


A model Is an abstraction of a
system, specifying the modeled
system from a certain viewpoint

and at a certain level of
abstraction




Complexity and Modeling

 Modeling is a well-accepted engineering technique
for dealing with complexity

 Models let us focus on one view of the system while
ignoring irrelevant details (a simplification of reality)

— Example: Plumbers only care about plumbing, so we give
them plumbing diagrams; electricians only care about
electrical work, so we give them electrical diagrams, etc.

 Models can be created at different levels of
abstraction

— 10,000 ft. view vs. 10 ft. view

— High-level: sketch of the building's exterior for the customer

— Low-level: detailed electrical plan for the electrician



ISTUCCOSTENE

VENEER &)
L=id HiIP
STUCCOSTONL
RAFTRR VENLEIR =
TRPLE RAFTRAS UNDLR, SEE DETAIL
WALLS OF DORMER HOGF. GAlPOST
ME ;.;_e HoR. (PURR TO S1mer qn‘lo RAFTERS
WIOR ARCHED e uoGe 4 To FLaATe
eyl 4 SOFFITASTUCCOSTONE  £ACH SIDG W/SWP5ON
ry 45?“'6‘“6 VENEER OVER - FORM MST4B STRAT.
ISG BETWILN STUDS SRCH V7 ) LT VOOR).
MANG GxB HDR FRom
ITCHEN TO MASTER 3551108 PARALLEM
" BM sTar uf 7' 2 |2u4 SIMPEZON HULLE
LSLE DRTAIL HANG

A

FTLRS ‘ o
+

LS oY 3 LA
ROUDF. o)
STUCCOSTONE
WENEER
PREVILA on XA G
CMST M CONTNUO A
STer o8

HLADLRS
exte Anl SOLID BLOCKIG
Pb‘l‘l' ERTWREN STUDS Fioad

(EQ‘ oNE STIAF) S22
L
NOTE: "“'@
DROP CRILING HEIGHT
AT LOWER STAR

LANDMNG TO 100" &
PROVIDE 30X I0ATNIC

_L-z_bm -

._._(_nl_

SCUTTLE W CLILING. €




Software Modeling

Why do we create models of software
systems?

Models help us visualize and understand
the system we're building

Models are used to document the design
of the system and communicate it to
others

Models serve as a guide during system
construction



UML

 Unified Modeling Language
e History
 Models

— Data

— Behavior

— Interaction
— Packaging



-Faram 1

CHewsluelan |
[T amw |

LR S

s plion © Slring BT e
-Usar 1 -MewsBatinns  LFopbied | Booann
N ‘ Lat=Crealed : Lals
Clzar . | O |
N 1 SreowFrom ;Db
Asprs - “Mews Snowlnl] ; Dadn
| | - Mo iy
L2 il ;e g
L .Hﬁ-.:,l. Rl e E T 5-""5
Honcalion: - Sirifg
1 Psopis : Snng
© | -Prodcs ’
FhocSoclons CPhaoteSedian
CPhoto . Tk - 'S '
b-Uale |aken - Lsis K Hlescrplion - S5iting Coonbent
[Peoplennan - Sifng g DoteCremed - Do | [55ectans T Sy
N “Fhmos oo LangSarng
+Em|-‘n-r-.m:nm-:,' Aneiion FDadalrastad | DA P
HE ot | Boaskadn
P sl asthiod fiod | Dot
FCnmem e ks - Boolean i Farem k FmyerCoun| - rleger
o d +w
+Tie : Sring +Proins W Lsindindex - Imeger
image : Limage | Enabied : Booisan
[Himagelnginal : Cimage . ~Show nHomeRagn : Boolean )
[HmageThums | Clmage - o -HemaPagadinder : iniegar =Links CLink
L st ol By | niager T ; Grng
[P ; Siring = Tk oD mes. © inlager .
[HFikease | Emring FAversgatols | Dounle
#FileTye : Sring FSuTmarny ;| Srng
tFilesie : Long s )
[HFiletereion @ Elning
j-UmaleCrented @ Lale —[ CPaga
[rOakcl astfdodiied © Dale . " =Comionls .
+Dertaite o R NI
Clmage GO P
Phclowvidth : inbeger T o
PraraHaign | Iniaga -FaguEackon L
i -Cortameni Sachon 1
~Dacurenis " —L CPageSaction
CDomumemSacton THe - Giing
1 Thie . Sy D i © Sy
Emai Messages Demacripien - Sleing Subdecions | Erahiad | Bncdaen
Erabied : Bodean CrateCraslend ; Dok
CEmailiag =~Farenl DiabeCromiod | Dabe |
i Fawand




Levels of Models

Conceptual Model — Problem Understanding
Specification/Requirement Document — Solutions
High-Level Design Model

— Systems, Packages, Classes

— Interactions, Interfaces

Low-Level Design Model

— Class Conceptual Model

— May be better done with Class documentation such
as Javadoc

Implementation
— Should be done in code not UML



UML Models

Structural/Data

— Class Diagram

— Object Diagram
Behavior

— Use Case Diagram

— State Diagram

— Activity Diagram
Interaction

— Communication Diagram
— Sequence Diagram
Physical Diagram

— Component Diagram
— Deployment Diagrams




Classes At the Conceptual
Level

A Class — typically named with a common noun.

Mother

At the conceptual level the class is a set of objects with
common properties.



Classes At the Design Level

A Class — typically named with a common noun.
At the design level a Class is a Type.

Mother : i
g {f Attribute Section
-age :int
+ print()

+ equals(Object) X Method Section

Visibility constraints (optional) :
+ (public), - (private), # (protected), / (derived), _ (static), ~ (package).
We may add cardinality constraints to an attribute. In this case it means that a

Mother has 1 or more names. If the cardinality constraint is omitted it is
assumed to be the cardinality constraint “1”.

For some situations we may omit the Method Section or the Attribute Section.



Objects

An Object — notice the name is underlined.

Clara

While some find Objects useful in the Class diagram others
do not.



Assoclations

An association can be thought of as a declarative sentence.

has »

Child = 7 Mother

The name In the association is optional but suggested.

Typical association constraints are 1, 0..1, *, 1..*, n..m.

UML 1.0 supported a notation for an arbitrary set of
non-negative integers (e.g. 2:4, 6,12 meaning the set

{2,3,4,6,12}
Most associations are binary.



Assoclations Continued

e Roles

1 IS married to » 1
Male Female

Husband Wife

— Although this example has 2 roles, there may be only 1, or most
often O roles on an association.

— Roles can be viewed as Specializations

* While not all versions of UML support the same
annotations, you may find some when reading UML
diagrams.

has »  {ordered}

Mother Child
1 1..%




Directed Associations

e Should only be used as a design construct

has »

Person > Address
1 1.

— Means that we can access an Address via a Person, but, given
an Address we can’t determine the Person associated with it.

— If the association constraint on the opposite side of the
navigability arrow is a 1, then this is equivalent to

Person

address : Address [1..*]

— Notice the cardinality constraint to the right of the attribute.



Aggregation/Composition

« Aggregation

1%
Company K>- Person
0.*  Employee

— Can be read as Person is subpart of a Company

— Can be transitive but acyclic.

— Some people prefer to just use associations.

— Can use “comb” representation of there are different types of subparts.

« Composition

1.*
Car P Car Part

— Can be read as “A Car is composed of 1 or more Car Parts”.

— A much stronger form of Aggregation. Some suggest it implies a Car Part
cannot exist unless it is part of a car.

— Notice there is no association constraint next to the black diamond
because it is always 1.



Generalization/Specialization

BYU
Person
/\
Faculty Staff Student
Member Member

— For conceptual modeling every Faculty Member, Staff Member, and
Student is a BYU Person. “Is A” Semantics. That is, subset semantics.
In this case the set, Student, i1s a subset of the set BYU Person.

— At the Design level it represents “subtype” or “inheritance” semantics.
— A generalization/specialization often has a single specialization.

— Though not standard UML, | may include the following annotations:
{union}, {disjoint}, and {partition}.



General Constraints/Notes

* General Constraints
— {A Father must be a male Person}
— | often omit the braces.
— Can be expressed formally in OCL, a type of first-

order logic.
* Notes j
ANote |_
~~~~~~ Family
History
— | use text such as
NOTE: A Note

or
Note: Information



Dependency

e Used in design models. Especially good for
representing dependencies that aren’t obvious,

such as assumptions.

Person f------------------> Address

* There Is no notation for indicating why Person
depends on Address. | use notes to add the
Information.



Assoclation Class

e Useful when thinking of an association as an object.
e Could use an n-ary relation.

married »

Husband Wife

Marriage Information

date : Date
temple: Temple




N-ary Associations

Date
1.*
Husband > | Wife
1 A Husband married a Wife
Temple on a given Date at a particular Temple

In UML the association constraints are binary functional dependencies.
They tried to extend that idea to n-ary associations. It didn’t work well.
Here the 4 association constraints mean

For a given Husband, Wife, and Temple in the association there are 1 or more Dates.
For a given Husband, Wife, and Date in the association there is 1 and only 1 Temple.
For a given Husband, Date and Temple in the association there is 1 and only 1 Wife.
For a given Wife, Date, and Temple in the association there is 1 and only 1 Husband.

Because this is awkward it is not used as much as it could be.

If we interpret the constraints as participation constraints (see ORM, and
OSA) then the semantics are much easier to understand.



Abstract
Class

L

Customer

Multiplicity ]

Simple

Rental Item

Aggregation

Rental Invoice

*

[ Generalization

Composition

DVD Movie

VHS Movie

Simple
Association

Video Game

Checkout Screen




Customer No arrows; info can Order
flow in both directions
name i 0.7 | date
address K slatus
ﬂﬂﬂffﬂﬂﬂ?) calcTax Aggregation — Order class
calcTotal contains OrderDetall
Payment d .
abstract {f'f—.'l* 'F.% ' 1 calcTotalWeight classes. Could be
amount ) composition?
role name
generalization
“—"'Zl}\ line item | 1.7 multiplicity
| ] OrderDetail item <——— class name
Credit Cash Check
quantity shippingWeight
- oW 4—|— attributes
aurnbier cinTaidiied] | mame taxStatus 0.7 L] description
type bankiD
expDate calcSubTotal getPriceF orQuantity
authorized calcWWeight getWeight ~ <~|—— operations
authorized

navigability



Class Diagram
Example

{A Person is always associated with a Floor
or an Elevator, but never both at the same time}

Building Elevator
1 1 * +floor : float {An Elevator has a button for
" +direction : Direction| | ©&ch Floor}

¢ . 0.1

1
1 «enumeration»
Person Button Direction
+illuminated : bool +NONE
+Push() +UP
Q +DOWN
*
1.% 1.*
0..1
Floor Floor Button Elevator Button
+number : int +direction : Direction +floorNumber : int
1 2

{A Floor has one Down button and
one Up button}




Class Diagram

+name : string

Example + 0

. L 1.*
Office
0.1 Department Is Located At » _
address : string

———<Iname : string

voice : string

* *
x *
1. member 1 manager
Headquarters
Person

name : string
employeelD : int
title : string
GetContactinformation() : Contactinformation
GetPayrollinformation() : Payrollinformation

! !
| |
! L
| |
| |

Payrollinformation| |Contactinformation

taxID : string address : string
salary : float

Source: Booch et. al., The UML User Guide



	CS 340��UML �Class Diagrams
	A model is an abstraction of a system, specifying the modeled system from a certain viewpoint and at a certain level of abstraction�
	Complexity and Modeling
	Slide Number 4
	Software Modeling
	UML
	Slide Number 7
	Levels of Models
	UML Models
	Classes At the Conceptual Level
	Classes At the Design Level
	Objects
	Associations
	Associations Continued
	Directed Associations
	Aggregation/Composition
	Generalization/Specialization
	General Constraints/Notes
	Dependency
	Association Class
	N-ary Associations
	Slide Number 22
	Slide Number 23
	Class Diagram�Example
	Class Diagram�Example

