
bug stays fixed 
 

• Experience has shown that fixed bugs often get “unfixed” later 
• Why? 

– Source control mistakes (i.e., somebody unintentionally overwrites the bug 
fix in the code repository) 

– The bug fix was “fragile” (i.e., it barely worked, and some later change 
pushes it over the edge) 

– The feature in which the bug was found is later redesigned and re-
implemented.  The original mistake is repeated, thus reintroducing the bug 

 
 
 



Customer Acceptance Testing 

• After system testing is complete, the customer might perform a 
"customer acceptance test" before signing off on the product 
 

• The customer acceptance test is a suite of tests that will be run by the 
customer (or someone they hire) to ensure that the product meets 
requirements 
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