
Computer Science 340

Software Design & Testing

Design Principles Review

Introduction

• Core principles of software design

– Fundamental and relatively constant

– When were our textbooks published? How could they

still be relevant?

• Evaluation criteria for designs in this course

• Design evaluation is inherently subjective

• Providing specific evaluation criteria will help

make grading as predictable as possible

Goals of Software Design

• Manage COMPLEXITY

• Make and keep software systems ORGANIZED as
they evolve

• Combat design ENTROPY

• Create systems that

– Work

– Are easy to understand, debug, and maintain

– Are easy to extend and hold up well under changes

– Reusable

Design is inherently iterative

• Design, implement, test, Design, implement, test, …

• Feedback loop from implementation back into design

provides valuable knowledge

• Designing everything before beginning implementation

doesn’t work

• Beginning implementation without doing any design also

doesn’t work

• The appropriate balance is achieved by interleaving design

and implementation activities in relatively short iterations

Design Principles

• Abstraction

• Naming

• Cohesion

• Orthogonality

• Decomposition

• Duplication Elimination

Abstraction

• Abstraction is one of the software designer’s primary tools
for coping with COMPLEXITY

• Programming languages and OSes provide abstractions
that model the underlying machine

• Programs written solely in terms of these low-level
abstractions are very difficult to understand

• Software designers must create higher-level, domain-
specific abstractions, and write their software in terms of
those

– High-level abstractions implemented in terms of low-level
abstractions

Abstraction

• Each abstraction is represented as a class

• Each class has a carefully designed public

interface that defines how the rest of the system

interacts with it

• A client can invoke operations on an object

without understanding how it works internally

• This is a powerful technique for reducing the

cognitive burden of building complex systems

Abstraction

• Many domain-specific abstractions can be taken

directly from the “domain model”
– A domain model inproblem solving and software engineering is a conceptual model of all the

topics related to a specific problem. It describes the various entities, their attributes, roles, and

relationships, plus the constraints that govern the problem domain.

• Other abstractions do not appear in the domain

model, but are needed for internal implementation

purposes

– Mid-level abstractions such as: NotificationManager,

PersistenceManager, UserSession, UndoRedoManager,

ThreadPool

Abstract All the Way /

Avoid Primitive Obsession
• Some abstractions are simple enough to store directly

using the language’s built-in data types

– Name => string

– Pay Grade => int

– Credit Card Number => string

• Sometimes it is best to create classes for such simple

abstractions for the following reasons:

– Domain checking

– Related operations

– Code readability

When is a Primitive Not Right?

Domains Don’t Match
• The set of valid values (the domain) doesn’t match.

– The set of valid values is usually a subset of the set of

values in a primitive type

– Example:

• The domain of an Age is probably any integer between 0 and 100

(maybe a 1000). That is different than the domain of an integer.

• The domain of a Name is, at a minimum, a sequence of alphabetic

letters. This is different than a String which is a sequence of any

character.

• If you create a new class, the domain checks needed during

construction and assignment can be isolated to the new class.

When is a Primitive Not Right?

Operations Don’t Match

• There are operations you need that are not provided by

the primitive type.

– Example: Formatting a Name as: LastName “, “ SimpleName+

• There are operations you don’t need or want users to

have access to but are provided by the primitive type.

– Example: ~age is not needed

– Example: -age, don’t want to negate and age

Three Forms of Abstraction

• Aggregation

• Classification

• Generlization/Specialization

Naming
• A central part of abstraction is giving things

names (or identifiers)

• Selecting good names for things is critical

• Class, method, and variable names should clearly

convey their function or purpose

• Class and variable names are usually nouns

• Method names are usually verbs

– Exceptions

• Object properties (ID, Name, Parent, etc.)

• Event handlers (MouseMoved, UserLoggedIn)

Cohesion / Single Responsibility

• Each abstraction should have a single responsibility

• Each class represents one, well-defined concept

– All operations on a class are highly related to the class’

concept

– Cohesive classes are easy to name

• Each method performs one, well-defined task

– Unrelated or loosely related tasks should be in different

methods

– Cohesive methods are easy to name

– Using “And” or “Or” in a method name suggest a

method with low cohesion

Orthogonality

In computing, two or more things are orthogonal if
changes in one do not affect any of the others.

You're on a helicopter tour of the Grand Canyon when the pilot, who made the
obvious mistake of eating fish for lunch , suddenly groans and faints. Fortunately,
he left you hovering 100 feet above the ground. You rationalize that the collective
pitch lever [2] controls overall lift, so lowering it slightly will start a gentle descent
to the ground. However, when you try it, you discover that life isn't that simple.
The helicopter's nose drops , and you start to spiral down to the left. Suddenly you
discover that you're flying a system where every control input has secondary effects.
Lower the left-hand lever and you need to add compensating backward movement
to the right-hand stick and push the right pedal. But then each of these changes
affects all of the other controls again. Suddenly you're juggling an unbelievably
complex system, where every change impacts all the other inputs. Your workload
is phenomenal: your hands and feet are constantly moving, trying to balance all
the interacting forces.

[2] Helicopters have four basic controls. The cyclic is the stick you
hold in your right hand. Move it, and the helicopter moves in the
corresponding direction. Your left hand holds the collective pitch lever.
Pull up on this and you increase the pitch on all the blades, generating lift.
At the end of the pitch lever is the throttle . Finally you have two foot
pedals, which vary the amount of tail rotor thrust and so help turn the helicopter.

Helicopter controls are decidedly not orthogonal.

Cohesion and Orthogonality

An orthogonal approach reduces the risks inherent in any development.
• Diseased sections of code are isolated. If a module is sick, it is less likely

to spread the symptoms around the rest of the system. It is also easier to
slice it out and transplant in something new and healthy .

• The resulting system is less fragile. Make small changes and fixes to a
particular area, and any problems you generate will be restricted to that
area.

• An orthogonal system will probably be better tested, because it will be
easier to design and run tests on its components.

• You will not be as tightly tied to a particular vendor, product, or platform,
because the interfaces to these third-party components will be isolated to
smaller parts of the overall development.

• As Cohesion goes up, orthogonality goes up

Decomposition:

Generating Aggregates
• In addition to Abstraction, Decomposition is the

other fundamental technique for taming
COMPLEXITY

• Large problems subdivided into smaller sub-
problems

• Subdivision continues until leaf-level problems
are simple enough to solve directly

• Solutions to sub-problems are recombined into
solutions to larger problems

Decomposition

• Decomposition is strongly related to Abstraction

• The solution to each sub-problem is encapsulated

in its own abstraction (class or subroutine)

• Solutions to larger problems are concise because

they’re expressed in terms of sub-problem

solutions, the details of which can be ignored

• The decomposition process helps us discover (or

invent) the abstractions that we need

Decomposition

• Levels of decomposition

– System

– Subsystem

– Packages

– Classes

– Routines

temporarily ignored, thus reducing the cognitive burden of solving the original problem.

It is through the decomposition process that many of the necessary abstractions are

discovered (or invented).

Levels of Design

System

Subsystems

Packages

Classes

Routines

Decomposition is inherently a top-down process. At the topmost level we have the entire

system. The first level of decomposition divides the system into subsystems, each of

which represents a major but somewhat independent chunk of the system’s functionality.

For example, the subsystems for a web browser might be Network Protocols ,

File Viewers, History, Favorites, Printing, etc.

At the next level of decomposition, each subsystem is further subdivided into packages.

Each package is responsible for implementing a part of the subsystem’s functionality.

For example, a web browser’s File Viewers subsystem might contain a separate

package for each different file format that the browser can display (HTML, PDF, XML,

etc.). The package corresponding to a particular format would contain the code that

implements the file viewer for that format.

A package is further decomposed into a collection of one or more classes that together

implement that package’s functionality. For example, the web browser’s HTML viewer

might consist of a dozen different classes.

The functionality of each class is further decomposed into routines which implement the

operations (or algorithms) of the class. Significant algorithms are typically decomposed

Decomposition

• Hypo- and Hyper-Decomposition

• When have we decomposed far enough?

– Size metrics

• Rules of thumb

– 500 Lines of Code in a method is probably to long

– 20-50 lines of code?

– Complexity metrics

• Rules of thumb
– 10 parameters for a method may be too many

– A class with 50 methods may be too many

Algorithm & Data Structure

Selection

• No amount of decomposition or abstraction will

hide a fundamentally flawed selection of

algorithm or data structure.

• Remember the lessons of

– CS 235, CS 236, and CS 312

Minimize Dependencies:

Minimizing Coupling
• Dependencies

– Class A instantiates class B

– Class A invokes operations on class B

– Class A accesses class B’s internal state

– Class A inherits from class B

– Class A has a method parameter of class B

– Class A and class B both access the same global data structure or file

– Class A makes assumptions about class B

– “And finally, I cannot tell you all the ways whereby classes may

depend on each other; for there are divers ways and means, even so

many that I cannot number them.” (Mosiah 4:29, with modifications)

Minimize Dependencies

• Minimizing the number of communication

channels and interactions between different classes

has several benefits:

– A class with few dependencies is easier to understand

– A class with few dependencies is less prone to ripple

effects

– A class with few dependencies is easier to reuse

Minimize Dependencies

• When classes must interact, if possible they should

do so through simple method calls

– This kind of dependency is clear in the code and

relatively easy to understand

• A class’ public interface should be as small (or

“thin”) as possible

Separation of Interface and

Implementation

• Maintain a strict separation between a class’

interface and its implementation

• This allows internal details to change without

affecting clients

• interface Stack + class StackImpl

• Program to interfaces rather than classes when

possible

– Declare variables/parameters as type List instead of

ArrayList, as type Set instead of HashSet, etc.

Information Hiding

• Many languages provide “public”, “private”, and

“protected” access levels

• All internal implementation is “private” unless

there’s a good reason to make it “protected” or

“public”

• The same goes for the “protected” subclass

interface

– Don’t just blindly expose all internal details to

subclasses. Expose only what they must have access to.

Information Hiding

• Don’t let internal details “leak out” of a class

– search instead of binarySearch

– ClassRollinstead of StudentLinkedList

• Some classes or methods are inherently tied to a

particular implementation. In these cases it is OK

to use an implementation-specific name

– HashTable

– TreeSet

Law of Demeter

• Principle of least knowledge

– Each unit should have only limited knowledge about

other units: only units "closely" related to the current

unit.

– Each unit should only talk to its friends; don't talk to

strangers.

– Only talk to your immediate friends.

Law of Demeter

• More formally, the Law of Demeter for functions requires that a

method m of an object O may only invoke the methods of the

following kinds of objects:

– O itself

– m's parameters

– Any objects created/instantiated within m

– O's direct component objects

– A global variable, accessible by O, in the scope of m

• In particular, an object should avoid invoking methods of a member

object returned by another method. For many modern object oriented

languages that use a dot as field identifier, the law can be stated simply

as "use only one dot". That is, the code a.b.Method() breaks the law

where a.Method() does not. As a simple example, when one wants a

dog to walk, one would not command the dog's legs to walk directly;

instead one commands the dog which then commands its own legs.

Code Duplication

• Code duplication should be strenuously avoided

– Identical or similar sections of code

• Disadvantages of duplication:

– N copies to maintain

– Bugs are duplicated N times

• When you think you’ve fixed a bug, its twins still exist

– Makes program longer, decreasing maintainability

• Solutions

– Factor common code into a separate method or class

– Shared code might be placed in a common superclass

Don’t Repeat Yourself

• Single Responsibility Principle

– One and only one reason to change

– Consider Java Date class

• Used to represent time and date

• Now there is a Date and GregorianCalendar class

• Isolated Change Principle

– Ideally the implementation of a responsibility will be isolated to

one class or package of classes

– Not always achievable

– Consider the opposite: Shotgun Surgery

• One change alters many classes

Don’t Repeat Yourself

• Imposed duplication. Developers feel they have

no choice, the environment seems to require

duplication.

– Documentation

– Code comments

– Duplication imposed by the language

• Headers

• Interfaces

Don’t Repeat Yourself

• Inadvertent duplication. Developers don't

realize that they are duplicating information.

class Line {

public:

 Point start;
 Point end;

double length;

};

class Line {

public:

 Point start;
 Point end;

double length() {

 return start.distanceTo(end);
}

};

Don’t Repeat Yourself

• Impatient duplication. Developers get lazy and

duplicate because it seems easier.

• Interdeveloper duplication. Multiple people on

a team (or on different teams) duplicate a piece of

information.

Error Reporting

Any operation that can fail should report errors

• Throw exceptions

– void run() throws BadThingHappenedException;

• Return result objects

– boolean run(); -- Not very informative

– Define Result and ValueResult classes

• Result run();

• ValueResult<OutputType> run();

– Documentation should enumerate the possible error modes

• Enumerated types can be useful here

Example

class PhoneBookEntry {

 private String _name;

 private String _address;

 private String _phoneNumber;

}

class PhoneBookEntry {

 private Name _name;

 private Address _address;

 private PhoneNumber _phoneNumber;

}

Often, it is best to wrap data in a domain-specific abstraction

Example

// No abstraction
List<PhoneBookEntry> phoneBook;

// Better to wrap it in a class that also contains operations
class PhoneBook {

 private List<PhoneBookEntry> _entries;

}

Example
// POOR ABSTRACTION

class PhoneBook {

 private List<PhoneBookEntry> _entries;

 // LAZY way to support Add, Update, Delete, Iterate, Search

 List<PhoneBookEntry> getEntries() {

 return _entries;

 }

 // Domain-specific Algorithms

 ...

}

Exposes internal implementation

Provides no data integrity enforcement

Lacks operations needed by the program

class PhoneBook {

 private List<PhoneBookEntry> _entries;

 public Result addEntry(PhoneBookEntry entry) { ... }

 public Result updateEntry(PhoneBookEntry before, PhoneBookEntry after) { ... }

 public Result deleteEntry(PhoneBookEntry entry) { ... }

 public Iterator<PhoneBookEntry> findAll() { ... }

 public PhoneBookEntry findByPhoneNumber(PhoneNumber value) { ... }

 public Iterator<PhoneBookEntry> findByName(Name value) { ... }

 public Iterator<PhoneBookEntry> findByAddress(Address value) { ... }

 // Domain-specific Algorithms

 …
}

// Read-Only Search Results
class PhoneBook {

 private List<PhoneBookEntry> _entries;

 …

 //***
 public Iterator<PhoneBookEntry> findAll() {

 return _entries.iterator();

 }

 //*** OR

 public Iterator<PhoneBookEntry> findAll() {

 return java.util.Collections.unmodifiableList(_entries).iterator();

 }

 //***

 ...

}

// Indexing

class PhoneBook {

 private List<PhoneBookEntry> _entries;

 private Map<PhoneNumber, PhoneBookEntry> _indexByPhoneNumber;
 private Map<Name, List<PhoneBookEntry>> _indexByName;
 private Map<Address, List<PhoneBookEntry>> _indexByAddress;

 public Result addEntry(PhoneBookEntry entry) { ... }
 public Result updateEntry(PhoneBookEntry before, PhoneBookEntry after) { ... }
 public Result deleteEntry(PhoneBookEntry entry) { ... }
 public Iterator<PhoneBookEntry> findAll() { ... }
 public PhoneBookEntry findByPhoneNumber(PhoneNumber value) { ... }
 public Iterator<PhoneBookEntry> findByName(Name value) { ... }
 public Iterator<PhoneBookEntry> findByAddress(Address value) { ... }

 // Domain-specific Algorithms

 ...

}

// Enable/Disable
class PhoneBook {

 private List<PhoneBookEntry> _entries;
 private Map<PhoneNumber, PhoneBookEntry> _indexByPhoneNumber;
 private Map<Name, List<PhoneBookEntry>> _indexByName;
 private Map<Address, List<PhoneBookEntry>> _indexByAddress;

 public Result canAddEntry(PhoneBookEntry entry) { ... }

 public Result addEntry(PhoneBookEntry entry) {
 Result result = canAddEntry(entry);
 if (result.getStatus() == false) {
 return result;
 }
 else {
 ...
 }
 }

 public Result canUpdateEntry(PhoneBookEntry before, PhoneBookEntry after) { ... }

 public Result updateEntry(PhoneBookEntry before, PhoneBookEntry after){
 Result result = canUpdateEntry(before, after);
 if (result.getStatus() == false) {
 return result;
 }
 else {
 …
 }
 }

can-methods used to

enforce constraints

Enforcing Constraints

• isValid and can-methods

• Internal class validation

– Check whenever data is going to be modified

• Manager classes

– Some constraints are higher level

– Constraints on the collection

– Support with a manager class

Summary
• Abstraction

– Naming

– Cohesion

– Abstracting All the Way

• Decomposition

– Levels of Design (System, Subsystem, Package, Class, Routine)

– Hypo- and Hyper- Decomposition

– Size and Length Metrics

– Complexity Metrics

• Algorithm & Data Structure Selection

• Minimize Dependencies (or, Low Coupling)

– Separation of Interface and Implementation

– Information Hiding

• Avoid Code Duplication

• Error Reporting

