
Computer Science 340

Software Design & Testing

© Ken Rodham 2006

Design By Contract

Design By Contract

• “Design by Contract” is a design technique that
helps produce more reliable software (i.e., fewer
defects)

Abstract Data Types

• Object-oriented design is based on the theory of
abstract data types

• Domain and implementation concepts are modeled
in software as ADTs

• Interfaces capture the notion of an ADT
– Examples: NetworkDevice, Stack

• Classes provide implementations of ADTs

Abstract Data Types
• Even if a class doesn’t implement a pre-defined interface,

it still defines an ADT as embodied in its public interface
• In this case, the ADT definition is combined with its

implementation
• Explicit interfaces are used if we expect to have multiple

implementations of the ADT
– interface List, class ArrayList, class LinkedList, …

• If we expect an ADT to have only one implementation, we
often combine the ADT definition and implementation in
the same class
– Example: Matrix

Defining ADTs

• ADT = syntax + semantics
• Each ADT operation has: name, parameter list, return type
• ADT clients must conform to this syntax, or they will fail

to compile
• Each ADT operation also has semantics: What is the

meaning of the operation? What does it do?
• Classes that implement ADTs must faithfully adhere to

operation semantics as well as syntax
– What would happen if ArrayStack’s push implementation fires a

nuclear missile rather than pushing a value on the stack?

Defining ADTs

• Source code precisely defines ADT syntax
– Compilers enforce ADT syntax

• Source code does not precisely define semantics
– Compilers cannot enforce semantics

• ADT semantics are typically defined by comments
in the code, if they’re defined at all
– Comment each operation explaining what it does
– Example: Stack, Matrix

Defining ADTs

• Imprecise or incomplete definitions of ADT
semantics lead to reliability problems:
– Clients and implementers have different ideas of what

an operation does
– Differing assumptions lead to defects

Design By Contract

• DBC is a technique for more precisely defining
ADT semantics, thus preventing misunderstandings

• DBC is based on the real-word notion of a legal
contract
– A contract involves a “client” and a “supplier”
– Each side has obligations and expected benefits, which

are precisely defined in the contract
– If a party performs their obligations, they are guaranteed

to received the promised benefits

Defining operation semantics:
Pre-conditions & Post-conditions

• An ADT is a contract between client and supplier
• Each operation has Pre-conditions and Post-

conditions
• Pre-conditions are the client’s obligations
• Post-conditions are the supplier’s obligations
• Examples: Stack, Matrix

Defining operation semantics:
Pre-conditions & Post-conditions

• If a client invokes an operation having satisfied all
pre-conditions, the supplier must ensure that all
post-conditions are met upon return

• If the client did not satisfy all pre-conditions, the
supplier is under no obligation to satisfy the post-
conditions
– The supplier can do whatever it wants, including all

manner of anti-social behavior (including crashing)

Defining operation semantics:
Pre-conditions & Post-conditions

• The pre-conditions and post-conditions define the
semantics of the operation

Exceptions
• What if the caller satisfied the pre-conditions, but for some

reason the supplier is unable to satisfy the post-conditions?
• The supplier throws an exception
• Exception => Supplier breeched the contract
• Why might a supplier fail to satisfy the post-conditions?

– Bug in supplier
– External factors beyond supplier’s control (hard disk crash,

Internet down, etc.)
• Exceptions are not thrown if the client breeches the

contract (i.e., fails to meet pre-conditions)
– Actually, the supplier can do whatever it wants in this case

DBC vs. Defensive Programming
• Defensive Programming says:

– Operation implementations should be bullet-proof
– Check all parameters for validity before using them
– Return error or throw exception if parameters are invalid, but never

crash

• Puts heavy burden on the supplier
• Results in lots of parameter checking code
• Client and supplier often have redundant checks
• Results in more code (harder to maintain)
• Slows programs down (too much redundant checking)

DBC vs. Defensive Programming
• DBC says:

– Ensuring that pre-conditions are met is the client’s job
– Operation implementations should not contain code to verify that

pre-conditions were met (e.g., no parameter checking code)
– If pre-conditions are not met and something unseemly occurs, it is

the client’s fault, and they got what they deserved
– Suppliers must throw an exception if post-conditions cannot be met

• Puts more burden on clients
• Results in less and more efficient code
• As a debugging tool, operation implementations may include
assert statements to verify that pre-conditions were met,
but this is optional, and all such should be turned off in the
final release of the software

DBC vs. Defensive Programming
• Designers must make a conscious choice between

Defensive Programming and DBC

Class Invariants

• Pre and Post-conditions apply only to single
operations

• Some supplier obligations apply to the ADT as a
whole, and are not specific to single operations

• Class invariants are class-level conditions that
must always be satisfied by the supplier
– Examples: Stack, Matrix

Class Invariants
• Constructors must establish all class invariants

– When a constructor completes, all class invariants must be satisfied
– If a constructor cannot establish the class invariants, it should

throw an exception

• In addition to their post-conditions, public operations must
also ensure that all class invariants are satisfied upon return
– I.e., the class invariants are ANDed with the post-conditions of

every public operation

• Class invariants may be temporarily violated while a
public operation is executing, but they must be
reestablished before the operation returns

Documenting ADTs with javadoc

• Interfaces and classes
– Header comment
– @invariant (custom tag)

• Operations
– Header comment
– @pre (custom tag)
– @post (custom tag)
– @param
– @returns
– @throws

Documenting ADTs with javadoc

• javadoc will generate HTML documentation for
your interfaces and classes

• Running javadoc:
– javadoc -tag invariant:t:"Class Invariants:" -tag

pre:cm:"Pre-Conditions:" -tag post:cm:"Post-Conditions:"
MyClass.java

	Computer Science 340��Software Design & Testing
	Design By Contract
	Abstract Data Types
	Abstract Data Types
	Defining ADTs
	Defining ADTs
	Defining ADTs
	Design By Contract
	Defining operation semantics:�Pre-conditions & Post-conditions
	Defining operation semantics:�Pre-conditions & Post-conditions
	Defining operation semantics:�Pre-conditions & Post-conditions
	Exceptions
	DBC vs. Defensive Programming
	DBC vs. Defensive Programming
	DBC vs. Defensive Programming
	Class Invariants
	Class Invariants
	Documenting ADTs with javadoc
	Documenting ADTs with javadoc

