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Software Quality Assurance 

• The purpose of SQA is to find and report defects AND succeed in getting them 
fixed 
 

• What is a software defect? 
– Definition #1: There is a mismatch between the program and its 

requirements spec or functional spec 
• This definition is fine if a requirements specification exists and is 

complete and correct (not always true) 
– Definition #2: The program does not do what its end user reasonably 

expects it to do 
• This definition always applies, even when there's no specification 

 
 



Software Quality Assurance 
• Categories of Defects 

– Functional defects 
• The program’s features don’t work as they should 

– User Interface defects 
• Usability problems 

– Performance defects 
• Too slow, Uses too much memory/disk space/bandwidth/etc. 

– Error Handling defects 
• Failure to anticipate and handle possible errors, or deal with them 

in a reasonable way 
– Security defects 

• Attackers can compromise the system and access sensitive data or 
other resources 

 
 



Software Quality Assurance 
• Categories of Defects 

– Load defects 
• Can't handle many concurrent users, can't handle large data sets 

– Configuration defects 
• Doesn't work on the required hardware/OS/browser 

configurations 
– Race conditions 

• Behavior depends on the interleaving of concurrent activities 
– Documentation defects 

• User manuals or online help isn't clear, complete, well-organized 
 



Software Quality Assurance 

• The longer defects remain in the system, the more expensive they become 
– The cost of a defect grows dramatically the longer it remains in the system 
– What is the cost of a defect in the requirements specification if it’s found 

found 
• during requirements phase? 
• during implementation? 
• after product ships? 

 
 
 
 

• SQA should be performed throughout the software development life cycle 
– It's not something you do only at the end after everything's pretty much 

done 
 

 
 
 



Verification & Validation 

• Validation 
– Build the right product 
– Those activities that attempt to determine that customer needs can 

be met by a product 
• Verification 

– Build the product right 
– Transformational activities that are performed at each step of the 

product life cycle 
– Evaluating at each stage of the life cycle to ensure the software 

meets the requirements 
 

• Focus 
– Completeness, Consistency, Feasibility, Testability 



Software Quality Assurance 

• The two primary SQA activities: 
– Technical Reviews 
– Software Testing 



Technical Reviews 
• A “review” is a meeting where a work product is reviewed by a small group of people 

who are qualified to give feedback, find problems, suggest improvements, etc. 
 

• Anything can be reviewed: requirements spec, functional spec, design, code, test plan, 
user documentation 
 

• Reviews range in formality 
– In the morning, spend some time reviewing your work of the previous day 
– Informal requests for feedback from peers 
– Pair programming 
– Formal meetings, pre-scheduled, specific invitees, prior preparation 

 
• Problems found during reviews are fixed, resulting in improved quality 

 
• Reviews are the most effective QA technique, both in terms of cost and number of defects 

discovered 



Review Meetings 

• Review the product – not the producer 
• Set an agenda and keep it 
• Limit debate and rebuttal 
• Enunciate problem areas but don’t try to fix anything 
• Take written notes 
• Limit the number of participants 
• Insist upon advance preparation 
• Develop a checklist 
• Allocate resources and time schedules 
• Conduct meaningful training 



Software Testing 
 
• Testing is the process of detecting errors by running the actual software and 

verifying that it works as it should 
– Test cases, Expected results, Actual results 
 

• Testing is by far the most popular QA activity (but not the most effective) 
 

• Formal technical reviews are cheaper and more effective than testing, but are 
often ignored 
 

• Research has shown that all forms of testing combined usually find less than 
60% of the errors present 
 

• A typical project might expend 50% of its resources on testing 



Software Testing 
• Exhaustively testing software is not feasible 

 
– The number of possible input combinations is effectively infinite  
– The number of unique paths through the code is effectively infinite 
– You might not live long enough to exhaustively test a non-trivial software system 

 
• We must do partial testing because we only have enough resources (time and money) to 

run relatively few test cases 
 

• Partial testing can never prove the absence of defects 
 

– If the system passes all your test cases, there could still be defects, you just need 
more or better test cases to find them 

 



Software Testing 
 

• Effective testing lies in intelligently choosing the relatively few test cases that will 
actually be executed 

 
– Test all requirements and features defined in the requirements spec. and functional 

spec. 
 

– Focus on scenarios that users are likely to encounter in practice 
 

– Test cases should not be redundant (i.e., each one should follow a different path 
through the code) 
 

– Analyze the program’s design and code to find potential weak areas 
 

– Analyze all points at which data enters the system and look for ways to attack it 
 

– Code coverage 
 
 

 
 
 
 
 

 



Software Testing 

• Approaches for test case design are generally divided into two broad 
categories: Black Box Testing and White Box Testing 
 

• Black Box Testing 
– The tester has limited knowledge of the inner workings of the item being 

tested 
– Test cases are based on the specification of the item's external behavior 

 
• White Box Testing 

– The tester has knowledge of the inner workings of the item being tested 
– Test cases are based on the specification of the item's external behavior 

AND knowledge of its internal implementation 
 



Software Testing 
• Testing is unlike other software development activities because the goal is to 

break the software rather than to create it 
 

• Effective testing requires the assumption that you will find defects 
 

• Effective testing requires that you want to find defects 
 

• If you think you won't find defects, or you don't want to, you will have set up a 
self-fulfilling prophecy 
 

• Testing by both developers and an independent testing group are essential 
– They have different perspectives and motivations 
– They do different kinds of tests (developer does white box, test team does 

black box), which tend to discover different types of defects 
 



Software Testing 
• Defects are not evenly distributed (i.e., they tend to cluster) 

 
• Research has shown that: 

– 80% of a system's defects are found in 20% of its code 
– 50% of a system's defects are found in 5% of its code 

 
• There is a high correlation between bugs and complex code. 

– Use tools to measure code complexity, and focus testing on those modules 
with the most complex code 

 
• One goal of testing is to identify the most problematic modules 

– Redesign may be needed if there is an inherent design flaw 
– Or, replace buggy module with a third-party library/product 



Software Testing 

• How many defects should you expect to find? 
 
– It depends on your development process 

 
– Most projects experience between 1 and 25 errors per 1000 LOC 

 
– The Applications Division at Microsoft reports 10 to 20 errors per 

1000 LOC, with 0.5 errors per 1000 LOC in released products 
 



Software Testing 

• Automation of test cases is essential to make frequent re-running of 
test cases feasible 

 
• A lot of the interesting testing work is found in inventing and creating 

ways to automate test cases (i.e., create programs whose purpose is to 
test other programs) 
 

• Automation requires a lot of software design and implementation 
(sometimes called “Test Engineering”) 
 

• Some tests are difficult to automate and must be run manually 
 



Unit Testing 

• Exercise a specific module in a controlled environment 
• Typically involves 

– Scaffolding 
– Stubs and drivers 

• Stubs 
– Modules below a unit to mimic behavior of dependent modules 

• Drivers 
– Modules above a unit that drive the unit in the same fashion its 

calling modules do 
• Involves both white box and black box testing 



Integration Testing 

• After unit testing – put them together to do testing 
• Top down or bottom up 
• Tester needs to understand the behavior of integrated modules 

– Module hierarchy can help 
 
 



System Testing 

• Execution of the entire system 
– Does it conform to the overall system requirements 
– Depends on the document 

• May be simulated 
– Depends on accuracy of the simulator 

• Tests 
– Functionality 
– Performance 
– Reliability 
– Usability 



Regression Testing 

• Check to see that an update does not re-introduce errors 
• Check  

– Functionality – typically black box tests 
– Architecture – gray box tests (some knowledge of inner workings) 

 
• Typically a large suite of tests 

– All functionality  
– All changes 

 
• Needs to be automated 



Regression Testing 

Build tests  
for version x  

Test data 

Run tests  
for version x  

Build results  
for version x  

Compare  Verdict  



Automating Regression Testing 

• Challenging 
• What parts of program output should be checked? 
• Simple but annoying issues 

– Use of dates in output 
– Changes in whitespace  
– Format changes 
– Lead text changes 

• Answer 
– Don’t use complete output 
– Just extract the relevant information 



Regression Testing 

• Keep it updated! 
– Bug fixes – tests to ensure they stay fixed 
– Functionality additions 
– Platform changes 
– Etc. 

 
• If you branch the code, you must branch the regression tests 



Formal Verification 
• In addition to Technical Reviews and Software Testing, Formal Verification is another 

approach to QA 
 

• Create a formal “model” of the system 
– Some kind of automaton (i.e., state machine) or other mathematical abstraction that 

precisely captures the system’s behavior 
 

• “Check” the model by formally proving that it implements the desired behavior 
– Automated theorem proving systems are often applied  
– Or, prove that the model does not behave correctly, thus revealing a defect  

 
• Historically, formal verification has been expensive and limited to relatively small 

programs, but techniques are improving all the time.  Challenges include: 
– Complex systems are hard to formalize 
– State space explosion: real systems have so many possible states that proving 

things about them is hard 
– Ensuring that the “model” accurately captures the system’s behavior 
– Making it accessible to people who aren’t formal verification experts 
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