
Computer Science 340

Software Design & Testing

Design Principles Review

Introduction

• Core principles of software design
– Fundamental and relatively constant
– When were our textbooks published? How could they

still be relevant?
• Evaluation criteria for designs in this course
• Design evaluation is inherently subjective
• Providing specific evaluation criteria will help

make grading as predictable as possible

Goals of Software Design

• Manage COMPLEXITY
• Make and keep software systems ORGANIZED as

they evolve
• Combat design ENTROPY
• Create systems that

– Work
– Are easy to understand, debug, and maintain
– Are easy to extend and hold up well under changes
– Reusable

Design is inherently iterative

• Design, implement, test, Design, implement, test, …
• Feedback loop from implementation back into design

provides valuable knowledge
• Designing everything before beginning implementation

doesn’t work
• Beginning implementation without doing any design also

doesn’t work
• The appropriate balance is achieved by interleaving design

and implementation activities in relatively short iterations

Design Principles

• Decomposition
• Abstraction
• Naming
• Cohesion
• Orthogonality
• Duplication Elimination

Decomposition

• In addition to Abstraction, Decomposition is the
other fundamental technique for taming
COMPLEXITY

• Large problems subdivided into smaller sub-
problems

• Subdivision continues until leaf-level problems
are simple enough to solve directly

• Solutions to sub-problems are recombined into
solutions to larger problems

Decomposition

• Decomposition is strongly related to Abstraction
• The solution to each sub-problem is encapsulated

in its own abstraction (class or subroutine)
• Solutions to larger problems are concise because

they’re expressed in terms of sub-problem
solutions, the details of which can be ignored

• The decomposition process helps us discover (or
invent) the abstractions that we need

Decomposition

• Levels of decomposition
– System
– Subsystem
– Packages
– Classes
– Routines

Decomposition

• Hypo- and Hyper-Decomposition

• When have we decomposed far enough?

– Size metrics
• Rules of thumb

– 500 Lines of Code in a method is probably to long
– 20-50 lines of code?

– Complexity metrics
• Rules of thumb

– 10 parameters for a method may be too many
– A class with 50 methods may be too many

Abstraction
• Abstraction is one of the software designer’s primary tools

for coping with COMPLEXITY
• Programming languages and OSes provide abstractions

that model the underlying machine
• Programs written solely in terms of these low-level

abstractions are very difficult to understand
• Software designers must create higher-level, domain-

specific abstractions, and write their software in terms of
those
– High-level abstractions implemented in terms of low-level

abstractions

Abstraction

• Each abstraction is represented as a class
• Each class has a carefully designed public

interface that defines how the rest of the system
interacts with it

• A client can invoke operations on an object
without understanding how it works internally

• This is a powerful technique for reducing the
cognitive burden of building complex systems

Abstraction

• Many domain-specific abstractions can be taken
directly from the “domain model”

– A domain model inproblem solving and software engineering is a conceptual model of all the
topics related to a specific problem. It describes the various entities, their attributes, roles, and
relationships, plus the constraints that govern the problem domain.

• Other abstractions do not appear in the domain
model, but are needed for internal implementation
purposes
– Mid-level abstractions such as: NotificationManager,

PersistenceManager, UserSession, UndoRedoManager,
ThreadPool

Abstract All the Way /
Avoid Primitive Obsession

• Some abstractions are simple enough to store directly
using the language’s built-in data types
– Name => string
– Pay Grade => int
– Credit Card Info => string

• Sometimes it is best to create classes for such simple
abstractions for the following reasons:
– Domain checking
– Related operations
– Code readability

Naming
• A central part of abstraction is giving things

names (or identifiers)
• Selecting good names for things is critical
• Class, method, and variable names should clearly

convey their function or purpose
• Class and variable names are usually nouns
• Method names are usually verbs

– Exceptions
• Object properties (ID, Name, Parent, etc.)
• Event handlers (MouseMoved, UserLoggedIn)

Cohesion / Single Responsibility
• Each abstraction should have a single responsibility
• Each class represents one, well-defined concept

– All operations on a class are highly related to the class’
concept

– Cohesive classes are easy to name
• Each method performs one, well-defined task

– Unrelated or loosely related tasks should be in different
methods

– Cohesive methods are easy to name

Single Responsibility Principle
• Consider Java Date class

– Mostly deprecated. Why?
– The Date class does two different things (i.e., has two

different responsibilities)
• Represents moments in time
• Represents a Gregorian MM DD YYYY date

– This does not work for parts of the world that don’t use the
Gregorian calendar

– These two responsibilities should have been separated into
different classes

– Now there are Date and Calendar classes

• Consider the CsvWriter class
– Represents a file format, and an output destination

(System out)

Single Responsibility Principle
• Consider the CsvWriter class (on web site)

– Represents a file format (csv), and an output destination
(System.out)

– Should allow the output destination to be passed in (not
hard-coded to use System.out)

Isolated Change Principle

• Isolated Change Principle
– Ideally, the implementation of a responsibility will be isolated to

one class or package of classes

– When the way that responsibility is implemented needs to change,
there is only one place (or area) in the code that needs to change

– Not always achievable, but something to strive for

Orthogonality

In computing, two or more things are orthogonal if
changes in one do not affect any of the others.

You're on a helicopter tour of the Grand Canyon when the pilot, who made the
obvious mistake of eating fish for lunch , suddenly groans and faints. Fortunately,
he left you hovering 100 feet above the ground. You rationalize that the collective
pitch lever [2] controls overall lift, so lowering it slightly will start a gentle descent
to the ground. However, when you try it, you discover that life isn't that simple.
The helicopter's nose drops , and you start to spiral down to the left. Suddenly you
discover that you're flying a system where every control input has secondary effects.
Lower the left-hand lever and you need to add compensating backward movement
to the right-hand stick and push the right pedal. But then each of these changes
affects all of the other controls again. Suddenly you're juggling an unbelievably
complex system, where every change impacts all the other inputs. Your workload
is phenomenal: your hands and feet are constantly moving, trying to balance all
the interacting forces.

[2] Helicopters have four basic controls. The cyclic is the stick you
hold in your right hand. Move it, and the helicopter moves in the
corresponding direction. Your left hand holds the collective pitch lever.
Pull up on this and you increase the pitch on all the blades, generating lift.
At the end of the pitch lever is the throttle . Finally you have two foot
pedals, which vary the amount of tail rotor thrust and so help turn the helicopter.

Helicopter controls are decidedly not orthogonal.

Orthogonality

Eliminate Effects
Between Unrelated
Things

Orthogonality
An orthogonal approach reduces the risks inherent in any development.

• Diseased sections of code are isolated. If a module is sick, it is less likely

to spread the symptoms around the rest of the system. It is also easier to
slice it out and transplant in something new and healthy .

• The resulting system is less fragile. Make small changes and fixes to a
particular area, and any problems you generate will be restricted to that
area.

• An orthogonal system will probably be better tested, because it will be

easier to design and run tests on its components.

• You will not be as tightly tied to a particular vendor, product, or platform,
because the interfaces to these third-party components will be isolated to
smaller parts of the overall development.

Minimize Dependencies

• Minimizing the number of communication
channels and interactions between different classes
has several benefits:
– A class with few dependencies is easier to understand
– A class with few dependencies is less prone to ripple

effects
– A class with few dependencies is easier to reuse

Minimize Dependencies

• Dependencies
– Class A instantiates class B
– Class A invokes operations on class B
– Class A accesses class B’s internal state
– Class A inherits from class B
– Class A has a method parameter of class B
– Class A and class B both access the same global data structure or file
– “And finally, I cannot tell you all the ways whereby classes may

depend on each other; for there are divers ways and means, even so
many that I cannot number them.” (Mosiah 4:29, with modifications)

Minimize Dependencies

• When classes must interact, if possible they should
do so through simple method calls

• This kind of dependency is clear in the code and
relatively easy to understand

• Indirect interactions through global data, external
files, databases, etc. are harder to understand than
simple method calls

Minimize Dependencies –
The Law of Demeter

• Principle of least knowledge
– Each unit should have only limited knowledge about

other units: only units "closely" related to the current
unit.

– Each unit should only talk to its friends; don't talk to
strangers.

– Only talk to your immediate friends.

Minimize Dependencies –
The Law of Demeter

• More formally, the Law of Demeter for functions requires that a
method m of an object O may only invoke the methods of the
following kinds of objects:
– O itself
– m's parameters
– Any objects created/instantiated within m
– O's direct component objects

• In particular, an object should avoid invoking methods of a member

object returned by another method. For many modern object oriented
languages that use a dot as field identifier, the law can be stated simply
as "use only one dot". That is, the code a.b.Method() breaks the law
where a.Method() does not. As a simple example, when one wants a
dog to walk, one would not command the dog's legs to walk directly;
instead one commands the dog which then commands its own legs.

Separation of Interface and
Implementation

• Maintain a strict separation between a class’
interface and its implementation

• This allows internal details to change without
affecting clients

• interface Stack + class StackImpl
• Program to interfaces rather than classes when

possible
– Declare variables/parameters as type List instead of

ArrayList, as type Set instead of HashSet, etc.

Information Hiding

• Many languages provide “public”, “private”, and
“protected” access levels

• All internal implementation is “private” unless
there’s a good reason to make it “protected” or
“public”

• The same goes for the “protected” subclass
interface
– Don’t just blindly expose all internal details to

subclasses. Expose only what they must have access to.

Information Hiding

• Don’t let internal details “leak out” of a class
– search instead of binarySearch
– ClassRollinstead of StudentLinkedList

• Some classes or methods are inherently tied to a
particular implementation. In these cases it is OK
to use an implementation-specific name
– HashTable

– TreeSet

Algorithm & Data Structure
Selection

• No amount of decomposition or abstraction will
hide a fundamentally flawed selection of
algorithm or data structure.

• Remember the lessons of
– CS 235, CS 236, and CS 312

Code Duplication

• Code duplication should be strenuously avoided
– Identical or similar sections of code

• Disadvantages of duplication:
– N copies to maintain
– Bugs are duplicated N times
– Makes program longer, decreasing maintainability

• Solutions
– Factor common code into a separate method or class
– Shared code might be placed in a common superclass

Don’t Repeat Yourself

• Imposed duplication. Developers feel they have
no choice, the environment seems to require
duplication.
– Documentation
– Code comments
– Duplication imposed by the language

• Headers
• Interfaces

Don’t Repeat Yourself

• Inadvertent duplication. Developers don't
realize that they are duplicating information.

class Line {

public:

 Point start;
 Point end;

 double length;
};

class Line {

public:

 Point start;
 Point end;

 double length() {
 return start.distanceTo(end);
 }
};

Don’t Repeat Yourself

• Impatient duplication. Developers get lazy and
duplicate because it seems easier.

• Interdeveloper duplication. Multiple people on
a team (or on different teams) duplicate a piece of
information.

Error Reporting
Any operation that can fail should report errors
• Throw exceptions

– void run() throws BadThingHappenedException;
• Return result objects

– boolean run(); -- Not very informative
– Define Result and ValueResult classes

• Result run();
• ValueResult<OutputType> run();

– Method documentation should document the possible
errors that might be returned

Example

class PhoneBookEntry {

 private String _name;

 private String _address;

 private String _phoneNumber;

}

class PhoneBookEntry {

 private Name _name;

 private Address _address;

 private PhoneNumber _phoneNumber;

}

Often, it is best to wrap data in a domain-specific abstraction

Example

// No abstraction
List<PhoneBookEntry> phoneBook;

// Better to wrap it in a class that also contains operations
class PhoneBook {

 private List<PhoneBookEntry> _entries;

}

Example
// POOR ABSTRACTION

class PhoneBook {

 private List<PhoneBookEntry> _entries;

 // LAZY way to support Add, Update, Delete, Iterate, Search

 List<PhoneBookEntry> getEntries() {

 return _entries;

 }

 // Domain-specific Algorithms

 ...

}

Exposes internal implementation

Provides no data integrity enforcement

Lacks operations needed by the program

class PhoneBook {

 private List<PhoneBookEntry> _entries;

 public Result addEntry(PhoneBookEntry entry) { ... }

 public Result updateEntry(PhoneBookEntry before, PhoneBookEntry after) { ... }

 public Result deleteEntry(PhoneBookEntry entry) { ... }

 public Iterator<PhoneBookEntry> findAll() { ... }

 public PhoneBookEntry findByPhoneNumber(PhoneNumber value) { ... }

 public Iterator<PhoneBookEntry> findByName(Name value) { ... }

 public Iterator<PhoneBookEntry> findByAddress(Address value) { ... }

 // Domain-specific Algorithms

 …
}

// Read-Only Search Results
class PhoneBook {

 private List<PhoneBookEntry> _entries;

 …

 //***
 public Iterator<PhoneBookEntry> findAll() {

 return _entries.iterator();

 }

 //*** OR

 public Iterator<PhoneBookEntry> findAll() {

 return java.util.Collections.unmodifiableList(_entries).iterator();

 }

 //***

 ...

}

// Indexing

class PhoneBook {

 private List<PhoneBookEntry> _entries;

 private Map<PhoneNumber, PhoneBookEntry> _indexByPhoneNumber;
 private Map<Name, List<PhoneBookEntry>> _indexByName;
 private Map<Address, List<PhoneBookEntry>> _indexByAddress;

 public Result addEntry(PhoneBookEntry entry) { ... }
 public Result updateEntry(PhoneBookEntry before, PhoneBookEntry after) { ... }
 public Result deleteEntry(PhoneBookEntry entry) { ... }
 public Iterator<PhoneBookEntry> findAll() { ... }
 public PhoneBookEntry findByPhoneNumber(PhoneNumber value) { ... }
 public Iterator<PhoneBookEntry> findByName(Name value) { ... }
 public Iterator<PhoneBookEntry> findByAddress(Address value) { ... }

 // Domain-specific Algorithms

 ...

}

// Enable/Disable
class PhoneBook {

 private List<PhoneBookEntry> _entries;
 private Map<PhoneNumber, PhoneBookEntry> _indexByPhoneNumber;
 private Map<Name, List<PhoneBookEntry>> _indexByName;
 private Map<Address, List<PhoneBookEntry>> _indexByAddress;

 public Result canAddEntry(PhoneBookEntry entry) { ... }

 public Result addEntry(PhoneBookEntry entry) {
 Result result = canAddEntry(entry);
 if (result.getStatus() == false) {
 return result;
 }
 else {
 ...
 }
 }

 public Result canUpdateEntry(PhoneBookEntry before, PhoneBookEntry after) { ... }

 public Result updateEntry(PhoneBookEntry before, PhoneBookEntry after){
 Result result = canUpdateEntry(before, after);
 if (result.getStatus() == false) {
 return result;
 }
 else {
 …
 }
 }

can-methods used to
enforce constraints

Enforcing Constraints

• Can? methods
• Internal class validation

– Check whenever data is going to be modified
• Manager classes

– Some constraints are higher level
– Constraints on the collection
– Support with a manager class

	Computer Science 340��Software Design & Testing
	Introduction
	Goals of Software Design
	Design is inherently iterative
	Design Principles
	Decomposition
	Decomposition
	Decomposition
	Decomposition
	Abstraction
	Abstraction
	Abstraction
	Abstract All the Way /�Avoid Primitive Obsession
	Naming
	Cohesion / Single Responsibility
	Single Responsibility Principle
	Single Responsibility Principle
	Isolated Change Principle
	Orthogonality
	Slide Number 20
	Orthogonality
	Orthogonality
	Minimize Dependencies
	Minimize Dependencies
	Minimize Dependencies
	Minimize Dependencies – �The Law of Demeter
	Minimize Dependencies – �The Law of Demeter
	Separation of Interface and Implementation
	Information Hiding
	Information Hiding
	Algorithm & Data Structure Selection
	Code Duplication
	Don’t Repeat Yourself
	Don’t Repeat Yourself
	Don’t Repeat Yourself
	Error Reporting
	Example
	Example
	Example
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Enforcing Constraints

