Computer Science 340
Software Design & Testing

Design By Contract

© Ken Rodham 2006



Design By Contract

e “Design by Contract” is a design technique that
helps produce more reliable software (i.e., fewer
defects)



Abstract Data Types

Object-oriented design is based on the theory of
abstract data types

Domain and implementation concepts are modeled
In software as ADTs

Interfaces capture the notion of an ADT
— Examples:

Classes provide implementations of ADTs



Abstract Data Types

Even If a class doesn’t implement a pre-defined interface,
It still defines an ADT as embodied in its public interface

In this case, the ADT definition is combined with Its
Implementation

Explicit interfaces are used If we expect to have multiple
Implementations of the ADT

— interface List, class ArrayList, class LinkedList, ...

If we expect an ADT to have only one implementation, we

often combine the ADT definition and implementation in
the same class

— Example:



Defining ADTSs

ADT = syntax + semantics
Each ADT operation has: name, parameter list, return type

ADT clients must conform to this syntax, or they will fail
to compile

Each ADT operation also has semantics: What is the
meaning of the operation? What does it do?

Classes that implement ADTs must faithfully adhere to

operation semantics as well as syntax

— What would happen if ArrayStack’s push implementation fires a
nuclear missile rather than pushing a value on the stack?



Defining ADTSs

o Source code precisely defines ADT syntax
— Compilers enforce ADT syntax

e Source code does not precisely define semantics
— Compilers cannot enforce semantics
o ADT semantics are typically defined by comments
In the code, If they’re defined at all
— Comment each operation explaining what it does
— Example: ,



Defining ADTSs

* Imprecise or incomplete definitions of ADT
semantics lead to reliability problems:

— Clients and implementers have different ideas of what
an operation does

— Differing assumptions lead to defects



Design By Contract

e DBC is a technique for more precisely defining
ADT semantics, thus preventing misunderstandings

 DBC is based on the real-word notion of a legal

contract
— A contract involves a “client” and a “supplier”

— Each side has obligations and expected benefits, which
are precisely defined in the contract

— If a party performs their obligations, they are guaranteed
to received the promised benefits



Defining operation semantics:
Pre-conditions & Post-conditions

An ADT is a contract between client and supplier

Each operation has Pre-conditions and Post-
conditions

Pre-conditions are the client’s obligations
Post-conditions are the supplier’s obligations
Examples: ,



Defining operation semantics:
Pre-conditions & Post-conditions

 [fa client invokes an operation having satisfied all
pre-conditions, the supplier must ensure that all
post-conditions are met upon return

 |f the client did not satisfy all pre-conditions, the
supplier is under no obligation to satisfy the post-

conditions

— The supplier can do whatever it wants, including all
manner of anti-social behavior (including crashing)



Defining operation semantics:
Pre-conditions & Post-conditions

» The pre-conditions and post-conditions define the
semantics of the operation



Exceptions

What if the caller satisfied the pre-conditions, but for some
reason the supplier is unable to satisfy the post-conditions?

The supplier throws an exception

Exception => Supplier breeched the contract

Why might a supplier fail to satisfy the post-conditions?
— Bug in supplier

— External factors beyond supplier’s control (hard disk crash,
Internet down, etc.)

Exceptions are not thrown if the client breeches the
contract (i.e., fails to meet pre-conditions)
— Actually, the supplier can do whatever it wants in this case



DBC vs. Defensive Programming

« Defensive Programming says:
— Operation implementations should be bullet-proof
— Check all parameters for validity before using them

— Return error or throw exception if parameters are invalid, but never
crash

« Puts heavy burden on the supplier

* Results in lots of parameter checking code

« Client and supplier often have redundant checks

e Results in more code (harder to maintain)

« Slows programs down (too much redundant checking)



DBC vs. Defensive Programming

DBC says:

— Ensuring that pre-conditions are met is the client’s job

— Operation implementations should not contain code to verify that
pre-conditions were met (e.g., no parameter checking code)

— If pre-conditions are not met and something unseemly occurs, it is
the client’s fault, and they got what they deserved

— Suppliers must throw an exception if post-conditions cannot be met
Puts more burden on clients
Results in less and more efficient code

As a debugging tool, operation implementations may include
assert statements to verify that pre-conditions were met,
but this is optional, and all such should be turned off in the
final release of the software



DBC vs. Defensive Programming

« Designers must make a conscious choice between
Defensive Programming and DBC



Class Invariants

* Pre and Post-conditions apply only to single
operations

e Some supplier obligations apply to the ADT as a
whole, and are not specific to single operations

e Class invariants are class-level conditions that
must always be satisfied by the supplier
— Examples:



Class Invariants

e Constructors must establish all class invariants
— When a constructor completes, all class invariants must be satisfied

— If a constructor cannot establish the class invariants, it should
throw an exception

* Inaddition to their post-conditions, public operations must
also ensure that all class invariants are satisfied upon return

— lL.e., the class invariants are ANDed with the post-conditions of
every public operation

* Class invariants may be temporarily violated while a
public operation Is executing, but they must be
reestablished before the operation returns



Documenting ADTs with Javadoc

e Interfaces and classes
— Header comment
— @invariant (custom tag)

o QOperations
— Header comment
— @pre (custom tag)
— @post (custom tag)
— @param
— @returns
— @throws



Documenting ADTs with Javadoc

e javadoc will generate HTML documentation for
your interfaces and classes

* Running javadoc:

— jJavadoc -tag invariant:t:"Class Invariants:" -tag
pre:cm:"Pre-Conditions:" -tag post:cm:"Post-Conditions:"
MyClass. java



	Computer Science 340��Software Design & Testing
	Design By Contract
	Abstract Data Types
	Abstract Data Types
	Defining ADTs
	Defining ADTs
	Defining ADTs
	Design By Contract
	Defining operation semantics:�Pre-conditions & Post-conditions
	Defining operation semantics:�Pre-conditions & Post-conditions
	Defining operation semantics:�Pre-conditions & Post-conditions
	Exceptions
	DBC vs. Defensive Programming
	DBC vs. Defensive Programming
	DBC vs. Defensive Programming
	Class Invariants
	Class Invariants
	Documenting ADTs with javadoc
	Documenting ADTs with javadoc

